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BETHE VECTORS FOR ORTHOGONAL INTEGRABLE MODELS

A. N. Liashyk,∗ S. Z. Pakuliak,† E. Ragoucy,‡ and N. A. Slavnov†

We consider quantum integrable models associated with the so3 algebra and describe Bethe vectors of

these models in terms of the current generators of the DY (so3) algebra. To implement this program, we

use an isomorphism between the R-matrix and the Drinfeld current realizations of the Yangians and their

doubles for classical type B-, C-, and D-series algebras. Using these results, we derive the actions of the

monodromy matrix elements on off-shell Bethe vectors. We obtain recurrence relations for off-shell Bethe

vectors and Bethe equations for on-shell Bethe vectors. The formulas for the action of the monodromy

matrix elements can also be used to calculate scalar products in the models associated with the so3 algebra.
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1. Introduction

The algebraic Bethe ansatz [1], [2] is a powerful method for investigating quantum integrable models.
It has usually been applied to models associated with different deformations and generalizations of A-series
algebras. Models corresponding to the B-, C-, and D-series algebras have been less investigated despite
the pioneering papers [3], [4].

The nested algebraic Bethe ansatz [5]–[7] was mainly developed for quantum integrable models asso-
ciated with A-series algebras of higher rank. A sufficiently powerful method for investigating the nested
Bethe ansatz proposed in [8], [9] was recently reformulated using the language of the current realization of
deformed infinite-dimensional algebras. In addition to the current representation, this approach also used
the so-called RTT realization [10], in which the fundamental commutation relations of the monodromy
matrices of the integrable models are determined by an R-matrix. Such an isomorphism between the cur-
rent and RTT realizations was recently constructed in [11], [12] for the Yangians Y (so2n+1), Y (sp2n+2),
and Y (so2n+2), n = 1, 2, . . . , corresponding to the algebras of the classical B, C, and D series. This result
immediately opens a possibility to apply the algebraic Bethe ansatz method to models with so2n+1-, sp2n+2,
or so2n+2 symmetries based on the current approach [13].
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Here, we restrict ourself to the simplest case of so3-invariant quantum integrable models. The corre-
sponding R-matrix was found in the seminal paper by A. B. Zamolodchikov and Al. B. Zamolodchikov [14].
Our main task is to calculate the actions of monodromy matrix elements on off-shell Bethe vectors. The
latter are defined in the framework of the approach presented in [15], [16]. The formulas giving the ac-
tions of the monodromy matrix elements turn out to be more important and more fundamental than the
explicit formulas for the Bethe vectors in terms of the monodromy matrix elements. The action of the
upper-triangular elements yields recurrence relations for the Bethe vectors, which can be used to obtain
explicit expressions for the Bethe vectors. From the formulas for the action of the diagonal elements, we
obtain Bethe equations as the condition for off-shell Bethe vectors to become on-shell vectors. The action
of the lower-triangular monodromy matrix elements can be used to calculate scalar products of the Bethe
vectors [17], [18].

This paper is organized as follows. In Sec. 2, we define a universal so2n+1 quantum integrable model.
In Sec. 3, we describe this model for n = 1 in the language of the double Yangian DY (so3) and also define
projections onto intersections of the different type Borel subalgebras in this algebra and their properties.
In Sec. 4, we define the universal off-shell Bethe vectors in terms of the current generators of the algebra
DY (so3). This section also contains our main result: formulas describing the actions of the monodromy
matrix elements on the Bethe vectors. Section 5 is devoted to the proof of these formulas.

2. Definition of the universal orthogonal integrable model

We define an soN -invariant integrable model for N = 2n + 1. In this case, the soN -invariant R-matrix
R(u, v) has the form [14]

R(u, v) = I ⊗ I +
cP

u − v
− cQ

u − v + cκ
. (2.1)

Here, I =
∑N

i=1 Eii is the identity operator acting in the space CN , and Eij are N×N matrices with the
only nonzero entry equal to 1 at the intersection of the ith row and jth column. The operators P and Q
act in CN ⊗ CN and are given by

P =
N∑

i,j=1

Eij ⊗ Eji, Q =
N∑

i,j=1

Eij ⊗ Ei′j′ , (2.2)

where i′ = N + 1 − i and j′ = N + 1 − j. Finally, c is a constant, u and v are arbitrary complex numbers
called spectral parameters, and κ = N/2 − 1.

A universal orthogonal integrable model is defined by an N×N monodromy matrix T (u) whose
operator-valued entries Ti,j(u) act in a Hilbert space H (the physical space of a quantum model). We
do not specify the Hilbert space H nor any concrete representation of the operators Ti,j(u). Such a mon-
odromy matrix is then said to be universal. It satisfies an RTT algebra

R(u, v)(T (u) ⊗ I)(I ⊗ T (v)) = (I ⊗ T (v))(T (u) ⊗ I)R(u, v), (2.3)

and this equation yields commutation relations of the monodromy matrix elements,

[Ti,j(u), Tk,l(v)] =
c

u − v

(
Tk,j(v)Ti,l(u) − Tk,j(u)Ti,l(v)

