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QUASIEXACT THEORY OF THREE-DIMENSIONAL OPTICAL

SELF-FOCUSING

I. V. Alimenkov∗

We find a quasiexact three-dimensional analytic solution of the nonlinear Schrödinger equation describing

the field of a stationary optical beam in an unbounded homogeneous nonlinear isotropic medium supporting

a state of linear polarization.
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The field of a stationary optical beam E(x, y, z, t) = E0(x, y, z)ei(β0z−ω0t) (where β0 = (ω0/c)n(ω0) is
the central wave number and ω0 is the carrier frequency) propagating in an unbounded nonlinear homoge-
neous isotropic medium can be described by the well-known nonlinear Schrödinger equation (NLSE) [1]

2iβ0
∂E0
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+
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∂x2
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Here, E0 is a slowly varying complex amplitude (its relative change over a distance of the order 1/β0 is
small), and η(ω) is the nonlinearity coefficient. This equation holds in the paraxial approximation for a
weakly nonlinear medium supporting a state of linear polarization, which allows using the scalar approach.
For the one-dimensional Laplace operator, Eq. (1) was first solved by Zakharov and Shabat in their widely
known paper [2].

The NLSE has been introduced in various branches of physics: it describes propagation of nonlinear
Langmuir waves, deep-water waves, waves in electricity transmission lines, acoustic waves in bubbled fluid,
and, first of all, propagation of optical radiation in nonlinear media. The last class of applications becomes
especially important because of the development of laser technologies: the laser radiation intensity is so
high that the nonlinear part of the medium susceptibility must be taken into account. There are dozens
of monographs devoted to this equation, and the number of journal publications grows like a snow ball.
Nevertheless, no single three-dimensional analytic solution of Eq. (1) in the form of a nonexpanding beam
in an unbounded nonlinear medium has yet been found. Here, we obtain a simple analytic function that is
an approximate solution of Eq. (1).

Because the considered transparent medium is homogeneous and isotropic, we are interested in axially
symmetric beams. Passing to cylindrical coordinates in Eq.(1), we obtain the equation
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We separate the variable z like time can be separated in quantum mechanics, i.e., we set

E0(ρ, z) = R(ρ)eiqz , (3)

where R(ρ) is a real function. We thus consider axially symmetric beams whose intensity is independent
of the coordinate z. The wave numbers included in the Fourier representation of the field are distributed
in a narrow interval of values near the wave number β0, and the parameter q is the typical scale of this
distribution. In other words, q defines a small correction to the wave number β0. For the function R, we
obtain the ordinary differential equation

d2R

dρ2
+

1
ρ

dR

dρ
= a2R − 2ηR3, (4)

where ρ =
√

x2 + y2 and a =
√

2qβ0.
For further study, we rescale Eq. (4) to the dimensionless form via

ξ = aρ, R =

√
a2

η
f(ξ). (5)

As a result, we obtain the equation in dimensionless variables

f ′′(ξ) +
1
ξ
f ′(ξ) = f(ξ) − 2f3(ξ). (6)

We are only interested in solutions of this equation in a form of localized functions with an extremal value
on the beam axis, i.e., at ξ = 0. We note that because Eq. (6) is symmetric under the transformation
f ↔ −f , a solution with its sign changed is still a solution.

Let the maximum value f(0) = A. Then for the function u(ξ) defined by the relation f(ξ) = Au(ξ),
we obtain the nonlinear spectral Cauchy–Dirichlet problem

u′′(ξ) +
1
ξ
u′(ξ) = u(ξ) − λu3(ξ), (7)

where λ = 2A2 and the initial conditions are

u(0) = 1, u′(0) = 0. (8)

The eigenvalues λ are defined by the condition that u and its derivative vanish at infinity.
A numerical study showed that the eigenvalue spectrum is a point spectrum. We managed to find only

one eigenvalue,

λ = π cosh
8π

25
, (9)

and the corresponding localized eigenfunction, which is plotted in Fig. 1.
A similar numerical solution was first found in [3] and is now called the Townes mode. Other numerical

solutions were presented in [4] and [5]. A summary of various numerical solutions was given in [6]. Some
differences between solution shown in Fig. 1 and the Townes mode are due to different numerical coefficients
in the considered equations.

