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HAMILTONIAN DESCRIPTION OF VORTEX SYSTEMS

L. I. Piterbarg∗

In the framework of two-dimensional ideal hydrodynamics, we define a vortex system as a smooth vor-

ticity function with a few local positive maximums and negative minimums separated by curves of zero

vorticity. We discuss the invariants of such structures that follow from the vorticity conservation law and

the invertibility of Lagrangian motion. Introducing new functional variables diagonalizing the original

noncanonical Poisson bracket, we develop a Hamiltonian formalism for vortex systems.
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1. Introduction

The fundamentals of applying the Hamiltonian formalism to hydrodynamic systems were developed
in [1], [2] and proved an efficient tool for treating a variety of problems in fluid mechanics. Here, we apply
that approach to a relatively simple object, a vortex system in the framework of ideal two-dimensional
hydrodynamics. Our starting point is the conservation equation for the vorticity Ω,

∂Ω
∂t

+ J(ψ, Ω) = 0, (1)

written in the Hamiltonian form as [3]
∂Ω
∂t

= {H, Ω},

where the noncanonical Poisson bracket can be written as

{F, G}Ω =
∫

Ω(r)Jx,y

(
δF

δΩ(r)
,

δG

δΩ(r)

)
dr, r = (x, y). (2)

Here, F = F (Ω) and G = G(Ω) are smooth functionals, and Jx,y(f, g) = fxgy − fygx is the Jacobian.
Hereafter, the integration region is the whole plane R

2 unless other indicated. The Hamiltonian is given by

H =
1
2

∫
|∇ψ|2 dr = −1

2

∫
ψΩ dr, (3)

which implies that
δH

δΩ
= −ψ. (4)
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Combining (2) and (3), we extend (1) to any functional:

∂F (Ω)
∂t

=
∫

δF

δΩ(r)
Jx,y(ψ, Ω(r)) dr. (5)

We next assume that Ω(r) decays sufficiently fast as |r| → ∞, and we hence express the stream function in
terms of the vorticity as

ψ(r) =
1
2π

∫
log(r − r′)Ω(r′) dr′. (6)

From (4) and (6), we obtain

H =
1
4π

∫∫
log(r1 − r2)Ω(r1)Ω(r2) dr1 dr2. (7)

We list our main objectives:

• To formulate and rigorously prove conservation laws for the topography of the vorticity Ω, such as
the number of critical points (points where ∇Ω = 0), the vorticity values at the critical points, and
the number of distinct level curves defined by Ω(r) = w corresponding to a fixed value w, which we
call contour lines.

• To derive translation equations for the critical points.

• To derive and discuss equations for contour lines in both a Hamiltonian form and in the form of
closed integro-differential equations. In this regard, our efforts can be viewed as an extension of
contour dynamics [4], [5] to smooth vorticity functions.

• To show how some well-known models such as point vortex systems and FAVOR [6] can be derived
from the underlying vorticity class.

We now specify the class of functions Ω(r) called an N -vortex system. Let

HΩ(r) =

(
Ωxx Ωxy

Ωxy Ωyy

)

be the Hessian of vorticity. We assume that the function Ω satisfies the following conditions.

Condition 1. The function Ω has exactly N extremums (maximum or minimum) at the points zk =
(ξk, ηk), k = 1, . . . , N , i.e.,

∇Ω(zk) = 0, det(HΩ(zk)) > 0.

Condition 2. The set Γ0 = {r ∈ R
2 | Ω(r) = 0} is either empty or divides the plane R

2 into N ≥ 2
distinct regions Gk, k = 1, . . . , N , such that each Gk contains exactly one extremum and the vorticity has
the same sign for all points in Gk. In other words,

R
2 =

⋃
k

Gk, Gk ∩ Gj = ∅, Ω(∂Gk) = 0, zk ∈ Gk.

Condition 3. For any two adjacent regions Gk and Gj , the signs in Gk and Gj are opposite.
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Fig. 1. Examples of N-vortex systems: (a) monopole, (b) dipole, (c) quadrupole, and (d) multipole.

We can ensure the last condition by assuming that the set Γ0 of zero vorticity lines is an Euler
graph [7]. For such graphs, the corresponding regions Gk can be painted with only two colors such that any
two adjacent regions have opposite colors. Our “colors” mean positive and negative vorticity. Examples of
some important vortex systems satisfying Conditions 1–3 are shown in Fig. 1.

Below, we prove the remarkable fact that Conditions 1–3 and, in particular, the value of N are preserved
by Eq. (1). In other words, critical points are neither created nor annihilated during the system evolution.
Moreover, the vorticity values at the critical points ωk = Ω(zk) are also preserved.

We do not specifically consider saddles of w = Ω(r) (hyperbolic critical points), because they are
unimportant in the context of our goals. But we note that their number and vorticity values are also
preserved. We can say even more if we assume that the Euler graph representing Γ0 has exactly four edges
incident to each vertex as in Figs. 1c and 1d. Namely, in this case, each vertex (an intersection of two zero
vorticity lines) is a saddle. Conversely, each saddle is a vertex of the graph. Therefore, the vorticity at each
saddle is zero.