)
+

+
c

u − v + cκ

(

δki′

N∑

p=1

Tp,j(u)Tp′,l(v) − δlj′

N∑

p=1

Tk,p′(v)Ti,p(u)
)

. (2.4)

1546



For any matrix X acting in CN , we let Xt denote the transposition

(Xt)i,j = Xj′,i′ = XN+1−j,N+1−i. (2.5)

It is related to the “usual” transposition ( · )T by a conjugation by the matrix U =
∑N

i=1 Eii′ . We note that
the R-matrix satisfies the relation

R(u, v)t1t2 = R(u, v), (2.6)

where t1 and t2 denote transposition in the respective first and second spaces of R(u, v). A direct conse-
quence of commutation relations (2.4) is the equation [19]

T t(u − cκ)T (u) = T (u)T t(u − cκ) = z(u)I, (2.7)

where z(u) is a scalar commuting with all the generators Ti,j(u). In what follows, we set this central element
equal to one: z(u) = 1.

In our consideration, we restrict ourself to quantum integrable models such that the dependence of the
universal monodromy matrix elements Ti,j(u) on the parameter u is given by the series

Ti,j(u) = δij1 +
∑

�≥0

Ti,j[�]u−�−1, (2.8)

where 1 and Ti,j [�] are the respective identity and nontrivial operators acting in the Hilbert space H.
In this case, the universal monodromy matrix elements satisfying (2.4) and (2.7) can be identified with
generating series of the generators of the Yangian Y (soN ), and the Hilbert space H can be identified
with the representation space of this infinite-dimensional algebra. In particular, a direct consequence of
commutation relations (2.4) and expansion (2.8) are the commutation relations

[
Ti,j(u), Tk,l[0]

]
= c

(
δilTk,j(u) − δkjTi,l(u) − δik′Tl′,j(u) + δl′jTi,k′(u)

)
, (2.9)

which we use in what follows. We note that the Yangian Y (soN ) is defined by relation (2.4) (with expan-
sion (2.8)) and by the relation z(u) = 1. If we do not impose this last relation and keep z(u) arbitrary (but
central), then we obtain a bigger algebra, conventionally denoted by X(oN ) (see [20]).

It follows from (2.3) that [T (u), T (v)] = 0, where T (u) =
∑

i Ti,i(u) is the universal transfer matrix.
Hence, the transfer matrix is a generating function for the integrals of motion of the considered model.

The key problem of the algebraic Bethe ansatz is to find eigenvectors of the universal transfer matrix
T (u) in the space H. In this context, it is usually assumed that the physical space of the model has a
special reference vector |0〉 ∈ H such that

Ti,j(u)|0〉 = 0 for i > j, Ti,i(u)|0〉 = λi(u)|0〉, (2.10)

where λi(u) are complex-valued functions. The eigenvectors of T (u) are then constructed as certain poly-
nomials of the monodromy matrix entries Ti,j(u) with i < j acting on the reference vector |0〉. In the
framework of the universal orthogonal model associated with R-matrix (2.1), the functions λi(u) are free
functional parameters modulo certain relations following from (2.7). We describe these relations below.

We let Bn denote the algebra of the monodromy matrix elements Ti,j(u) satisfying (2.4) and (2.7) with
z(u) = 1 (we recall that n = (N − 1)/2). The space H satisfying (2.10) then describes the class of Bn

highest-weight representations.
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3. Gauss coordinates of the universal monodromy

In the case of A-series algebras, an effective way to solve the eigenvalue problem for the transfer matrix
is to use another set of generators associated with the Gauss coordinates of the monodromy matrix instead
of the monodromy matrix elements [16], [13]. Moreover, using the recent result in [11], [12], we can verify
that the Gauss coordinates of the monodromy matrix can be used effectively to resolve constraint (2.7) and
to obtain a set of algebraically independent generators of the RTT algebras related to the classical B, C,
and D series. On the other hand, the Gauss coordinates relate the RTT realization and the Drinfeld current
representation [21] of the quantum affine algebras and the Yangian doubles. This allows constructing the
off-shell Bethe vectors of the universal quantum integrable model in terms of the current generators of the
corresponding infinite-dimensional algebra [22].

Hereafter, we restrict ourself to the so3-invariant integrable models. Hence, we consider the B1 algebra
with a 3×3 monodromy matrix and κ = 1/2 in Eq. (2.1).

The Gauss coordinates for the monodromy matrix T (u) can be introduced in several different ways.
We use the decomposition

T (u) = F(u) ·D(u) ·E(u), (3.1)

where D(u) is a diagonal matrix D(u) = diag(k1(u), k2(u), k3(u)). The matrices F(u) and E(u) are upper-
triangular and lower-triangular matrices:

F(u) =

⎛

⎜
⎜
⎝

1 F2,1(u) F3,1(u)

0 1 F3,2(u)

0 0 1

⎞

⎟
⎟
⎠ , E(u) =

⎛

⎜
⎜
⎝

1 0 0

E1,2(u) 1 0

E1,3(u) E2,3(u) 1

⎞

⎟
⎟
⎠ . (3.2)

Explicitly, the Gauss decomposition of the monodromy matrix associated with the B1 algebra is

T (u) =

⎛

⎜
⎜
⎝

k1 + F2,1k2E1,2 + F3,1k3E1,3 F2,1k2 + F3,1k3E2,3 F3,1k3

k2E1,2 + F3,2k3E1,3 k2 + F3,2k3E2,3 F3,2k3

k3E1,3 k3E2,3 k3

⎞

⎟
⎟
⎠ , (3.3)

where we omit the dependence on the spectral parameter u for all the Gauss coordinates Ei,j(u), Fj,i(u),
and ki(u) for brevity.

