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COSET SPACE CONSTRUCTION FOR THE CONFORMAL GROUP:

SPONTANEOUSLY BROKEN PHASE AND INVERSE HIGGS

PHENOMENON
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We establish a mathematically rigorous way to construct effective theories resulting from the sponta-

neous breaking of conformal invariance. We show that the Namby–Goldstone field corresponding to

spontaneously broken generators of special conformal transformations is always a nondynamical degree of

freedom. We prove that the developed approach and the standard approach including application of the

inverse Higgs mechanism are equivalent.
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1. Introduction

The study of effective theories resulting from spontaneous symmetry breaking of the conformal invari-
ance1 has a long history. It was shown in one of the first works on this topic [1] that applying the standard
coset space technique in such cases yields a Namby–Goldstone field (NGF) corresponding to spontaneously
broken special conformal transformations (SCT) that is massive. It was suggested that this mechanism
for forming a massive vector field as a result of spontaneous breaking of space–time symmetries is a new
manifestation of the Higgs mechanism [2]–[4]. But it was later shown in [5]–[7] that the NGF for SCT
never describes independent fluctuations of the vacuum and is hence a redundant field. The presence of
similar redundant fields was then also found in several other cases of spontaneous breaking of space–time
symmetries [8]–[10]. A way to construct effective theories without redundant fields was proposed in [8].
Namely, it was proposed to apply the so-called inverse Higgs constraint, which allows expressing redundant
fields in terms of physical fields, i.e., fields describing independent vacuum fluctuations. The proposed pre-
scription worked successfully in all known cases and was therefore accepted as the correct, standard way to
eliminate unphysical degrees of freedom from an effective theory. In particular, in the case of spontaneous
breaking of conformal invariance, this approach allows eliminating the NGF for SCT in favor of the dilaton
field [6], [8], [11].
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Despite the wide application of the standard approach, it nevertheless lacks a rigorous mathematical
justification. Indeed, imposing the inverse Higgs constraints is a mathematically consistent requirement that
allows realizing a given scheme of spontaneous symmetry breaking by fewer fields than there are broken
generators. Nevertheless, the necessity of using the inverse Higgs mechanism does not follow from the
mathematical apparatus of the coset space technique, which makes this approach a successful prescription.
Hence, the question of the mathematical justification of the standard approach remains open.

Until recently, there was a similar problem with constructing conformally invariant Lagrangians in the
unbroken phase.2 To ensure the applicability of the coset space technique in this case,3 we must regard the
SCT generators as spontaneously broken (more precisely, as nonlinearly realized generators) [1], [16], [17].
This raises the question of interpreting the coordinates associated with SCT in the used coset space. To
illustrate this situation, we consider the scheme for nonlinear realization of the symmetries4

Conf(d) → SO(d), (1)

where Conf(d) is the d-dimensional conformal group.5 This corresponds to considering the coset space

gconf = eiPμxμ

eiKνyν

, (2)

where Pμ and Kν are the respective generators of translations and SCT. The interpretation of the parameters
xμ is known: they are coordinates in the considered space. But it is unknown how yν should be interpreted:
regard them as NGF [1] or as an additional set of coordinates corresponding to the so-called biconformal
space [16], [17]? It was shown in [12] based on the method of induced representations [13]–[15] that yν

plays a special role. Namely, yν should be regarded as field whose dependence on the coordinates is fixed
by geometric considerations. But this means that yν can also play a special role in a spontaneously broken
phase. If this is indeed so, then this observation can be the key for justifying the standard approach to the
construction of effective theories in such cases.

Our aim here is to confirm the proposal indicated above. For this, we generalize the technique described
in [12] to the case of spontaneously broken conformal invariance. It follows from the consideration that yν

also depends on the coordinates fixed by geometric considerations, and it consequently decouples from the
other fields. Analyzing the connection with the standard approach, we show that it can be regarded only
as a convenient tool for constructing effective theories but not as a mathematically self-contained method.

This paper is structured as follows. In Sec, 2, we briefly review the standard technique and also
generalize the results in [12] to the case of a spontaneously broken conformal invariance. In Sec. 3, we show
that any effective Lagrangian obtained in the framework of one of the approaches can also be obtained
in the framework of the other. This result allows establishing the status of the standard approach as a
convenient tool for constructing effective theories. In Sec, 4, we summarize the results.

