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INTEGRABLE EVOLUTION SYSTEMS OF GEOMETRIC TYPE

V. V. Sokolov∗

We present necessary conditions for the integrability of multicomponent third-order evolution systems of

geometric type. For the considered examples, the affine connected space determining the system turns out

to be symmetric in the case of zero torsion. In the case of the connection with nonzero torsion, the space

is generated by a Bol loop.
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1. Introduction

The relations of integrable systems theory to various branches of mathematics are extremely deep and
diverse (see, e.g., [1]). Modern integrability theory was inspired by the discovery of the inverse scattering
method [2], [3], which allows expressing solutions of integrable differential equations in terms of a solution
of the Riemann–Hilbert problem and relates integrable systems to the theory of functions of a complex
variable and to functional analysis.

Methods of algebraic geometry were used to find periodic and quasiperiodic solutions. Several classical
problems of algebraic geometry were later solved using integrable systems theory. It turns out that self-
similar solutions of integrable partial differential equations (PDEs) have the Painlevé property. This relates
the integrability of PDEs to isomonodromic deformations of linear operators and, in particular, led to
the concept of Frobenius manifolds. The notions of a Hopf algebra and a W-algebra and also the elliptic
Poisson bracket came from integrability. The connections between the coefficients of special solutions of
some integrable equations and modern combinatorics are amazing.

The relations between various classes of polynomial integrable systems and nonassociative algebraic
structures such as Jordan algebras and triple systems are closest to our subject here. We state the first of
the results of this type.

The Korteweg–de Vries (KdV) equation

ut = uxxx + 6uux

for a function u(x, t) is one of the most celebrated integrable models. We consider the multicomponent
generalization of this equation

ui
t = ui

xxx +
∑

j,k

Ci
jkukuj

x, i, j, k = 1, . . . , N. (1.1)
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Here and hereafter, repeated indices imply summation. Let e1, . . . , eN be a basis of an N -dimensional
vector space over C. We define the structure of an algebra A on this space by

ej
�ek =

∑

i

Ci
jkei,

where � is the product in A. Let
U =

∑

k

ukek.

We can then write system (1.1) as
Ut = Uxxx + U �Ux. (1.2)

An invariant description of the collection of constants Ci
jk for which the system is integrable is given by the

observation of Svinolupov [4]: the algebra A must be Jordan [5].

Example 1. The multiplication X �Y = XY + Y X defines the structure of a simple Jordan algebra
on the vector space of all m×m matrices. The corresponding system (1.1) is the matrix KdV equation for
a matrix U(t, x) of arbitrary size m

Ut = Uxxx + 3UUx + 3UxU.

If the studied class of systems admits arbitrary coordinate changes, then various relations appear be-
tween integrability and differential geometry. Well-known structures of this kind arise in the bi-Hamiltonian
formalism and in the theory of integrable systems of hydrodynamic type.

Here, we establish relations between integrable evolution systems of geometric type and spaces of
affine connection that admit covariantly constant deformations of algebraic structures such as triple Jordan
systems [6]. We began an investigation of such systems in the case of torsion-free connections in 1996,
but it was interrupted by the unexpected death of S. Svinolupov. Some results were formulated in [7],
dedicated to his memory. Unfortunately, that survey was written in a hurry and contains both misprints
and significant inaccuracies, and we therefore recently decided to return to this subject by repeating and
refining our results from 1996 by a slightly different method. In addition, examples of integrable vector
systems of geometric type with a nonsymmetric connection were found in [8]. For all these examples, the
curvature tensor is zero. Here, we present the main integrability condition for systems with zero curvature
and nonzero torsion, which establishes relations between such systems and Bol loops.

2. Systems of geometric type

We consider N -component systems of the form

ui
t = ui

xxx + Ai
jk(�u )uj

xuk
xx + Bi

jks(�u )uj
xuk

xus
x, i = 1, . . . , N. (2.1)

In contrast to (1.1), the coefficients in this system are not constant numbers but some functions of the
variables u1, . . . , uN . The right-hand side of system (2.1) is a homogeneous polynomial in derivatives if we
assume that the derivative ∂kui/∂xk has the weight k + 1.