In terms of monodromy matrix elements, we can write formula (3.1) as

Ti,j(u) =
∑

max(i,j)≤�≤3

F�,i(u)k�(u)Ej,�(u), (3.4)

where we have Fi,i(u) = Ei,i(u) = 1 and Fj,i(u) = Ei,j(u) = 0 for i > j according to (3.2). Conditions (2.10)
are then ensured by the relations Ei,j(u)|0〉 = 0 for i < j and ki(u)|0〉 = λi(u)|0〉, which we hereafter assume.

3.1. Independent Gauss coordinates. It is easy to see from (3.4) that assuming the invertibility
of ki(u), we can express all the Gauss coordinates in terms of the monodromy matrix elements. Because of
relation (2.7), these Gauss coordinates are not independent. We find an independent set of generators for
the B1 algebra and derive their commutation relations.

We say that an element of the B1 algebra is normal ordered if all the Gauss coordinates Fj,i(u) are on
the left and all the Gauss coordinates Ei,j(u) are on the right of this element. It can be seen that Gauss
decomposition (3.4) of the monodromy matrix is normal ordered by definition.
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By condition (2.6), the transpose-inverse monodromy matrix T̂ (u) = (T−1(u))t satisfies the same RTT

commutation relations (2.3). To describe the matrix T̂ (u) in terms of the Gauss coordinates Fj,i(u), Ei,j(u),
and ki(u), we must invert the matrices F(u), E(u), and D(u). They are given by the relations

F−1(u) = I +
∑

i<j

EijF̃j,i(u), E−1(u) = I +
∑

i<j

EjiẼi,j(u),

D−1(u) = diag(k−1
1 (u), k−1

2 (u), k−1
3 (u)),

(3.5)

where F̃i,i(u) = Ẽi,i(u) = 1 and

F̃i+1,i(u) = −Fi+1,i(u), i = 1, 2, F̃3,1(u) = −F3,1(u) + F2,1(u)F3,2(u),

Ẽi,i+1(u) = −Ei,i+1(u), i = 1, 2, Ẽ1,3(u) = −E1,3(u) + E2,3(u)E1,2(u).
(3.6)

The matrix elements of the transpose-inverse monodromy matrix can be easily expressed in terms of
the original Gauss coordinates Fj,i(u), Ei,j(u), and ki(u):

T̂i,j(u) =
∑

1≤�≤min(4−i,4−j)

Ẽ�,4−j(u)k−1
� (u)F̃4−i,�(u) (3.7)

or, explicitly,

T̂ (u) =

⎛

⎜
⎜
⎝

k−1
3 + Ẽ2,3k

−1
2 F̃3,2 + Ẽ1,3k

−1
1 F̃3,1 k−1

2 F̃3,2 + Ẽ1,2k
−1
1 F̃3,1 k−1

1 F̃3,1

Ẽ2,3k
−1
2 + Ẽ1,3k

−1
1 F̃2,1 k−1

2 + Ẽ1,2k
−1
1 F̃2,1 k−1

1 F̃2,1

Ẽ1,3k
−1
1 Ẽ1,2k

−1
1 k−1

1

⎞

⎟
⎟
⎠ , (3.8)

where, as in (3.4), we omit the spectral parameter dependence in the Gauss coordinates F̃j,i(u), Ẽi,j(u),
and ki(u). To fix the set of algebraically independent generators of the B1 algebra, we consider the relations

Ti,j(u − c/2) = T̂i,j(u), 2 ≤ i, j ≤ 3. (3.9)

For i, j = 3, we have
k1(u) = k−1

3 (u − c/2). (3.10)

To proceed further, we must normally order the Gauss coordinates in the monodromy matrix elements
in (3.7) using

k−1
3 (u)F3,2(u)k3(u) = F3,2(u + c), k3(u)E2,3(u)k−1

3 (u) = E2,3(u + c),

[E2,3(u), F3,2(u − c)] = k2(u − c)k−1
3 (u − c) − k2(u)k−1

3 (u).
(3.11)

These equations are particular cases of the commutation relations

k3(u)F3,2(v)k−1
3 (u) = f(u, v)F3,2(v) − g(u, v)F3,2(u),

k−1
3 (u)E2,3(v)k3(u) = f(u, v)E2,3(v) − g(u, v)E2,3(u),

(3.12)

and
[E2,3(u), F3,2(v)] = g(u, v)

(
k2(v)k−1

3 (v) − k2(u)k−1
3 (u)

)
, (3.13)
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where
g(u, v) =

c

u − v
, f(u, v) = 1 + g(u, v) =

u − v + c

u − v
. (3.14)