2We say that a theory is in the unbroken phase if all symmetry generators annihilate the vacuum. In [12], all generators
were assumed to be unbroken, and the construction of conformally invariant theories was based on the method of induced
representations [13]–[15]. The presence of the exponentials of SCT in the coset space used in [12] was necessitated by geometric
considerations.

3The coset space technique is applicable only to a homogeneously reductive coset space G/H. To satisfy this requirement,
it turns out to be necessary to include the exponentials of the SCT in the coset space. We recall that a coset space G/H is
said to be homogeneously reductive if [Z, V ] ⊂ Z and [V, V ] ⊂ V , where V are the basis generators of the algebra H and Z
supplement them to the full basis in the algebra G.

4To apply the coset space technique, we must specify the nonlinearly realized generators. Because such generators are not
necessarily broken, it is more appropriate to speak of a scheme of nonlinear realization rather than a scheme of spontaneous
symmetry breaking. For example, regardless of whether translation generators are spontaneously broken, they must always be
included in the coset space [18]. The coset space technique is also applicable for constructing gauge theories in the unbroken
phase [19], [20].

5For simplicity (see footnote 6 below), we consider the Euclidean conformal group.
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2. Spontaneously broken conformal invariance

2.1. Standard technique. We first consider the standard procedure for constructing effective La-
grangians resulting from spontaneous breaking of conformal invariance. We do not review the standard
rules for applying the coset space technique, which can be found in [11], [18], [21] if needed.

We assume that the vacuum expectation value of some order parameter Φ spontaneously breaks the
conformal invariance down to the Poincaré invariance. The scheme of nonlinear realization of symmetries
hence has form (1), and the corresponding coset space is

gbr = eiPμxμ

eiKνyν(x)eiDπ(x), (3)

where D is the generator of dilations. Following the standard rules for applying the coset space tech-
nique [18], we interpret yν(x) and π(x) as fields and xμ as coordinates of the Euclidean space.

To see that yν is a redundant degree of freedom, we consider the action of dilations and SCT on the
order parameter,

̂DΦ = ΔΦΦ, ̂KμΦ = 2xμΔΦΦ, (4)

where ΔΦ is the scaling dimension of Φ and we take into account that Φ is independent of the coordinates.
As can be seen from the presented formula, the action of SCT reduces to the coordinate-dependent action
of dilations. Or, in other words, SCT do not have their “own” action on fields. This means that yν is not
needed for describing all possible local fluctuations of the vacuum [7]–[10]. Hence, physical considerations
show that yν is a redundant. To account for this fact in the framework of the coset space technique, it was
proposed to use the so-called inverse Higgs mechanism, which is as follows.

The Maurer–Cartan forms for coset space (3),

g−1
H dgH = iPμωμ

P + iKνων
K + iDωD + iLμνωμν

L , (5)

where Lμν are the generators of the Lorentz transformations, are given by

ων
K = e−π(dyν + 2yρdxρyν − y2dxν), ωμ

P = eπdxμ,

ωD = 2yρdxρ + dπ, ωμν
L = yνdxμ − yμdxν .

(6)

All of these forms except ωμν
L transform homogeneously under the action of all continuous elements of the

conformal group. Therefore, the requirement that ωD vanish,

ωD = 0 ⇒ yν = −1
2
∂νπ, (7)

is consistent with the action of all continuous elements of the conformal group. This prescription is known
as the inverse Higgs constraint and allows expressing the field yν in terms of the dilaton field. With
constraint (7) imposed, effective theories with the correct number of degrees of freedom can be constructed.
Namely, applying the general rules of the formalism of the coset space technique [18], from Maurer–Cartan
forms (6), we obtain the tetrads eμ

ν , the covariant metric gμν , and the covariant derivative of yν (which
after requirement (7) is imposed plays the role of the covariant derivative of an arbitrary dilaton),

ωμ
P = eμ

νdxν , gμν ≡ eλ
μδλρe

ρ
ν = e2πημν ,

Dμyν
∣

∣

iHc
= e−2π

(

1
2
∂μπ∂νπ − 1

2
∂μ∂νπ − δν

μ∂λπ∂λπ

)

.
(8)
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For a matter field ψ, we can introduce the homogeneously transforming 1–form [18], [21]

Dψ = dψ + ωμν
L

̂Lμνψ, (9)

where ̂Lμν is a representation of Lμν corresponding to ψ. With satisfaction of inverse Higgs constraint (7),
this covariant derivative becomes

Dμψ
∣

∣

iHc
= e−π

(

∂μψ +
1
2
(δρ

μ∂λπ − δλ
μ∂ρπ)̂Lλρψ

)

. (10)

Any SO(d)-invariant Lagrangian constructed from (8) and (10) is also automatically conformally invariant.
Similarly constructed Lagrangians also include only one NGF, as required by physical considerations.