There is one more important invariant that is a consequence of two fundamental laws: vorticity conser-
vation in Lagrangian particles and incompressibility. For a fixed w > 0, let n(w) be the number of disjoint
connected regions where Ω > w and the number of disjoint connected regions where Ω < w if w < 0. We
show that n(w) is also preserved by (1). In other words, no merging of vorticity patches is possible in ideal
two-dimensional hydrodynamics. We here clearly state this obvious claim because the problem of vortex
merger has recently been considered in many works (see, e.g., [8]), but the initial equations were not always
formulated explicitly.

An important role of the extreme points is that they serve as natural poles for local polar coordinates in
the parameterization of vorticity lines in each particular region Gk. Let r = ρk(ϕ, w) be the polar equation
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of the single contour line corresponding to the vorticity level w in a certain region

Γw,k = {r ∈ Gk | Ω(r) = w)}. (8)

We derive closed evolution equations for ρk, k = 1, . . . , N , that explicitly show the interaction between
vorticity contours corresponding to different regions Gk and different vorticity levels w. An essential draw-
back of the polar parameterization is that the assumption that a curve can be represented in polar form
with a single valued ρ(ϕ) is not preserved by the system. Therefore, such a consideration is applicable
only for small integration times or if a small vicinity of an extreme point is considered or, equivalently,
small values of ρk where curve (8) is well approximated by an ellipse. Therefore, we first consider a general
parameterization (still pinned to Gk), r = r̂(p, w) of Γw,k, where p is a positive parameter, for example,
the arc length (natural parameterization). Such a parameterization is free from the above drawback. In
both cases, polar and natural parameterization, the resulting equations are too sophisticated (nonlinear,
integro-differential, nondecoupling) to work on them efficiently with the exception of monopoles and dipoles
(N = 1 and N = 2). Hence, the equations describing the evolution of contours (8) for N > 2 are for now
only of purely theoretical interest. Our goal is to clarify conservation laws concerning the vorticity topogra-
phy and to elucidate the underlying Hamiltonian structure rewritten in the new phase variables {ρk(ϕ, w)}
or {r̂k(p, w)}, k = 1, . . . , N .

We note that Condition 3 is not needed for deriving the mentioned equations. Its purpose is the
permanent exclusion of unstable vortex structures. For the same reason, we do not consider bifurcation
points where the determinant of the Hessian is zero.

This paper is organized as follows. In Sec. 2, we state and sketch the proof of the most important
conservation laws for the considered vortex systems. In Sec. 3, we prove the main result on diagonalizing
the Poisson bracket. As a consequence, we derive equations for vorticity lines and extremum translation
for a general parameterization. In Sec. 4, we specify these equations for the polar parameterization and
discuss them. In Sec. 5, we give examples of applying the equations to monopoles and dipoles. In Sec. 6,
we briefly discuss the results and draw conclusions. Some details are presented in the appendix.

2. Invariants

Proposition 1. The number of critical points and their type is preserved by Eq. (1).

Proof. Let r(t, r0) = r be the position of a Lagrangian particle starting from r0 at the instant t and
J(r, r0) = ∂r/∂r0 be the Jacobi matrix of the diffeomorphism T : r0 → r. Direct computations based on
the vorticity conservation equation give ∇Ω(r) = J∇Ω(r0) and HΩ(r) = JHΩ(r0)J∗ if ∇Ω(r0) = 0, where
the asterisk denotes transposition. The statement now follows from det(J) = 1, which is a consequence of
incompressibility [9].

Under Conditions 1–3, the set Γw = {r | Ω(r) = w} for any w �= 0 consists of a finite number of closed
curves, and the number n(w) of such curves obviously does not exceed N . The next statement shows that
n(w) is also preserved.

Proposition 2. For definiteness, let w > 0, and let the region D = {r | Ω(r) > w} at the initial

instant consist of two disjoint subregions, D = D1 ∪ D2. Then D consists of two disjoint subregions at all

instants.

Proof. We suppose that the regions have merged at some instant t. Let r1 ∈ D1 and r2 ∈ D2.
We consider a continuous curve C joining T (r1) and T (r2) completely belonging to the merger, i.e., C ∈
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T (D1) ∪ T (D2). This means the vorticity at each point of C is greater than w, Ω(C) > w. Therefore, we
also have Ω(T−1(C)) > w, but the curve T−1(C) is certainly partly outside both D1 and D2, and we hence
have Ω < w at some point of the curve, which is a contradiction. By the invertibility of T , a connected
region also cannot be broken down into two distinct subregions.

Proposition 3. The local extremums are preserved. More exactly, the equations

∂ξk

∂t
= −ψy(ξk, ηk),

∂ηk

∂t
= ψx(ξk, ηk), k = 1, . . . , N, (9)

are satisfied for any k = 1, . . . , N .