Formulas (3.12) and (3.13) can be obtained from (2.4) by correspondingly setting the subscripts {i, j, k, l}
equal to {3, 3, 2, 3}, {3, 3, 3, 2}, and {2, 3, 3, 2}. We note that these commutation relations are of the gl

type because the second line in (2.4) does not contribute. Finally, using Eqs. (3.9) for {i, j} = {2, 3},
{i, j} = {3, 2}, and {i, j} = {2, 2}, we obtain

F2,1(u) = −F3,2(u + c/2), E1,2(u) = −E2,3(u + c/2) (3.15)

and the constraint
k2(u) = k3(u + c/2)k−1

3 (u − c/2)k−1
2 (u + c/2). (3.16)

Therefore, taking (3.10) and (3.15) into account, we can restrict ourself to the Gauss coordinates k2(u),
k3(u), F3,2(u), and E2,3(u) and constraint (3.16).1 The latter can also be interpreted as condition (2.7) for
the central element z(u) expressed in terms of the diagonal Gauss coordinates as

z(u) = k1(u)k3(u − c/2) = k2(u)k2(u + c/2)k3(u − c/2)k−1
3 (u + c/2) = 1. (3.17)

Alternatively, we can choose k1(u), k2(u), F2,1(u), and E1,2(u) as a set of generators of the B1 algebra
with the constraint

k2(u) = k−1
1 (u + c/2)k1(u − c/2)k−1

2 (u − c/2). (3.18)

In addition to commutation relations (3.12), we also need the commutation relations of the Gauss coor-
dinates F3,2(v) and E2,3(v) with the diagonal coordinate k2(u) and between themselves. These commutation
relations follow from (2.4):

k2(u)F3,2(v)k−1
2 (u) =

f(u, v)
f(u, v + c/2)

F3,2(v) + g(u, v)F3,2(u) + g(v, u + c/2)F3,2(u + c/2), (3.19)

k−1
2 (u)E2,3(v)k2(u) =

f(u, v)
f(u, v + c/2)

E2,3(v) + g(u, v)E2,3(u) + g(v, u + c/2)E2,3(u + c/2) (3.20)

and

(u − v + c/2)F3,2(u)F3,2(v) − (u − v − c/2)F3,2(v)F3,2(u) =
c

2
(
F2

3,2(u) + F2
3,2(v)

)
, (3.21)

(u − v − c/2)E2,3(u)E2,3(v) − (u − v + c/2)E2,3(v)E2,3(u) = − c

2
(
E2

2,3(u) + E2
2,3(v)

)
. (3.22)

Deriving (3.21) and (3.22) from RTT commutation relations (2.4), we also obtain the relations

F3,1(v) = −1
2
F2

3,2(v), E1,3(v) = −1
2
E2

2,3(v). (3.23)

We note that because of expansion (2.8), the following zero modes of the monodromy matrix elements
vanish: Ti,i′ [0] = 0 for i = 1, 2, 3.

We also note that constraint (3.17) implies a relation between the eigenvalues λi(u) given by (2.10):

λ1(u)λ3(u − c/2) = λ2(u)λ2(u + c/2)λ3(u − c/2)λ−1
3 (u + c/2) = 1. (3.24)

Therefore, λi(u) are free functional parameters satisfying condition (3.24).
1Using the results in [23], we can similarly determine a set of generators of the Bn algebra corresponding to the classical

algebra so2n+1.
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3.2. Yangian double and its current realization. Here, we describe the construction of the
Yangian double and define projections on intersections of the different Borel subalgebras of this algebra.
This is necessary for the current realization of the off-shell Bethe vectors.

Summarizing the results in the preceding subsection, we conclude that the B1 algebra of the elements
of monodromy matrix (3.1) with

F(u) =

⎛

⎜
⎜
⎝

1 −F3,2(u + c/2) −F2
3,2(u)/2

0 1 F3,2(u)

0 0 1

⎞

⎟
⎟
⎠ , E(u) =

⎛

⎜
⎜
⎝

1 0 0

−E2,3(u + c/2) 1 0

−E2
2,3(u)/2 E2,3(u) 1

⎞

⎟
⎟
⎠ , (3.25)

D(u) = diag(k−1
3 (u − c/2), k2(u), k3(u)) (3.26)

together with constraint (3.16) and series expansion (2.8) is isomorphic to the Yangian Y (so3) [24]. Accord-
ing to the quantum double construction [24], the Yangian double [25] DY (so3) associated with the B1 algebra
is a Hopf algebra for a pair of matrices T±(u) satisfying the commutation relations with R-matrix (2.1)

R(u, v)(T μ(u) ⊗ I)(I ⊗ T ν(v)) = (I ⊗ T ν(v))(T μ(u) ⊗ I)R(u, v), (3.27)

where μ and ν independently take the values + and −. Both matrices T±(u) have Gauss decomposition (3.1)
with matrices (3.25) and (3.26) and constraint (3.16). To distinguish them, we equip the Gauss coordinates
with the superscripts ±.