It is easy to see that the class of systems (2.1) is closed under arbitrary point transformations

�v = �Ψ(�u ). (2.2)

It can be verified that under transformations (2.2), the collection of functions Ai
jk(�u ) changes in just the

same way as the components of some affine connection.

Our final goal is an invariant description of integrable systems of form (2.1). It is clear that the answer
must be formulated in terms of differential geometry.
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Remark 1. Another class of systems of geometric type is given by

ui
xy = σi

jk(�u )uj
xuk

y. (2.3)

Here, the functions σi
jk(�u ) can also be interpreted as components of some affine connection, and the

classification problem for integrable cases is formulated very simply: For which affine connections is such a
system integrable?

Although systems of form (2.3) are more interesting than (2.1) from the standpoint of applications, we
consider systems (2.1) here because there is an extremely efficient method for classifying integrable evolution
systems based on the existence of infinitesimal higher symmetries [9], [10]. This symmetry approach is much
less effective for hyperbolic systems. But if we first describe integrable systems (2.1), then it is easy to
construct systems (2.3) for which (2.1) are third-order symmetries (cf. [11]).

Integrable matrix equations. The equations [12], [13]

Ut = Uxxx − 3UxU−1Uxx, (2.4)

Ut = Uxxx − 3
2
UxU−1Uxx − 3

2
UxxU−1Ux +

3
2
UxU−1UxU−1Ux (2.5)

are integrable for any size m of the matrix U. It is clear that these equations written in the component
form belong to the class of systems (2.1) with N = m2.

We rewrite (2.1) as

ui
t = ui

3 + 3αi
jk(u)uj

xuk
xx +

(
∂αi

jk

∂ul
+ 2αi

lsα
s
jk − αi

slα
s
jk + βi

jkl

)
uj

xuk
xul

x. (2.6)

It turns out that the collection of functions βi
jkm transforms under change of variables (2.2) as components

of a tensor. Without loss of generality, we assume that βi
jkm = βi

kjm = βi
mkj , i.e., for any vectors X , Y ,

and Z, we have
β(X, Y, Z) = β(Y, X, Z) = β(X, Z, Y ).

System (2.6) is thus defined by the connection Γ with the components αi
jk and by the symmetric tensor β.

Example 2. In the case N = 1, Eq. (2.6) can be written as

ut = uxxx + 3α(u)uxuxx +
(
α′(u) + α(u)2 + β(u)

)
u3

x. (2.7)

It can be shown that it admits an infinite sequence of higher symmetries of the form

uτ = G(u, ux, . . . , uk), where uj =
∂ju

∂xj
,

iff β′ = 2αβ. By a point transformation, we can turn α into zero (every connection is flat for N = 1).
Therefore, any integrable equation (2.7) is pointwise equivalent to the equation ut = uxxx + const · u3

x.

To formulate some general results, we let R and T denote the curvature and torsion tensors of the
connection Γ and introduce the tensor

σ(X, Y, Z) def= β(X, Y, Z) − 1
3
δ(X, Y, Z) +

1
3
δ(Z, X, Y ), (2.8)
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where
δ(X, Y, Z) def= T (X, T (Y, Z)) + R(X, Y, Z) −∇X(T (Y, Z)). (2.9)

It follows from the identity δ(X, Y, Z) = −δ(X, Z, Y ) that

σ(X, Y, Z) = σ(Z, Y, X). (2.10)

It is easy to verify that
δ(X, Y, Z) = σ(X, Z, Y ) − σ(X, Y, Z). (2.11)

Because β(X, X, X) = σ(X, X, X), system (2.6) is defined by the connection Γ and the tensor σ(X, X, X).