Proof. We fix a certain Gk and for simplicity omit the subscript k in the following computations.
Assuming that there is a single critical point of Ω in G, we can represent its coordinates as functionals of
Ω [10]:

ξ(Ω) =
∫

G

x δ(Ωx)δ(Ωy)S(Ω) dr, η(Ω) =
∫

G

y δ(Ωx)δ(Ωy)S(Ω) dr, (10)

where S(Ω) = ΩxxΩyy − Ω2
xy is the determinant of the Hessian. The idea behind such a representation is

that we can write a unique solution of f(r) = 0, where r ∈ R
n and f : R

n → R
n as

r0 =
∫

Rn

r δ(f(r))
∣∣∣∣ det

(
∂f
∂r

)∣∣∣∣ dr,

where ∂f/∂r is the Jacobi matrix of the map f .
Taking variational derivatives in (9), we obtain [10]

δξ

δΩ(x, y)
= δ′(Ωx)δ(Ωy)S(Ω),

δη

δΩ(x, y)
= δ′(Ωy)δ(Ωx)S(Ω)

and substitute each expression in (5). After changing the variables u = Ωx(x, y) and v = Ωy(x, y) in the
integrals, we obtain (9).

3. Poisson bracket diagonalization: Evolution and translation
equations for vorticity lines

We assume that the vorticity values at the extremums are ordered as ω1 > ω2 > · · · > ωN . Let

x = ξk + x̂k(p, w), y = ηk + ŷk(p, w),

(p, w) ∈ Dk = {0 ≤ p < Lk(w), 0 < w < ωk},
(11)

be an arbitrary parameterization of the vorticity line Γw,k (see (8)) corresponding to the level w in the
region Gk, where p is a positive parameter with the upper limit Lk(w) depending on w in the general case.
For example, for the natural parameterization, p is the length of a particular contour. According to (11),
the origin of the local rectangular coordinate system (x̂, ŷ) is at zk = (ξk, ηk).

We assume that for a fixed (ξk, ηk), the map (p, w) → (x, y) defined by (11) is a one-to-one corre-
spondence between Dk and Gk. It follows from this assumption that we can write the inverse of (11)
as p = pk(x, y), w = Ω(x, y), where pk(x, y) is a function determined by a specific parameterization and
depends on the region Gk. Let

e = (1, 1), V(r) =
1

S(Ω)

(
−Ωxy Ωxx

Ωyy −Ωyx

)
,

r̂k(p, w) = (x̂k(p, w), ŷk(p, w)), ∇δ(r) = (δ′(x)δ(y), δ(x)δ′(y))∗.

The following statement (proved in the appendix) plays a key role in our further computations.
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Lemma 1. If we regard the vector function r̂(p, w) of local coordinates on Γk,w in G = Gk as a

functional of Ω(r), then its variational derivative is given by (we omit the subscripts k for brevity)

δr̂(p, w)
δΩ(r)

=
r̂w(p, w)
g(p, w)

(
δ(Ω(x, y) − w)δ(p(x, y) − p) − e

∂

∂p
(r̂(p, w)V(z)∇δ(r − z))

)
, (12)

where g(p, w) = x̂pŷw − ŷpx̂w.

We set
ζk(p, w) =

∫ ωk

w

gk(p, u) du (13)

and let F = F (ζ1, . . . , ζN ) be a smooth functional of the new variables. Obviously, it is also a functional of
Ω, denoted by the same symbol F . We next introduce the range Rk of values of Ω(r), r ∈ Gk, that is either
the interval (0, ωk) or (ωk, 0) depending on the sign of ωk. Finally, we let S(w) = {k ∈ {1, . . . , N} | w ∈ Rk}
be the list of all regions containing a piece of Γw = {r | Ω(r) = w}.

Proposition 4. If δF/δΩ(r) is a smooth function of r, then

δF

δζk(p, w)
=

δF

δΩ(r)

∣∣∣∣
r=zk+r̂k(p,w)

for w �= ωk, and

{ζk(p, w), F} = Lk(F ),

Lk(F ) =
∂

∂p

{ ∑
j∈S(w)

(
δF

δζj(q, w)

∣∣∣∣
q=pj(Δzkj+r̂k(p,w))

)
−∇ δF

δΩ(r)

∣∣∣∣
r=zk

· r̂k(p, w)
}

,
(14)

where Δzkj = zk − zj .

We note that the Poisson bracket {ζk(p, w), ζj(q, u)} is undefined for k = j.
The main steps in deriving (14) are as follows. Using (13), the chain rule, and

δζ(p, w)
r̂(q, u)

= δ(p − q)δ(w − u)r̂⊥p (q, u) − I(w,ωk)(u)δ′(p − q)r̂⊥u (q, u),

where IA(x) is the indicator of A and (x, y)⊥ = (−y, x), we first obtain

δζ(p, w)
δΩ(r)

= δ(Ω(r) − w)δ(p(r) − p) − ∂

∂p

(
r̂(p, w)V∇δ(r − z)

)
,

which leads to the first equation in (14). We then substitute the obtained expression in (2) and split the
integration over R

2 into integrations over Gj , j = 1, . . . , n(w). We finally pass to the local coordinates
(x̂j , ŷj).