The difference between the matrices T +(u) and T−(u) is in the different series expansions in the
spectral parameter u. The matrix T +(u) is expanded over negative powers of u as in (2.8). It is therefore
identified with the universal monodromy matrix T (u) given by (3.1). In contrast, the monodromy matrix
T−(u) is given by the series

T−
i,j(u) = δij1 +

∑

�<0

Ti,j [�]u−�−1 (3.28)

in nonnegative powers of u. We let DB1 denote the algebra generated by the matrices T±(u) satisfying
commutation relations (3.27).

According to [12], we can write the commutation relations in the double DB1 in terms of the formal
generating series

F (u) = F+
3,2(u) − F−

3,2(u) =
∑

�∈Z

F [�]u−�−1,

E(u) = E+
2,3(u) − E−

2,3(u) =
∑

�∈Z

E[�]u−�−1,

k±
j (u) = 1 +

∑

�≥0
�<0

kj [�]u−�−1,

(3.29)

as

k±
2 (u)F (v)(k±

2 (u))−1 = f(u, v)f(v, u + c/2)F (v), (3.30)

k±
3 (u)F (v)(k±

3 (u))−1 = f(u, v)F (v), (3.31)

(k±
2 (u))−1E(v)k±

2 (u) = f(u, v)f(v, u + c/2)E(v), (3.32)

(k±
3 (u))−1E(v)k±

3 (u) = f(u, v)E(v), (3.33)

(u − v + c/2)F (u)F (v) = (u − v − c/2)F (v)F (u), (3.34)
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(u − v − c/2) E(u)E(v) = (u − v + c/2)E(v)E(u), (3.35)

[E(u), F (v)] = cδ(u, v)
(
k+
2 (u)(k+

3 (u))−1 − k−
2 (v)(k−

3 (v))−1
)
. (3.36)

Here, δ(u, v) in (3.36) is the additive δ-function given by the formal series

δ(u, v) =
1
u

∑

�∈Z

v�

u�
. (3.37)

The rational functions in the right-hand sides of Eqs. (3.30)–(3.33) should be understood as power series
in v/u for k+

2 (u) and k+
3 (u) and in u/v for k−

2 (u) and k−
3 (u). We call the generating series F (u) and E(u)

currents and the diagonal Gauss coordinates k±
2 (u) and k±

3 (u) Cartan currents.

A coproduct in DB1 is given by the standard formula

Δ(T±
i,j(u)) =

3∑

k=1

T±
k,j(u) ⊗ T±

i,k(u), (3.38)

where the monodromy matrix elements T +
i,j(u) and T−

i,j(u) form two Borel subalgebras, each isomorphic to
B1. Each of these B1 algebras is a natural Hopf subalgebra of DB1. We let U± denote these standard Borel
subalgebras.

It is well known [22] that another decomposition of the whole algebra into two dual subalgebras can
be associated with the current realization of the double DB1. One current subalgebra UF is formed by the
current F (u) and the Cartan currents k+

3 (u) and k+
2 (u), and the other current subalgebra UE is formed by

the current E(u) and the “negative” Cartan currents k−
2 (u) and k−

3 (u). It follows from (3.38) that these new
current Borel subalgebras are not Hopf subalgebras with respect to coproduct (3.38). For the subalgebras
UF and UE to become Hopf subalgebras in DB1, we introduce a new, so-called Drinfeld coproduct Δ(D). It
is related to the original coproduct (3.38) by the twisting procedure (see [22] and the references therein).

For the generating series of the DB1 algebra, the Drinfeld coproduct in the current Borel subalgebra
UF (j = 2, 3) is given by

Δ(D)k+
j (u) = k+

j (u) ⊗ k+
j (u), Δ(D)F (u) = 1⊗ F (u) + F (u) ⊗ k+

2 (u)(k+
3 (u))−1. (3.39)

In the dual current Borel subalgebra UE , it acts on the generators k−
j (u) and E(u) as

Δ(D)k−
j (u) = k−

j (u) ⊗ k−
j (u), Δ(D)E(u) = E(u) ⊗ 1 + k−

2 (u)(k−
3 (u))−1 ⊗ E(u). (3.40)

It is obvious that there are nonempty intersections of the Borel subalgebras of different types,

U−
F = UF ∩ U−, U+

F = UF ∩ U+,

U−
E = UE ∩ U−, U+

E = UE ∩ U+.
(3.41)

and these intersections are subalgebras in DB1 [22]. Furthermore, they are coideals with respect to Drinfeld
coproduct (3.39) and (3.40)

Δ(D)(U+
F ) = UF ⊗ U+

F , Δ(D)(U−
F ) = U−

F ⊗ UF ,

Δ(D)(U+
E ) = UE ⊗ U+

E , Δ(D)(U−
E ) = U−

E ⊗ UE .
(3.42)
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According to the general theory of the Cartan–Weyl construction, we can impose a global ordering of
the generators in DB1. There are two different choices for such an ordering. We let the symbol � denote
the ordering relation and introduce the cycling ordering between elements of the subalgebras U±

F and U±
E

as
. . . � U−

F � U+
F � U+

E � U−
E � U−

F � . . . . (3.43)

Using this ordering rule, we can say that arbitrary elements F ∈ UF and E ∈ UE are ordered if they are
represented in the form

F = F− · F+, E = E+ · E−, F± ∈ U±
F , E± ∈ U±

E . (3.44)