Theorem 1. If system (2.6) has an infinite sequence of higher symmetries that are polynomial, are

homogeneous with respect to the derivatives,1 and have the form

ui
τ = ui

k + Gi(u, ux, . . . , uk−1), (2.12)

then the conditions

(∇X)R(Y, Z, V ) = R(Y, X, T (Z, V )), (2.13)

(∇X)σ(Y, Z, V ) = 0 (2.14)

are satisfied.

Remark 2. It follows from formulas (2.8), (2.9), (2.11), and (2.14) that the tensors δ and β are
covariantly constant.

The case of symmetric connection. If T = 0, then condition (2.13) has the form

(∇X)R(Y, Z, V ) = 0. (2.15)

This means that the affine connected space is symmetric. Such spaces were described by E. Cartan. In this
case, further calculations are simplified, and we can prove the following statement.

Theorem 2. If T = 0 and the system of equations has an infinite sequence of symmetries (2.12), then

the condition

σ(X, σ(Y, Z, V ), W ) − σ(W, V, σ(X, Y, Z)) + σ(Z, Y, σ(X, V, W )) − σ(X, V, σ(Z, Y, W )) = 0 (2.16)

is satisfied.

Remark 3. Identities (2.10) and (2.16) mean that the functions σi
jkm(u) are structural constants of a

triple Jordan system for any fixed value of u. Identity (2.14) shows that we are dealing with a covariantly
constant deformation of a triple Jordan system, which is related (see formula (2.11)) to the curvature tensor
by the identity

R(X, Y, Z) = σ(X, Z, Y ) − σ(X, Y, Z). (2.17)

Conjecture 1. If T = 0 and conditions (2.10) and (2.14)–(2.17) are satisfied, then the corresponding

system (2.6) has an infinite sequence of symmetries (2.12).

Matrix equation (2.5) belongs to the class of systems (2.6) with a symmetric connection constructed
in [13]. These systems are described by special deformations of triple Jordan systems.

In contrast to the case of Eq. (2.5), the connection that corresponds to matrix equation (2.4) is not
symmetric. To construct other examples of integrable systems with a nonsymmetric connection, the problem
of classifying integrable nontriangular vector systems of geometric type was considered in [8].

1In fact, these conditions are inessential.
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3. Vector examples

We consider the class of the so-called vector isotropic equations of the form

ut = uxxx + f2uxx + f1ux + f0u, (3.1)

where u(x, t) is a function with values in an N -dimensional Euclidean vector space. The coefficients fi are
(scalar) functions that depend on the six scalar products

(u, u), (u, ux), (ux, ux), (u, uxx), (ux, uxx), (uxx, uxx).

Obviously, Eq. (3.1) is invariant under the group ON .
Equations (3.1), whose component form belongs to the class of systems (2.1), have the structure

ut = uxxx + a1u[0,1] uxx + (a2u[0,2] + a3u[1,1] + a4u
2
[0,1])ux +

+ (a5u[1,2] + a6u[0,2]u[0,1] + a7u[1,1]u[0,1] + a8u
3
[0,1])u, (3.2)

where
u[i,j]

def= (∂i
xu, ∂j

xu), i ≤ j,

and the coefficients ai are functions of one variable, ai = ai(u[0,0]).
Some of Eqs. (3.2) have a triangular form in spherical coordinates given by

u = Rv, |v| = 1, where R = |u|.

Let
v[i,j] = (∂i

xv, ∂j
xv), i ≤ j.

Because v[0,0] = 1, we have Dx(v[0,0]) = 2v[0,1] = 0. In addition, the equation Dxv[0,1] = v[0,2] + v[1,1] = 0
holds, i.e., v[0,2] = −v[1,1] and so on. It is clear that all the variables v[0,k] can be expressed in terms of
v[i,k], 1 ≤ i ≤ k < ∞. We say that Eq. (3.1) is triangular if it can be written in spherical coordinates as

vt = vxxx + g2vxx + g1vx + g0v, Rt = Rxxx + S(v[1,1], v[1,2], v[2,2], R, Rx, Rxx),

where the coefficients gi depend on v[1,1], v[1,2], and v[2,2].
The class of Eqs. (3.2) is invariant under point transformations of the form