Setting F = H in (14), we obtain Hamiltonian equations for the new variables

∂ζk(p, w)
∂t

= Lk(H). (15)

To obtain a closed system in terms of the variables ζk, we again change the integration over the whole plane
in (7) into integrations over the distinct Gk, k = 1, . . . , N . The result is H =

∑N
k,j=1 Hkj , where

Hkj =
1
4π

∫ ωk

0

∫ ωj

0

∫ Lk(w1)

0

∫ Lj(w2)

0

w1w2 ζk(p1, w1)w1ζj(p2, w2)w2 log Dkj(p1, w1, p2, w2) dp1 dp2 dw1 dw2, (16)
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where
Dkj =

√(
Δξkj + x̂k(p1, w1) − x̂j(p2, w2)

)2 +
(
Δηkj + ŷk(p1, w1) − ŷj(p2, w2)

)2
,

Δξkj = ξk − ξj , and Δηkj = ηk − ηj . A cumbersome expression for the Hamiltonian is a trade-off for a
diagonal Poisson bracket. Finally, x̂ and ŷ must be expressed in terms of ζ. This can be easily done in the
case of a polar parameterization, which we consider below.

4. Polar parameterization

We now let p = ϕ be a polar angle and introduce the local polar coordinates for each Gk

x = ξk + ρk(ϕ, w) cos ϕ, y = ηk + ρk(ϕ, w) sin ϕ,

(ϕ, w) ∈ Dk = [0, 2π] × [0, ωk], (x, y) ∈ Gk,

where ρk(ϕ, w) is the distance from zk to the point on the contour in the direction ϕ. In other words, the
closed curve Γw,k is covered by the equation r = ρk(ϕ, w). It is easy to see that the new phase variable
introduced in (13) now becomes ζk = ρ2

k(ϕ, w)/2 and (15) implies the following statement.

Proposition 5. The function ρk satisfies the equation

1
4

∂ρ2
k(ϕ, w)
∂t

=
∂

∂ϕ

{
δH

δρ2
k(w, ϕ)

+
∑
j �=k

ρj(θkj , w)
ρk(ϕ, w)

δH

δρ2
j (θ, w)

∣∣∣∣
θ=θkj(ϕ)

− ρk(ϕ, w)
(

Dϕ
δH

δρ2
k

)
w=ωk

}
, (17)

where Dϕ is the derivative in the direction given by ϕ and θ = θkj(ϕ) is the solution of the equation

Δηkj + ρj(θ, w) sin θ

Δξkj + ρj(θ, w) cos θ
= tanϕ.

As a result, expression (16) becomes

Hkj =
1

16π

∫ ωk

0

∫ ωk

0

∫ 2π

0

∫ 2π

0

w1w2(ρ2
k)w1

(ρ2
j)w2

log Dkj(ϕ1, w1, ϕ2, w2) dϕ1 dϕ2 dw1 dw2,

where

ρk = ρk(ϕ1, w1), ρj = ρj(ϕ2, w2),

Dkj =
√

(Δξkj + ρk cosϕ1 − ρj cosϕ2)2 + (Δηkj + ρk sin ϕ1 − ρj sin ϕ2)2.

To obtain a closed system for ρk, we must rewrite (17) in terms of the stream function

ψj(θ, w) = ψ(ξj + ρj(θ, w) cos θ, ηj + ρj(θ, w) sin θ).

The result is

1
2

∂ρk(ϕ, w)
∂t

= − 1
ρk(ϕ, w)

∂

∂ϕ

{
ψk(ϕ, w) +

∑
j �=k

ψj(θkj , w) − ρk(ϕ, w)Dϕψ(ϕ, ωk)
}

,
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and we then substitute the expression

ψj(θ, w) = − 1
2π

N∑
α=1

∫ 2π

0

∫ ωα

0

uρα(u, θ)
∂ρα(u, θ)

∂u
log Djα(θ, w, ϕ, u) du dϕ (18)

derived from (6) for ψ.
We write the translation equations for the critical points in terms of the complex coordinates zk =

ξk + iηk (z†k = ξk − iηk) by substituting (18) in (9):

∂z†k
∂t

=
1

2πi

∫ ωk

0

∫ 2π

0

ρk(ϕ, w)e−iϕ dϕdw +
∑
j �=k

1
2πi

∫ ωj

0

∫ 2π

0

wρj(ϕ, w) ∂ρj(ϕ, w)/∂w

zk − zj − ρj(ϕ, w)eiϕ
dw dϕ. (19)

Finally, we express other well-known invariants of (1) in terms of the new variables. We first consider
the Casimir functionals K(Ω) =

∫
K(Ω(r)) dr, where K( · ) is an arbitrary smooth function. Splitting the

integral over R
2 into the regions Gj , j = 1, . . . , N , and passing to the new variables (ξj , ηj , ρj), we obtain

K = −
∑

j

1
2

∫ ωj

0

K(w)
∂

∂w

( ∫ 2π

0

ρ2
j(ϕ, w) dϕ

)
dw.