According to the general theory [22], we can define the projections of any ordered elements from the
subalgebras UF and UE onto subalgebras (3.41) using the formulas

P+
f (F− · F+) = ε(F−)F+, P−

f (F− · F+) = F−ε(F+), F± ∈ U±
F ,

P+
e (E+ · E−) = E+ε(E−), P−

e (E+ · E−) = ε(E+)E−, E± ∈ U±
E ,

(3.45)

where the counit map ε : DB1 → C is defined by the rules

ε(F [�]) = ε(E[�]) = 0, ε(kj [�]) = 0. (3.46)

Let UF be the extension of the algebra UF formed by the infinite sums of the ordered products
Ai1 [�1] · · · Aia [�a] with �1 ≤ · · · ≤ �a, where Ail

[�l] is either F [�l] or kil
[�l]. We similarly define UE as the

extension of UE by infinite sums of ordered products Bi1 [�1] · · · Bib
[�b] with �1 ≥ · · · ≥ �b, where Bil

[�l] is
either E[�l] or kil

[�l]. The following can be proved [22]:

1. The action of projections (3.45) extends to the respective algebras UF and UE .

2. For any F ∈ UF with Δ(D)(F) = F (1) ⊗F (2), we have

F = P−
f (F (2)) · P+

f (F (1)). (3.47)

3. For any E ∈ UE with Δ(D)(E) = E(1) ⊗ E(2), we have

E = P+
e (E(1)) · P−

e (E(2)). (3.48)

The formal definitions of projections (3.45) are useful for proving fundamental properties of pro-
jections (3.47) and (3.48) onto intersections of the different types of Borel subalgebras. In practical
calculations, we often use a more “physical” method. For example, to calculate the projection P+

f of
the product of the currents F (ui), we replace each current with the difference of the Gauss coordinates
F (ui) = F+

3,2(ui) − F−
3,2(ui) and then use the commutation relation

(

u − v +
c

2

)

F+
3,2(u)F−

3,2(v) −
(

u − v − c

2

)

F−
3,2(v)F+

3,2(u) =
c

2
(
(F+

3,2(u))2 + (F−
3,2(v))2

)
(3.49)

to move all negative Gauss coordinates F−
3,2(ui) to the left. Eventually, after such a normal ordering of all

the terms in the product of currents, the action of the projection P+
f means cancellation of all summands

having at least one “negative” Gauss coordinate F−
3,2(ui) on the left. The actions of the projections P−

f ,
P+

e , and P−
e can be defined similarly.
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4. Universal Bethe vectors for B1 algebra

A direct application of the theory of projections is to the construction of the universal off-shell Bethe
vectors by calculating the projections of the products of currents. For this, we identify the monodromy
matrix of some model with the generating series T +

i,j(u) satisfying the RTT relation with the corresponding
R-matrix. We then define a universal off-shell Bethe vector of this model as the projection P+

f applied
to the product of currents corresponding to the simple roots of the underlying finite-dimensional algebra.
Because the universal monodromy matrix elements T +

i,j(u) are expressed in terms of the Gauss coordinates,
which are themselves related to the currents according to formulas (3.29), we can compute the action of
the monodromy matrix elements on these Bethe vectors. This leads to recurrence relations for the latter.
On the other hand, we can compute the projection of the product of currents to obtain the structure of
the universal Bethe vector. In all these calculations, the main technical tool is the possibility to represent
the product of currents in a normal-ordered form using Eqs. (3.47) or (3.48). In this section, we implement
this program in the case of the Yangian double DB1.

4.1. Off-shell Bethe vectors and projections. We introduce rational functions

g(u, v) =
c/2

u − v
, f(u, v) =

u − v + c/2
u − v

, h(u, v) =
f(u, v)
g(u, v)

=
u − v + c/2

c/2
. (4.1)

They correspond to a rescaling c → c/2 in functions (3.14). For a set of complex parameters ū = {u1, . . . , ur}
of cardinality r, we also introduce a product

γ(ū) =
r∏

i<j

f(uj , ui) (4.2)

and a normalized ordered product of the currents

Fr(ū) = γ(ū)F(ū) = γ(ū)F (ur)F (ur−1) · · ·F (u1). (4.3)

We note that according to commutation relations (3.34), this normalized product is symmetric under any
permutation of the parameters uj.

In what follows, we consider the projection of F(ū) (called the pre-Bethe vector)

B̂r(ū) = P+
f (F(ū)) = γ(ū)P+

f (F (ur)F (ur−1) · · ·F (u1)) (4.4)

and the universal off-shell Bethe vector

Br(ū) = B̂r(ū)|0〉 = γ(ū)P+
f (F (ur)F (ur−1) · · ·F (u1))|0〉. (4.5)

We call the complex variables ū in (4.4) and (4.5) the Bethe parameters.

The pre-Bethe vector B̂r(ū) and Bethe vector itself Br(ū) are symmetric under permutations of the
Bethe parameters. The term “off-shell” means that the parameters ui are generic complex numbers. If
they satisfy a set of equations called Bethe equations, then the Bethe vectors become eigenvectors of the
universal transfer matrix T (u) and are called on-shell Bethe vectors.