ũ = f(u[0,0])u. (3.3)

It can be verified that in the case where a1 = −3u−1
[0,0], we obtain an equation with ã1 = −3v−1

[0,0] as a result
of any transformation (3.3). For any other coefficient a1, there exists a function f such that ã1 = 0. We
thus obtain two classes of Eqs. (3.2) with

a1 = 0 or a1 = − 3
u[0,0]

that are nonequivalent under transformations (3.3).
The following statements were proved in [8].
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Theorem 3. Any nontriangular Eq. (3.2) with a1 = 0 that has infinitely many higher vector symme-

tries is reducible by a scaling of the form u → const · u to an equation in the list

ut = uxxx + 3λ

(
(u, ux)2

1 + u2
− u2

x

)
ux + 3Fu, (3.4a)

ut = uxxx − 3
(

(u, uxx)
1 + u2

− u2u2
x

1 + u2
+

u2(u, ux)2

(1 + u2)2

)
ux + 3Fu, (3.4b)

ut = uxxx − 3
(

(u, uxx)
1 + u2

+
(1 − u2)u2

x

2(1 + u2)
− (2 − u2)(u, ux)2

2(1 + u2)2

)
ux + 3Fu, (3.4c)

where λ = 1 or λ = 1/2, u2 = u[0,0], and

F = (u, ux)
(u, uxx) + u2

x

1 + u2
− (ux, uxx) − (u, ux)3

(1 + u2)2
.

Theorem 4. Any nontriangular Eq. (3.2) with a1 = −3/u[0,0] that has infinitely many higher vector

symmetries is reducible to an equation in the list

ut = uxxx − 3
(u, ux)

u2
uxx − 3

(
u2

x

u2
− (u, ux)2

u4

)
ux, (3.5a)

ut = uxxx − 3
(u, ux)

u2
uxx − 3

2

(
u2

x

u2
− 2

(u, ux)2

u4

)
ux, (3.5b)

ut = uxxx − 3
(u, ux)

u2
uxx − 3

2

(
2
(u, uxx)

u2
+

u2
x

u2

)
ux +

+ 3
(

(ux, uxx)
u2

− (u, ux)u2
x

u4
+

4
3

(u, ux)3

u6

)
u (3.5c)

by a point transformation of form (3.3).

On the proof of Theorems 3 and 4. It was shown in [14] that if an equation of form (3.1) has
infinitely many vector symmetries

uτ = fnun + fn−1un−1 + · · · + f0u, where uk =
∂ku

∂xk
, (3.6)

then the functions ρi defined below are densities of local conservation laws

Dtρn = Dxθn, n = 0, 1, 2, . . . . (3.7)

Here, Dx and Dt denote the total derivatives with respect to x and t (by virtue of Eq. (3.1)). The first two
densities have the forms

ρ0 = −1
3
f2, ρ1 =

1
9
f2
2 − 1

3
f1 +

1
3
Dxf2, (3.8)

and the remaining densities can be found using the recurrence relation

ρn+2 =
1
3
(θn − f0δn,0 − 2f2ρn+1 − f2 Dxρn − f1ρn) −

− 1
3

(
f2

n∑

s=0

ρsρn−s +
∑

0≤s+k≤n

ρsρkρn−s−k + 3
n+1∑

s=0

ρsρn−s+1

)
−

− Dx

(
ρn+1 +

1
2

n∑

s=0

ρsρn−s +
1
3
Dxρn

)
, n ≥ 0, (3.9)
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where δi,j is the Kronecker symbol.
Using relations (3.8) and (3.9), we find the next density

ρ2 = −1
3
f0 +

1
3
θ0 −

2
81

f3
2 +

1
9
f1f2 − Dx

(
1
9
f2
2 +

2
9

Dxf2 −
1
3
f1

)
, (3.10)

and so on. We note that the density ρn, n ≥ 2, is expressed in terms of the coefficients of Eq. (3.1) and the
flows {θ0, θ1, . . . , θn−2}, which are to be found from the previous relations (3.7).