The construction described above is the standard approach for constructing effective theories resulting
from spontaneous breaking of conformal invariance. Despite its success in practical applications, require-
ment (7) remains its weak point. Indeed, on one hand, it is needed for eliminating redundant fields from
the theory. On the other hand, it does not follow only from the formalism of the coset space technique
that the field yν is always redundant. For example, based only on mathematical considerations, we can
suppose that in some cases, the field yν(x) indeed describes a massive vector field or has another physical
interpretation [5].

2.2. Two-orbit technique. Before presenting the generalization of the technique for constructing
conformally invariant Lagrangians developed in [12] to the case of a spontaneously broken conformal in-
variance, we consider its application in the unbroken phase. Everywhere below, we call this technique the
two-orbit approach.

The fields of d-dimensional conformal field theories are defined on a sphere Sd, which is equivalent to the
Euclidean space supplemented by a point at infinity.6 Indeed, SCT always map some point to infinity, and we
must consequently also consider it. Hence, in accordance with the method of induced representations [13]–
[15], to construct a conformally invariant theory, we must consider a coset space isomorphic to the sphere.
This leads to the following difficulties. On one hand, the process of calculating Maurer–Cartan forms
includes taking the logarithmic derivative. Therefore, the considered coset space must be parameterized by
continuous elements of the group. But on the other hand, a sphere is not isomorphic to an orbit of any of
its points under the action of continuous elements of a conformal group (only the inversion maps the north
pole of the sphere to the south pole). To solve this problem, we can try to use the fact that a sphere can be
obtained by gluing two Euclidean spaces together. A mathematically rigorous implementation of this idea
leads to the following construction [12]: for constructing conformally invariant theories, we must consider
coset space (2) where yν is a field with the fixed coordinate dependence

yν(x) =
xν

x2
, �x �= �0. (11)

The field yν thus introduced describes the gluing map of coordinate charts around the north and south poles
of the sphere and thus converts 2d-dimensional coset space (2) into a d-dimensional sphere. We also note
that condition (11) is admissible in the sense that it is invariant under the action of the conformal group.
Indeed, expression (11) is a solution of the equation ων

K = 0 [12]. Consequently, because ων
K transforms

homogeneously under the action of the conformal group, expression (11) is invariant.7

6In the case of a Minkowski space–time, we have not a point but a light cone at infinity. We therefore consider the Euclidean
conformal group here.

7The action of the inversion exchanges the roles of xμ and yν , and expression (11) is also invariant in this sense [12]. On
the other hand, the second solution of the equation ων

K = 0, namely, yν = 0, is not invariant under the action of the inversion.
We also note that in contrast to the approach adopted in [17], we regard yν(x) as a field, not a coordinate.
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Condition (11) uniquely fixes the coordinate-dependence of yν , and the equation of motion for yν(x)
must therefore admit (11) as a solution. This fact strongly constrains the admissible combinations of
Maurer–Cartan forms. The reason for this is that the covariant derivative of an arbitrary (quasiprimary)
field ψ has the form

Dμψ = ∂μψ + 2yν(ηνμΔ + îLμν)ψ, (12)

where Δ and ̂Lμν are representations of D and Lμν corresponding to ψ. Then, on one hand, yν must have
form (11). On the other hand, the (dynamical) field ψ couples to yν via the interaction term in covariant
derivative (12). As a result of this, yν also has nontrivial dynamics, thus breaking condition (11). The only
way to avoid this contradiction is to require that the interaction terms sum to a total derivative or totally
disappear from the Lagrangian. This requirement substantially restricts the class of admissible Lagrangians
and is a principally new constraint in the framework of the coset space technique. Remarkably, precisely it
ensures a well-known property of conformal field theories: their virial current must be a total derivative of
some function [22], [23].