In this section, we calculate projection (4.5) and obtain an expression for the Bethe vector in terms of
the Gauss coordinates F+

3,2(ui). This allows calculating the action of the monodromy matrix elements T+
i,j(z)

given by (3.4) on Bethe vectors (4.5). The action formulas for T +
i,j(z) with i < j yield recurrence relations

for the Bethe vectors in terms of the upper-triangular elements of the monodromy matrix. The action of the
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diagonal elements T+
i,i(z) lead to the Bethe equations. Finally, the action of the lower-triangular elements

T +
i,j(z) for i > j can be used to calculate the scalar products of Bethe vectors, which are a necessary tool for

studying correlation functions of the quantum integrable model in the algebraic Bethe ansatz framework.
First, we calculate the projection of the product of currents in (4.5). For this, we use an approach first

implemented in [15]. We rewrite commutation relation (3.21) between F±
3,2(u) and F−

3,2(v) in the form

F (u)F−
3,2(v) =

f(v, u)
f(u, v)

F−
3,2(v)F (u) + h

−1(u, v)X(u), (4.6)

where we let X(u) denote the combination of the Gauss coordinates X(u) = (F+
3,2(u))2 − (F−

3,2(u))2. Using
this commutation relation, we can write

P+
f (F (ur) · · ·F (u2)F−

3,2(u1)) =
r∑

j=2

h
−1(uj , u1)

j−1∏

s=2

f(u1, us)
f(us, u1)

Yj , (4.7)

where the element Yj ∈ U+
F is given by

Yj = P+
f (F (ur) · · ·F (uj+1)X(uj)F (uj−1) · · ·F (u2))

and does not explicitly depend on the spectral parameter u1.
Substituting u1 = um, m = 2, . . . , r, in (4.7) and replacing F−

3,2(u1) with the difference F+
3,2(u1)−F (u1)

in the left-hand side of this equation, we obtain

P+
f (F (ur) · · ·F (u2))F+

3,2(um) =
r∑

j=2

h
−1(uj , um)

j−1∏

s=2

f(um, us)
f(us, um)

Yj , (4.8)

where we use the properties of projections (3.45) and the fact that the square of the total current F 2(u) = 0
vanishes by virtue of commutation relations (3.34).

We can regard (4.7) as a system of linear equations for the unknown elements Yj ∈ U+
F , which can be

found as linear combinations of the elements P+
f (F (ur) · · ·F (u2))F+

3,2(um). Solving Eqs. (4.8) for Yj and
substituting them in (4.7), we obtain

P+
f (F (ur) · · ·F (u1)) = P+

f (F (ur) · · ·F (u2))F+
3,2(u1; u2, . . . , ur), (4.9)

where

F+
3,2(u1; u2, . . . , ur) = F+

3,2(u1) −
r∑

j=2

h
−1(uj , u1)

r∏

s=2,
s�=j

f(us, uj)
f(us, u1)

F+
3,2(uj). (4.10)

An off-shell Bethe vector Br(ū) can thus be expressed as the ordered product of linear combinations of the
Gauss coordinates acting on the reference vector

Br(ū) = γ(ū)
←−∏

1≤j≤r

F+
3,2(uj ; uj+1, . . . , ur)|0〉, (4.11)

where the ordered product
←∏

j

Aj of the noncommuting components Aj means ArAr−1 · · ·A1.

1555



4.2. Action of monodromy matrix elements on Bethe vectors. We hereafter use a special
notation for products of rational functions (4.1) and the eigenvalues λi(u) given by (2.10). If any of these
functions depends on a set of variables (or two sets of variables), then we take the product over this set. In
particular,

λk(ū) =
∏

ui∈ū

λk(ui), h(u, v̄) =
∏

vj∈v̄

h(u, vj), f(ū, v̄) =
∏

ui∈ū

∏

vj∈v̄

f(ui, vj), (4.12)

and so on. We also introduce subsets ūi = ū \ {ui} and ūi,j = ū \ {ui, uj} and extend this convention to
products over these subsets, for example,

g(vi, v̄i) =
∏

vj∈v̄,
vj �=vi

g(vi, vj), f(ūi,j , {ui, uj}) =
∏

uk∈ū,
uk /∈{ui,uj}

f(uk, ui)f(uk, uj). (4.13)

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if at least one
of the sets is empty.

Theorem 4.1. The action of the monodromy matrix element Ti,j(z) on an off-shell Bethe vector Br(ū)
given by (4.5) yields a linear combination of off-shell Bethe vectors

Ti,j(z)Br(ū) = s(i, j)λ3(z)
∑

{η̄I,η̄II,η̄III}	η̄

λ2(η̄III)
λ3(η̄III)

f(η̄I, η̄II)f(η̄I, η̄III)f(η̄II, η̄III)
h(η̄I, z) h(z + c/2, η̄III)

Br−i+j(η̄II), (4.14)

where s(i, j) = 2i−j+1(−1)δi1+δj1 . The sum is taken over partitions of the set η̄ = {ū, z, z+c/2} into several

disjoint subsets {η̄I, η̄II, η̄III} 	 η̄ with cardinalities # η̄I = i − 1 and # η̄III = 3 − j.