Based on the graphical computer analysis, we conclude that such rapidly decaying functions are well
approximated by the formula

u =
1√

a0 + a1 cosh ξ + a2 cosh 2ξ + · · · + an coshnξ
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Fig. 1. Plot of the localized eigenfunction.

with varying coefficients ai. This formula automatically satisfies the second initial condition in (8). For the
first initial condition to also be satisfied, we set a0 = 1− a1− a2− · · ·− an, and the approximating function
becomes

u =
1

√
1 + c1 sinh2(ξ/2) + c2 sinh2 ξ + · · · + cn sinh2(nξ/2)

. (10)

Function (10) satisfies the initial conditions and is localized if the radicand is everywhere positive.
The number of varying coefficients ci = 2ai, and their numerical values are determined by the form of

the approximating function and the required accuracy.
It turns out that only the two coefficients c1 = −13 and c2 = 5 suffice for the numerical solution plotted

in Fig. 1. The graph of the function

u =
1

√
1 − 13 sinh2(ξ/2) + 5 sinh2 ξ

(11)

then merges with the graph of the numerical solution, which allows calling function (11) a quasiexact
solution of problem (7), (8). To establish the quasiexactness criterion, we find the distance between the
numerical solution and curve (11). In the metric generated by the scalar product, the distance between the
functions is called the root-mean-square distance and can be calculated using the formula

Δ =
(

1
b − a

∫ b

a

(ϕ − u)2 dξ

)1/2

.

Integrating numerically from 0 to 5, we obtain Δ = 0.00337. We note that the value of the numerical
solution at the right end of the integration interval is 0.00462. We set the quasiexactness criterion: a
smooth function given analytically is a quasiexact solution of the problem for which a numerical solution
is found if the root-mean-square distance between them does not exceed 0.01. The same numerical value is
accepted in optics for estimating the radiation quasimonochromaticity [7].

It is well known that the two-dimensional NLSE is a Hamiltonian-type equation [8] and the Hamiltonian
vanishes on a soliton solution. It is interesting to find the value of the Hamiltonian deviation from zero on
a quasiexact solution. In the context of the found solutions, we must calculate two integrals:

I1 =
1
2

∫ ∞

0

(
df

dξ

)2

2πξ dξ and I2 =
1
2

∫ ∞

0

2πξf4(ξ) dξ,
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where f(ξ) =
√

λ/2u(ξ).
Taking formulas (9) and (11) into account, we obtain

I1 ≈ 2.973, I2 ≈ 2.986, H = I1 − I2 = −0.013.

The obtained result can be considered satisfactory because the Hamiltonian deviation from zero is 0.004 of
the values I1 and I2.

Returning to the original notation, we have

E0(x, y, z) = ±
√

π cosh(8π/25)β0q/η
√

1 − 13 sinh2(ξ/2) + 5 sinh2 ξ
eiqz , (12)

where
ξ =

√
2qβ0(x2 + y2). (13)

The signs ± in formula (12) take the above remark about the symmetry into account.
Obviously, the numerator of the fraction in (12) is equal to the peak value Emax of the field intensity

on the beam axis. Expression (12) is then simplified,

E0(x, y, z) = ± Emax√
1 − 13 sinh2(ξ/2) + 5 sinh2 ξ

eiqz , (14)

where

q =
ηE2

max

β0π cosh(8π/25)
. (15)

Formulas (13)–(15) are the basic result here. We note that there are other partial derivative equations
with a cubic nonlinearity that can be reduced to spectral problem (7), (8) with the simple analytical
solution (9)–(11).
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