In addition to the approach laid out above, we can approach the description of the procedure for
constructing conformally invariant theories as follows. We regard yν in (2) as an auxiliary field introduced
to ensure the applicability of the coset space technique. For only physical fields to remain in the theory,
we must require that yν decouple from all matter fields. This is just a reformulation of the requirement
established above. Although this reasoning is not rigorous, it indirectly supports the correctness of the
two–orbit approach.

Generalizing the two–orbit approach to the case of a spontaneously broken conformal invariance is
rather simple. Because conformal field theories are defined on a sphere, the interpretation of yν remains the
same as before: it is a field whose equation of motion must admit (11) as a solution. This requirement follows
from only the method of induced representations and is independent of whether the conformal invariance
is spontaneously broken. Therefore, although the action of SCT do not annihilate the vacuum, the logic
in [12] remains applicable. We can present one more argument supporting the proposed generalization . As
previously mentioned, the virial current must be a total derivative as a consequence of requiring that yν

decouple from the other fields of the theory. In a spontaneously broken phase, the virial current must still
be a total derivative, which by reversing the logic leads to the previously established requirement.

We consider the application of the proposed technique. The conformal symmetry is the maximal space–
time symmetry group that relativistic field theories can have [24], [25] (except supersymmetry, of course).
Consequently, the most general scheme of spontaneous symmetry breaking including breaking conformal
invariance has the form

Conf(d) × Gint → H, (13)

where Gint is an internal symmetry group and H can include vector subgroups of space–time and internal
symmetries. Everywhere below, we use standard terminology. In particular, we say that a generator is
broken if it does not annihilate the vacuum. Applied to a conformal group, this leads to the following
observation. The action of SCT on quasiprimary fields (elements of an irreducible representation) reduces
to the coordinate-dependent action of a dilation, Lorentz transformation, and translation,

̂Kμψ = (2xμ
̂D − xν

̂Lμν + ixνxν
̂Pμ)ψ. (14)

It follows from this formula that SCT are spontaneously broken if and only if at least one of the three
generators D, Pμ, or Lμν is broken. Indeed, if none of them are broken, then it follows from formula (14)
that Kμ is also not broken, and conversely. Hence, if conformal invariance is spontaneously broken, then
SCT are also necessarily broken. Consequently, the most general coset space corresponding to scheme (13)
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of nonlinear realization of symmetries can be written in the form

gH = eiPμxμ

eiKνyν

eiZaξa

, (15)

where Za are the broken generators different from Kν , ξa are the corresponding NGF, a can denote both
a space–time and an internal index, and we assume that translations are not spontaneously broken. Under
the assumption that coset space (15) is homogeneously reductive, all Maurer–Cartan forms except ωi

H ,

g−1
H dgH = iPμωμ

P + iKνων
K + iZaωa + iHiω

i
H , (16)

where Hi are the generators of H , transform homogeneously under the action of all continuous symmetries.
For a matter field ψ, a homogeneously transforming 1-form is

Dψ = dψ + iωi
H

̂Hiψ, (17)

where ̂Hi is a representation of Hi corresponding to ψ. We then obtain G-invariant Lagrangians as H-
invariant wedge products of ωμ

P , ων
K , ωa

Z , ψ, and Dψ that admit (11) as a solution.
To understand which theories satisfy the indicated requirements, we note that in the general case, an

arbitrary Lagrangian can be split into two parts,

L = Lkin(ωμ
P , ων

K) + Lph(ωμ
P , ων

K , ωa
Z , ψ,Dψ), (18)

where Lkin is a wedge product of only8 ωμ
P and ων

K and Lph contains all other terms. As is shown at the
end of the next section, Lkin always admits (11) as a solution. Because such Lagrangians do not contain ξa

and ψ, all Lagrangians with the same Lph but different Lkin are physically equivalent. Hence, without loss
of generality, we can set Lkin to zero, which we assume in what follows. We further note that because of
the commutation relations of the conformal algebra, the fields yν appear in the Maurer–Cartan forms ων

K

and some appear in ωa
Z and also in the 1-forms Dψ. This results in the appearance of interaction terms

between yν and other fields. Then, because ξa and ψ can have arbitrary dynamics, the equations of motion
for yν admit (11) as a solution only if all interaction terms sum to a total derivative. Therefore, the only
admissible Lagrangians are those in which yν decouples from the other fields, just as in the unbroken phase.