To eliminate the function θn from (3.7), we can apply the variational derivative

δ

δu
=

∑

0≤i≤j

[
(−Dx)i

(
uj

∂

∂u[i,j]

)
+ (−Dx)j

(
ui

∂

∂u[i,j]

)]

to both sides of (3.7) and use the fact that δ(Dxg)/δu = 0 for any function g. As a result, we obtain the
necessary conditions for integrability:

δ

δu
(Dtρn) = 0, n = 1, 2, . . . . (3.11)

Conditions (3.11) are especially efficient in the cases where n = 1, 2 because expressions (3.8) are indepen-
dent of the fluxes θi.

Splitting relations (3.11) with respect to all scalar products except u[0,0], we obtain a system of ordinary
differential equations for the coefficients ai(u[0,0]), i = 1, . . . , 8. The system equivalent to the first six
conditions (3.11) suffices for finding equations from lists (3.4) and (3.5) and rejecting all the other equations.
To verify the integrability of the obtained equations, auto-Bäcklund transformations containing an arbitrary
parameter were found for them in [8].

4. Discussion of the results

It can be verified that the curvature tensor for Eq. (3.2) has the form

T (X, Y ) =
1
3
(a1 − a2)

(
(u, X)Y − (u, Y )X

)
,

R(X, Y, Z) =
1
9
(
q(u, X)(u, Z) + p(X, Z)

)
Y − 1

9
(
q(u, X)(u, Y ) + p(X, Y )

)
Z +

+
r

9
(
(u, Y )(X, Z) − (u, Z)(X, Y )

)
u,

where

p = a2a5u
2 − 3a2 + 3a5, q = a2a6u

2 + a2
2 + 3a6 − 6a′

2, r = a5a6u
2 + a2

5 − 3a6 + 6a′
5.

Substituting the coefficients of equations in lists (3.4) and (3.5) in these formulas, we find that the connection
is symmetric. It can be verified that these equations satisfy conditions (2.10) and (2.14)–(2.17). It turns
out that for the remaining equations, the tensor R is equal to zero. Matrix equation (2.4) has the same
property.

Conjecture 2. For any integrable system (2.6), either T = 0 or R = 0.
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For equations with R = 0, the condition that the tensor δ is covariantly constant (see Remark 2) leads
to the relation

∇X

(
(∇Y )T (Z, V ) − T (Y, T (Z, V ))

)
= 0.

This identity together with the condition R = 0 means that the space of affine connection is generated by
some Bol loop [15] and that the binary and ternary operations

X �Y = T (X, Y ), (X, Y, Z) = ∇Z(T (X, Y )) − T (Z, T (X, Y ))

satisfy the identities of the left Sabinin algebra [15]

X �X = 0, (Y, X, X) = 0, (X, Y, Z) + (Y, Z, X) + (Z, X, Y ) = 0,

(X, Y, (Z, U, V )) = (Z, U, (X, Y, V )) + ((X, Y, Z), U, V ) + (Z, (X, Y, U), V ),

(X, Y, Z) �U − (X, Y, U) �Z + (Z, U, X �Y ) − (X, Y, Z �U) + (X �Y ) � (Z �U) = 0.

In addition, the ternary operation is related (see (2.9) and (2.11)) to the tensor σ by (X, Y, Z) = σ(X, Y, Z)−
σ(X, Z, Y ). For matrix equation (2.4), these two operations and the triple system σ are generated by the
associative matrix multiplication

X �Y = XY − Y X, (X, Y, Z) = XY Z − XZY + ZY X − Y ZX,

σ(X, Y, Z) = XY Z + ZY X.

In this example, the tensor σ defines a triple Jordan system. It is still unknown whether this is always the
case for integrable systems with a nonzero torsion.
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