We note that the inner integral is simply the doubled area of the region bounded by Γw,j.
In the same manner, we can obtain the first moment

c =
∫

(x + iy)Ω(r) dr.

We have

c =
∑

j

∫ ωj

0

∫ 2π

0

(
1
2
zjρ

2
j(ϕ, w) +

1
3
ρ3

j(ϕ, w)eiϕ

)
dϕdw.

5. Monopole and dipole

A monopole is defined by the conditions N = 1 and Ω(r) > 0, r ∈ R
2. We let M = ω1 > 0 denote

the maximum vorticity value and introduce local polar coordinates with the pole at the maximum point
z = (ξ, η). In other words, the closed curve Γw is covered by the equation r = ρ(ϕ, w) in local polar
coordinates. As already noted, ρ(ϕ, w) does not remain a single-valued function in the evolution process
except in trivial cases such as circular contours for all w. Therefore, if we interpret ρ(ϕ, w) as a distance,
then all the following equations hold only during a finite integration time (probably small). But if we treat
ρ(ϕ, w) as a generalized distance (a pseudo inverse of Ω with respect to the radial variable r), i.e.,

ρ(ϕ, w) =
∫ ∞

0

I(0,∞)

(
Ω(ξ + r cosϕ, η + r sin ϕ) − w

)
dr, (20)

then the following evolution equations hold for all t because their derivation is based on the variational
derivative of ρ with respect to Ω obtained from (20) rather than on the distance interpretation where it is
assumed that the ray from z in the direction ϕ intersects Γw once. If it intersects the contour a few times,
then ρ given by (20) is the sum of the distances to all the intersection points.

In the considered case, Eq. (17) becomes

1
4

∂ρ2(ϕ, w)
∂t

=
∂

∂ϕ

{
δH

δρ2(ϕ, w)
− ρ(ϕ, w)

(
Dϕ

δH

δρ2(ϕ, w)

)
w=M

}
, (21)

419



where ρ = ρ(ϕ, w) and

H =
1

16π

∫ M

0

∫ M

0

∫ 2π

0

∫ 2π

0

w1w2(ρ2
1)w1(ρ

2
2)w2 log D(ϕ1, w1, ϕ2, w2) dϕ1 dϕ2 dw1 dw2,

ρ1 = ρ(ϕ1, w1), ρ2 = ρ(ϕ2, w2),

D =
√

(ρ1 cosϕ1 − ρ2 cosϕ2)2 + (ρ1 sin ϕ1 − ρ2 sin ϕ2)2.

Equation (21) first appeared in [10], where the singular term describing effects of the vortex motion on its
shape was missing. Moreover, the expression for the Hamiltonian here is significantly simplified.

The translation equation in terms of the complex coordinate z = ξ + iη becomes

∂z†

∂t
=

1
2πi

∫ M

0

∫ 2π

0

ρ(ϕ, w)e−iϕ dϕdw. (22)

We note a similarity with the contour dynamics in [4], where a vorticity patch of value Ω(r) = M

bounded by a closed curve r = ρ(ϕ) with zero vorticity outside was studied. It is easy to show that in this
case, Eq. (1) again leads to a Hamiltonian system resulting in the evolution equation

1
2

∂

∂t
ρ2(ϕ) =

2
M

∂

∂ϕ

δH

δρ2
= − ∂

∂ϕ
ψ(ϕ), (23)

where ψ(ϕ) = ψ(ϕ, r)|r=ρ(ϕ) and ψ(ϕ, r) = ψ(ξ + r cosϕ, η + r sin ϕ). In this case the pole (ξ, η) is usually
placed at the patch centroid. It is now easy to obtain a closed equation for ρ(ϕ) from (23) using

ψ(ϕ, r) = −M

4π

∫ 2π

0

[
ρ2(θ) − r

(
ρ(θ) sin(θ − ϕ)

)
θ

]
log

(
r2 + ρ2(θ) − 2rρ(θ) cos(θ − ϕ)

)
dθ. (24)

Strangely, in the literature, we could not find an absolutely correct closed equation obtained from (23)
after differentiating in the right-hand side. For example, in both [4] and [11], expression (24) and Eq. (23)
involving the stream function were correct, but a mistake was made when differentiating the stream function
with respect to ϕ.

Returning to the case of smooth vorticity, we note that the stream function expression in the coordinates
(ϕ, w)

ψ(ϕ, w) = − 1
4π

∫ 2π

0

∫ M

0

uρ(θ, u)ρu(θ, u) log
(
ρ2(ϕ, w) + ρ2(θ, u) − 2ρ(θ, u)ρ(ϕ, w) cos(θ − ϕ)

)
du dθ

is somewhat simpler than (24) because ϕ shows up only under the logarithm. Another advantage of a
continuous monopole compared to a patch is that the maximum (the vortex head) moves along stream lines
while the centroid of a patch certainly does not.