The described construction is the generalization of the technique described in [12] to the case of
spontaneously broken conformal invariance. Its key finding is that the NGF for SCT does not represent
perturbations of the vacuum but ensures the known property of conformal field theories: their virial current
is a total derivative.

To illustrate the application of the developed approach, we consider the construction of effective La-
grangians in the case a spontaneous breaking of the conformal invariance to the Poincaré invariance,

Conf(d) → SO(d). (19)

From Eq. (6), we can obtain the covariant metric gmn and the covariant derivatives of the fields π, yν , and
ψ:

gmn = e2πδmn, Dmπ = e−π(∂mπ + 2ym), (20)

Dmyν = e−2π(∂myν + 2ymyν − δν
my2), Dmψ = e−π(∂mψ + 2iyn

̂Lmnψ), (21)

8We can also write an analogous term Lkin in the unbroken phase. It corresponds to the kinetic term of yν and always
admits (11) as a solution [12].
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where ̂Lmn is a representation of Lmn corresponding to ψ and Latin letters denote indices that should be
raised/lowered by the covariant metric. In accordance with the established requirements in the framework
of the two-orbit approach, effective Lagrangians must (1) be constructed as SO(d)-invariant combinations
of the covariant derivatives and (2) include yν only via a total derivative. For example, the simplest
Lagrangian satisfying these requirements has the form

L =
1
2
DμπDμπ + Dμyμ =

1
2
e−2π∂μπ∂μπ + ∂μ(e−2πyμ). (22)

Constructing more complicated effective theories in the framework of the two-orbit technique is problematic
because of the need to satisfy the second requirement. In connection with this, the question arises of whether
the proposed procedure for constructing effective theories can be simplified. As is shown in the next section,
this is indeed possible, and such a simplification corresponds to applying the inverse Higgs mechanism.

3. Equivalence of the approaches

3.1. The case d > 2. It was established above that geometric considerations uniquely fix the
coordinate-dependence of yν . At the same time, in the framework of the standard approach, yν and the
dilaton field are connected by relation (7). Combining these statements, we can conclude that the dilation
must also have a fixed coordinate-dependence. This statement seems meaningless because the dilaton must
be a dynamical degree of freedom. In fact, such a contradiction arises because the standard approach is
inconsistent with the inversion symmetry, and the presented argument demonstrates this explicitly. But a
question then arises: Why does the standard approach allow reproducing all known conformally invariant
Lagrangians although it is mathematically contradictory? The answer is that it indeed allows formally

reproducing all possible effective Lagrangians. This section is devoted to proving this statement. Namely,
we show that any effective Lagrangian obtained in the framework of the two-orbit technique can also be
obtained using the standard technique, and vice versa. In this sense, the standard and the two-orbit
approaches are equivalent.

To prove the equivalence of the approaches, we first consider the simplest scheme of spontaneous
symmetry breaking: breaking the conformal group down to the Poincaré subgroup (see (19)). After consid-
eration of this case, generalization to the case of an arbitrary scheme of nonlinear realization of symmetries
is rather straightforward. In this case, the coset space and the Maurer–Cartan forms are respectively given
by (3) and (6).

We first show that any effective Lagrangian obtained in the framework of the two-orbit approach can
also be constructed using the standard technique. The two-orbit approach allows only Lagrangians such that
yν is included via a total derivative. Consequently, there are in fact no equations restricting the dynamics
of yν . It is therefore possible to set the field yν equal to any function compatible with the transformation
properties of yν . In particular, as such a function, we can choose not (11) but expression (7) following from
the inverse Higgs constraint. After it is substituted back in the Lagrangian, the quantity ωD obviously
vanishes. Because the Lagrangian obtained as a result of this procedure is conformally invariant, it must
reduce to an SO(d)–invariant combination of the remaining Maurer–Cartan forms. We therefore have

Lph

∣

∣

iHc
= ˜L(ωμ

P , ων
K , ψ,Dψ)

∣

∣

iHc
. (23)

This expression shows that the Lagrangian Lph can be rewritten as an SO(d)-invariant combination of
Maurer–Cartan forms (6) with application of the inverse Higgs constraint. This proves the first part of the
statement.