Summarizing, we can write a closed equation for ρ(ϕ, w) = ρ(t, ϕ, w) in the form

∂

∂t
ρ2 =

∂

∂ϕ
N(ρ2), ρ2

∣∣
t=0

= p(ϕ, w), (25)

where p( · ) is an initial condition and the nonlinear integro-differential operator is

N(ρ2)(ϕ, w) =
1
2π

∫ 2π

0

∫ M

0

(
uρ2(θ, u)u log D + 4ρ(θ, u)ρ(ϕ, w) cos(ϕ − θ)

)
du dθ
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with D = ρ2(ϕ, w) + ρ2(θ, u) − 2ρ(θ, u)ρ(ϕ, w) cos(θ − ϕ).
Obviously, Eq. (25) is not simpler than the original Eq. (1) in the general case. But in one particular

case, which we soon discuss, using (25) is more efficient than using (1). Namely, we suggest a natural
asymptotic procedure bridging the contour dynamics and the smooth vorticity case. For this, we assume
that the initial vorticity in Eq. (1) is represented as

Ω(r, ϕ) = MS

(
r

R(ϕ)

)
,

where the dimensionless function S(x) defined on [0,∞) satisfies S(0) = 1, S′(x) < 0, and S(∞) = 0 and
R(ϕ) is a certain spatial scale depending on the direction. We introduce the scaling

Ωε(r, ϕ) = MS

([
r

R(ϕ)

]
1/ε

)
, (26)

which for small ε converts a continuously distributed vorticity into a patch,

lim
ε→0

Ωε(r, ϕ) =

⎧⎨
⎩

M, r < R(ϕ),

0, r > R(ϕ).

We assume that the equation r = R(ϕ) represents an ellipse, i.e., the solution of (25) with the initial
elliptic patch Ω0 is the well-known Kirchhoff vortex [11]. Any attempt to correct that solution for small ε

fails because the derivative of Ωε(r, ϕ) at ε = 0 is infinite. Nevertheless, passing to

ρε(ϕ, w) = R(ϕ)
[
S−1

(
w

M

)]
ε

(27)

obtained from (26), we obtain an analytic function of ε, which allows using a standard perturbation approach
whose details are given in the appendix.

We show the results in Fig. 2, where it can be seen that the vorticity lines lose the elliptic shape
but nevertheless preserve the central symmetry. The latter obviously follows from the original Eq. (1).
Therefore, the integral in the right-hand side of (22) is zero, and the vortex center does not move.

The only purpose of the example was to show that the suggested perturbation procedure is well posed.
We now consider a dipole determined by the parameter values N = 2, ω1 = M > 0, and ω2 = m < 0.

The next statement follows from (17) and general translation equation (19).

Proposition 6. We have the equations

1
4

∂ρ2
1(ϕ, w)
∂t

=
∂

∂ϕ

{
δH

δρ2
1(ϕ, w)

− ρ1(ϕ, w)
(

Dϕ
δH

δρ2
1(ϕ, w)

)
w=M

}
,

1
4

∂ρ2
2(ϕ, w)
∂t

=
∂

∂ϕ

{
δH

δρ2
2(ϕ, w)

− ρ2(ϕ, w)
(

Dϕ
δH

δρ2
2(ϕ, w)

)
w=m

} (28)

and
∂z†1
∂t

=
1

2πi

∫ M

0

∫ 2π

0

ρ1(ϕ, w)e−iϕ dϕdw +
1

2πi

∫ m

0

∫ 2π

0

wρ2(ϕ, w)∂ρ2(ϕ,w)
∂w

z1 − z2 − ρ2(ϕ, w)eiϕ
dw dϕ,

∂z†2
∂t

=
1

2πi

∫ m

0

∫ 2π

0

ρ2(ϕ, w)e−iϕ dϕdw +
1

2πi

∫ M

0

∫ 2π

0

wρ1(ϕ, w)∂ρ1(ϕ,w)
∂w

z2 − z1 − ρ1(ϕ, w)eiϕ
dw dϕ,

where the expression for the Hamiltonian in terms of ρ1, ρ2, ξ1, η1, ξ2, and η2 can be obtained from

Proposition 5.
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Fig. 2. Solution of (25) obtained perturbatively for ε = 0.05 and M = 1: (a) the initial vortex,

(b) the vortex at terminal instant (T = 1), and (c) the comparison vorticity line w = 0.3 for the

Kirchhoff patch (ε = 0) and the perturbed Kirchhoff patch corresponding to initial condition (26)

with ε = 0.05.

The evolution and translation equations in Proposition 6 were first announced in [12]. They are
essentially simplified and corrected here.

To illustrate the use of (28), we consider a strong positive point vortex with a maximum M centered at
the origin and a weak negative satellite with a minimum m, |m| � M , initially axisymmetric and centered
at (0, R). We assume that the stream function ψ1(r) of the positive vortex is not affected by the satellite.
In addition we neglect the influence of the velocity field generated by the satellite on itself. In other words,
we regard it as a passive scalar driven by the velocity field of the strong vortex. Hence, the first equation
in (28) becomes ρ1(t, ϕ, w) = ρ1(0, ϕ, w), and the second becomes a closed equation,

1
2

∂ρ2
2(ϕ, w)
∂t

= − ∂

∂ϕ
ψ1

(
ρ2(ϕ, w)2 + R2 − 2Rρ2(ϕ, w) cos ϕ

)
.

We note that w is included in the equation simply as a parameter.
Passing to the polar coordinates (r, θ) with a pole at the origin (0, 0), i.e., setting r2 = ρ2(ϕ, w)2 +

R2 − 2Rρ2(ϕ, w) cos ϕ and sin θ = (ρ2/r) sin ϕ, we obtain

∂r

∂t
+

1
r

∂ψ1(r)
∂r

∂r

∂θ
= 0.

This equation is integrable, but it makes a physical sense only if the background vortex is a point vortex,
i.e., ψ1 = k log r , where k is its intensity. The solution is given by

r2 − 2rR cos
(

θ − kt

r2

)
= C(w), (29)
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Fig. 3. Evolution of a weak satellite in a velocity field generated by a stationary point vortex at

different instants.

where the constant C(w) is defined by the vorticity level w and the shape of the initial satellite (see Fig. 3).
It can be shown that the vorticity line of level w spirals into the limit cycle r = R − r0(w), where

r0(w) is the radius of the w-vorticity line for the initial satellite, and that the number of cycles in the spiral
is n ≈ c(w)ω0t, where ω0 = k/R2 is the angular velocity, t is time, and c is a constant depending on the
vorticity level w. We note that integral (29) follows directly from the original Eq. (1) after linearization [13].
Moreover, physical aspects of the solution were discussed in [13], and the abovementioned assumptions were
justified. In addition, we note that the case of a distributed intensive vortex was also considered in [13].

6. Discussion and conclusions

We have introduced a class of vorticities extending contour dynamics [4], [5] to the case of a continuously
distributed vorticity and developed a Hamiltonian formalism for that class. Here, we also revealed the
relation between our approach and contour dynamics. In this context, the proposed approach can be called
“continuum contour dynamics.”

In this section, we present explicit scalings transforming the suggested class into two well known models,
the point vortex system [14] and the FAVOR model [6]. Regarding point vortices, we define the kth vortex
with the function Ωk(r) = Ω(r)IGk

(r) = Ω̃k(r − zk) in the local coordinate system with the origin at zk.
Then

Ωε(r) =
1
ε2

∑
k

Ω̃k

(
r − zk

ε

)
→

∑
k

ω̄kδ(r − zk), ε → 0,

where

ω̄k =
1
2

∫ 2π

0

∫ ωj

0

ρ2
k(ϕ, w) dw dϕ.

Regarding the FAVOR model, we define

R2
k(ϕ) = −|ωk|

∂ρ2

∂w

∣∣∣∣
w=ωk

as the characteristic spatial scale calculated in the vicinity of the kth vortex peak. The curve r = Rk(ϕ)
is obviously an ellipse, and the vorticity contour Ωk = w with w close to ωk is well approximated by
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r = c(w)Rk(ϕ) with a constant c(w) depending on the vorticity level. We introduce the dimensionless
distance r̃ = r/Rk(ϕ) and set Ω̃k(ϕ, r̃) = Ωk(ϕ, r), where (ϕ, r) are local polar coordinates. Let

Ωε(r) =
∑

k

Ω̃k(ϕ, r̃1/ε).

Then
Ωε(r) →

∑
k

ω̄kIEk
(r), ε → 0,

where Ek = {(ϕ, r) | r < Rk(ϕ} is the Kirchhoff elliptic vortex [11].
The described limit procedures lead to the well-known Hamiltonian formulations of the point vertex

system [2] and the FAVOR model [15], but the details of this approach based on Proposition 5 are beyond
our scope here.

We further note that most of the above results can be extended to the corresponding class of vortices
on an arbitrary two-dimensional Riemann manifold M with the metric dS = s(x, y) dx dy, (x, y) ∈ D,
where D is a region in the plane (x, y) and s = s(x, y) is the metric density. Such an extension is possible
because the vorticity conservation equation on M similar to (1),

∂Ω
∂t

+ s−1J(ψ, Ω) = 0,

can also be written in the Hamiltonian form

∂q

∂t
= {q, H},

where q = sΩ is the phase variable and the noncanonical Poisson bracket is expressed in a form similar
to (2),

{F, G} =
∫

D

Ω(r)Jx,y

(
δF

δq(r)
,

δG

δq(r)

)
dr.

The Hamiltonian has the form H = −(1/2)
∫
D qψ dr. The ideal hydrodynamics in the plane is given by

s ≡ 1 and D = R
2. For a sphere of unit radius, x = λ is the longitude, y = θ is the latitude, and

D = [0, 2π] × [0, π]. Finally, for periodic boundary conditions on a rectangle [0, a] × [0, b], M is a torus,
s ≡ 1/ab, and D = [0, 2π] × [0, 2π]. Dipoles on a sphere were discussed in [12].

Finally, summarizing all the results, we conclude that from the application standpoint, there is not yet
convincing evidence that the equations in terms of contours and the coordinates of vortex peaks have an
advantage over traditional approaches. Nevertheless, certain similarities to contour dynamics, which has
proved a useful theory, give hopes for a better future.