To prove the converse, we note that the defined combination of covariant derivatives of fields has the
same form as in the standard approach. Indeed, for Maurer–Cartan forms (6), the covariant metric and

1650



covariant derivatives of fields have the respective forms (20) and (21). For matter fields, the combination
of covariant derivatives not including yν has the form

˜Dmψ = Dmψ − (îLmnψ)Dnπ. (24)

The process of eliminating yν from Dmyν is slightly more complicated because Dmyν contains the derivative
of yν . Because Dmπ transforms homogeneously under the action of all elements of the conformal group,
we can find its covariant derivative under the assumption that it is an ordinary matter field [18], [21],

DmDnπ = e−π(∂mDnπ + 2iyλ
̂LmλDnπ). (25)

The modified covariant derivative of yν , which in fact does not include yν and plays the role of the covariant
derivative of π, then has the form

˜Dmyn = Dmyn − 1
2
DmDnπ − 1

4
gmnDkπDkπ. (26)

Because covariant derivatives (24) and (26) do not include yν , any effective Lagrangian constructed as
an SO(d)-invariant combination automatically satisfies all requirements of the two-orbit technique. The
explicit form of covariant derivatives (24) and (26) coincides with the respective covariant derivatives (10)
and (8) obtained in the framework of the standard approach. Consequently, any Lagrangian obtained in
the framework of the standard approach can also be obtained in the framework of the two-orbit technique.

We note that the established fact of the correspondence of the modified covariant derivatives in the
frameworks of the two-orbit technique and the standard approach can also be proved based on symmetry
considerations. Namely, constraint (7) is the only relation between π and yν that is compatible with all
continuous symmetries. Consequently, eliminating yν from the covariant derivatives must yield the same
result as in the case where the inverse Higgs constraints are imposed. The presented argument is the
fundamental reason that the two techniques must be equivalent.

To prove the equivalence of the approaches in the general case, we note that for d > 2, if the Lorentz
invariance is broken, then the dilation symmetry is also broken. Indeed, the scaling dimension of operators
O with a nonzero vacuum expectation value is bounded from below by the unitarity of the representation

ΔO > 0. (27)

Consequently, any nonzero operator O also leads to breaking the dilation invariance.
The obtained result allows generalizing the proof of the equivalence of the approaches to the general

case described by nonlinear realization scheme (13). Because dilations are always spontaneously broken,
the proof that any effective Lagrangian obtained using the two-orbit technique can also be obtained using
the standard approach remains unchanged. To prove the converse statement, we note that the coset space
corresponding to scheme (13) can be chosen in the form

gH = eiPμxμ

eiKνyν

eiDπeiZaξa

, (28)

where Za denotes all broken generators except Kν and D. Then, because dilations commute trivially with
all generators except translations and SCT, the Maurer–Cartan 1-forms for dilations in the general case also
have form (6). This allows eliminating yν from all covariant derivatives used in the two-orbit technique.
By virtue of the symmetry considerations described above, the covariant derivatives thus obtained must
coincide with their analogues in the standard approach. Therefore, the two techniques are equivalent for
d > 2.
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The proved equivalence of the approaches means that instead of applying the two-orbit technique, we
can use the inverse Higgs mechanism. Although the standard approach is not mathematically rigorous
(the inversion symmetry is broken), it nevertheless allows obtaining all possible effective Lagrangians. The
inverse Higgs mechanism should hence be regarded as a convenient way to construct Lagrangians of effective
theories.

We note that in the arguments above, it was assumed that the inverse Higgs constraints must imposed
on the 1-form ωD. But in the general case, part of the Lorentz group can also be spontaneously broken,
and in this case as can be seen from explicit calculations, yν enters the corresponding Maurer–Cartan form
linearly. If part of the Lorentz group is spontaneously broken (with indices α), then we can try to impose
inverse Higgs constraints of the form

ωα
L = 0, (29)

which must hold for all α. But Eq. (29) as a system of equations for yν is overdetermined. Indeed, if
the Lorentz group remains unbroken along n spatial directions, then in the coordinate form, Eq. (29) is a
system of

d × d(d − 1) − n(n − 1)
2

> d (30)

equations. Because (29) must hold off-shell and also because the NGF associated with the broken generators
Lα are independent, all equations in system (29) are also independent. Consequently, these equations cannot
be solved with d > 2, which makes application of this prescription impossible.