Theoretically, the suggested approach gives a useful insight into conservation laws concerning the vortic-
ity topography. Moreover, we presented a solution of the traditionally interesting problem of diagonalizing
the Poisson bracket for a certain class of vorticities. But we admit that the diagonalization was a goal in
itself in this case, in contrast to the analogous problem for the Hasegawa–Mima equation [16], [17], which
led to canonical variables and ultimately to advances in the theory of weak turbulence. We could formally
introduce canonical variables for the Hamiltonian system considered here, but they would hardly have a
clear physical meaning.

Appendix A: Proof of Lemma 1

The identity p(x̂(p, w), ŷ(p, w)) = p after differentiation with respect to p and w gives px = ŷw/g and
py = −x̂w/g. The same identity implies that

px
δx̂

δΩ(r)
+ py

δŷ

δΩ(r)
= 0, ŷw

δx̂

δΩ(r)
− x̂w

δŷ

δΩ(r)
= 0. (A.1)
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We then find the variational derivatives of one more identity

Ω(ξ + x̂(p, w), η + ŷ(p, w)) = w

and obtain
δΩ(r) + Ωx(δξ + δx̂) + Ωy(δη + δŷ) = 0. (A.2)

It follows from Ω(x, y) = w that Ωx = −ŷp/g and Ωx = x̂p/g. Substituting these expressions in (A.2) and
solving (A.1) and (A.2) for δx̂/δΩ(r) and δŷ/δΩ(r), we obtain the result

δx̂(p, w)
δΩ(r)

=
x̂w(p, w)
g(p, w)

(
δ(Ω(x, y) − w)δ(p(x, y) − p) − ŷp

δξ

δΩ(r)
− x̂p

δη

δΩ(r)

)
,

δŷ

δΩ(r)
=

δx̂

δΩ(r)
ŷw

x̂w
.

Substituting expressions for the variational derivatives of ξ and η and converting them to the delta functions
in x and y, we obtain (12).

Appendix B: Perturbation theory method for Eq. (25)

For the initial condition in (25), we assume that

p(ϕ, w) = p(ϕ, w; ε) = p0(ϕ, w) + εp1(ϕ, w) + . . . ,

and we similarly write the solution as

ρ2(ϕ, w) = ρ2
0(ϕ, w) + ερ2

1(ϕ, w) + . . . .

We obtain
∂

∂t
ρ2

n = Ln−1(ρ2
n), ρ2

n

∣∣
t=0

= pn(ϕ, w), (B.1)

where

Ln−1(ρ2) =
δN(ρ2)

δρ2

∣∣∣∣
ρ=ρn−1

is the linearization of N(ρ2) at the previous correction.
We take the initial condition in form (27) and set f(w) = log S−1(w/M). Hence, in the first order in ε,

p(ϕ, w) = R2(ϕ) + 2εR2(ϕ)f(w).

Because p0 is independent of w, the zeroth approximation ρ2
0 = ρ2

0(t, ϕ) is also independent of w and is in
fact just the solution of the contour dynamics equation corresponding to the initial condition at ε = 0. In
addition, we assume that R(ϕ) is symmetric about the pole and the singular term in (25) therefore vanishes
(ψξ = ψη = 0), i.e., the vortex center does not move. This implies a substantial simplification of linearized
equation (B.1) for n = 1:

∂

∂t
ρ2
1(ϕ, w) = −

∫ 2π

0

K(ϕ, θ)
∫ M

0

ρ2
1(θ, u) du dθ, ρ2

1

∣∣
t=0

= 2R2(ϕ)f(w), (B.2)

where the kernel is

K(ϕ, θ) =
1
2π

∂

∂ϕ
log

(
ρ2
0(ϕ) + ρ2

0(θ) − 2ρ0(θ)ρ0(ϕ) cos(θ − ϕ)
)
.
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Integrating both sides of (B.2) over w, we obtain

∂

∂t
z(ϕ) = −M

∫ 2π

0

K(ϕ, θ)z(θ) dθ, z
∣∣
t=0

= 2f̄R2(ϕ),

where

z(ϕ) =
1
M

∫ M

0

ρ2
1(ϕ, w)dw, f̄ =

1
M

∫ M

0

f(w) dw.

This equation is easy to solve numerically, and we can then recover ρ1(t, ϕ, w) itself using the initial condition
given in (B.2). As a result, we obtain

ρ2
1(t, ϕ, w) = z(t, ϕ) + 2R2(ϕ)(t, ϕ)

(
f(w) − f̄

)
.

Inverting the function
ρ2(t, ϕ, w) = ρ2

0(t, ϕ) + ερ2
1(t, ϕ, w)

with respect to w, we obtain the first-order approximation for the vorticity itself:

Ωε(ξ + r cosϕ, η + r sinϕ) = MS

(
exp

{
r2 − ρ2

0(t, ϕ) − ε(z(t, ϕ) − z(0, ϕ))
2εR2(ϕ)

})
.
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