Concluding this section, we note that the Maurer–Cartan form for SCT for the most general scheme (13)
of spontaneous symmetry breaking differs from the Maurer–Cartan form for the unbroken phase only by
the common factor e−π [6], [12]. This observation allows using the arguments in [12] to prove that Lkin

always admits (11) as a solution. Because the detailed proof of this statement would literally repeat the
steps in [12], we do not present it.

3.2. Case d = 2. We now consider the special case d = 2. We note that in two-dimensional
conformal field theories,9 vacuum solutions breaking the Lorentz invariance but not the dilation invariance
are possible.10 In this case, imposing condition (29) allows expressing yν in terms of ω, the NGF for
the broken SO(2) symmetry. In the framework of the two-orbit approach, we can then use the covariant
derivative of ω to eliminate yν from the other covariant derivatives. It follows from symmetry considerations
that such covariant derivatives coincide with those obtained by imposing the inverse Higgs constraints.
Further, repeating the arguments in Sec. 3.1, we can prove that the standard and two-orbit approaches are
also equivalent in this case.

We now consider the case where both dilations and Lorentz transformations are spontaneously broken.
We first note that in two dimensions, the conformal group (without inversion) is a direct product of two
subgroups,

SO(1, 3) = SU+(2) × SU−(2). (31)

Because the groups SU(2)+ and SU(2)− are isomorphic, it suffices to consider only one of them: all
arguments automatically transfer to the other. For definiteness, we consider SU(2)+. The basis of the
algebra of this group has the form

P1 + iP2, K1 − iK2, D − iL12, (32)

9Although the conformal group for d = 2 is larger than O(1, 3), we here understand the two-dimensional conformal group
as O(1, 3).

10As an example, we consider a vector field with quadratic kinetic term. Such field has a zero scaling dimension. Hence, if
its vacuum expectation value is nonzero, then only the Lorentz invariance is spontaneously broken.
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where P1, P2 and K1, K2 are the respective generators of translations and SCT. The SU(2)+ group acts
on the holomorphic coordinate x+ ≡ x1 + ix2 and after a spontaneous breaking generates two NGF, y+

and π+, corresponding to the broken generators K1 − iK2 and D− iL12. In the framework of the standard
approach, we can eliminate y+ in favor of π+,

y+ = −1
2
∂+π+, (33)

where ∂+ is the operator of partial differentiation with respect to the coordinate x+. In the framework
of the two-orbit approach, y+ must still be given by gluing map (11). Consequently, in all admissible
Lagrangians in the framework of the two-orbit approach, y+ must decouple from the other fields. This
observation allows transferring the proof of the equivalence of the approaches in Sec. 3.1 to the considered
case.

4. Discussion of results and conclusions

In the preceding section, we established the correspondence between the two-orbit and standard ap-
proaches. The first of them is mathematically self-contained because it follows directly from the method
of induced representations. But its application in practice turns out to be difficult because of need to
seek Lagrangians in which yν appears via a total derivative. On the other hand, it was shown that any
effective Lagrangian obtained in the framework of the two-orbit approach can also be obtained in the frame-
work of the standard technique. The latter does not have a rigorous mathematical justification but allows
constructing effective Lagrangians in a simpler way. The standard approach can hence be regarded as a
convenient tool for constructing effective theories, while the two-orbit approach is mathematically rigorous
and therefore fundamental.

The obtained result that the NGF for SCT is always a redundant degree of freedom fully agrees with
the results in [10], where it was shown that if the Noether currents associated with broken symmetries are
functionally dependent, then certain NGFs are redundant. In the case of the conformal group, the action of
the SCT reduces to the coordinate-dependent action of translations, dilations, and Lorentz transformations.
Therefore, the Noether current for SCT are always functionally dependent, and breaking the SCT is always
a consequence of breaking Pμ, D, or Lμν . Hence, the NGF for SCT are never independent perturbations
of the vacuum and are always redundant fields.

Regarding the presented proof of the equivalence of two approaches, we note that they turned out to
be equivalent as a result of requiring that yν enter Lagrangians only via a total derivative. Therefore, our
results here do not allow elucidating the interpretation of the inverse Higgs mechanism in other cases [7]–
[9], [19], [20], [26], [27].
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