Proof. This theorem is proved in the next section.

4.3. Actions of upper-triangular monodromy matrix elements. The action of upper-triangular
monodromy matrix elements on the Bethe vector Br(ū) are the simplest. In particular, it follows from the
restrictions on the cardinalities of the subsets # η̄I and # η̄III that η̄I = η̄III = ∅ for the action of T1,3(z).
The sum over partitions disappears, and we immediately obtain

T1,3(z)Br(ū) = −λ3(z)
2

Br+2(ū, z, z + c/2). (4.15)

For the action of T1,2(z), we have # η̄I = 0 and # η̄III = 1. The sum over partitions in (4.14) becomes

T1,2(z)Br(ū) = −λ3(z)
∑

{η̄II,η̄III}	η̄

λ2(η̄III)
λ3(η̄III)

f(η̄II, η̄III)
h(z + c/2, η̄III)

Br+1(η̄II), (4.16)

where either η̄III = z or η̄III = z + c/2 or η̄III = ui with i = 1, . . . , r. It is easy to see that the case η̄III = z + c/2
does not contribute, because f(z, z + c/2) = 0. Hence, we obtain

T1,2(z)Br(ū) = − λ2(z)f(ū, z)Br+1(ū, z + c/2) −

− λ3(z)
r∑

i=1

g(z, ui)f(ūi, ui)
λ2(ui)
λ3(ui)

Br+1(ūi, z, z + c/2). (4.17)
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We similarly derive the action of T2,3(z):

T2,3(z)Br(ū) = λ3(z)f(z + c/2, ū)Br+1(ū, z) −

− λ3(z)
r∑

i=1

f(ui, ūi)
h(z, ui)

Br+1(ūi, z, z + c/2). (4.18)

Formulas (4.15)–(4.18) yield recurrence relations for the Bethe vectors:

Br+1(ū, z + c/2) = −T1,2(z)Br(ū)
λ2(z) f(ū, z)

− 2T1,3(z)
λ2(z) f(ū, z)

r∑

i=1

f(ūi, ui)
h(ui, z + c/2)

λ2(ui)
λ3(ui)

Br−1(ūi) (4.19)

and

Br+1(ū, z) =
T2,3(z)Br(ū)

λ3(z) f(z + c/2, ū)
− 2T1,3(z)

λ3(z) f(z + c/2, ū)

r∑

i=1

f(ui, ūi)
h(z, ui)

Br−1(ūi). (4.20)

These recursions allow constructing Bethe vectors successively in terms of polynomials in Ti,j with i < j

applied to |0〉 starting from the initial condition B0(∅) = |0〉 and B1(u) = T2,3(u)|0〉/λ3(u). We failed to
solve these recurrence relations and obtain explicit compact expressions for generic Bethe vectors in terms
of such polynomials, but such explicit formulas are not required in most problems involving the algebraic
Bethe ansatz.

4.4. Actions of diagonal monodromy matrix elements. The actions of the diagonal opera-
tors can be derived in the same manner. We omit the details of this derivation and show how action
formula (4.14) implies the Bethe equations in the case of the action of diagonal elements Ti,i(z).

Setting i = j = 1 in (4.14), we obtain

T1,1(z)Br(ū) = λ1(z)f(ū, z)f(ū, z + c/2)Br(ū) +

+ 2λ2(z)
r∑

i=1

g(z + c/2, ui)
λ2(ui)
λ3(ui)

f(ūi, z)f(ūi, ui)Br(ūi, z + c/2) +

+ 2λ3(z)
r∑

i<j

g(z, {ui, uj})
λ2(ui)
λ3(ui)

λ2(uj)
λ3(uj)

f(ūi,j , {ui, uj})Br(ūi,j , z, z + c/2). (4.21)

Here, the first term in right-hand side corresponds to η̄III = {z, z + c/2}, the second term corresponds to
η̄III = {ui, z + c/2}, and the third term corresponds to η̄III = {ui, uj}, i < j. The term corresponding to
the subset η̄III = {ui, z} vanishes because f(z, z + c/2) = 0. To obtain the first term in the right-hand side
of (4.21), we also use (3.17).

The action of T2,2(z) on the Bethe vector is

T2,2(z)Br(ū) = λ2(z)f(ū, z)f(z + c/2, ū)Br(ū) +

+ 2λ3(z)
r∑

i=1

g(z, ui)
λ2(ui)
λ3(ui)

f(z + c/2, ūi)f(ūi, ui)Br(ūi, z) −

− 2λ2(z)
r∑

i=1

f(ūi, z)
h(z, ui)

f(ui, ūi)Br(ūi, z + c/2) +

+ 2λ3(z)
r∑

i�=j

λ2(uj)
λ3(uj)

f(ui, ūi,j)f(ūj , uj)
h(z, ui)h(uj , z + c/2)

Br(ūi,j , z, z + c/2). (4.22)
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Here, the terms in the right-hand side correspond to the partitions such that {η̄I, η̄III} are either {ui, uj} or
{ui, z} or {z + c/2, ui} or {z + c/2, z}. Contributions of other partitions vanish because f(z, z + c/2) = 0.

The action of T3,3(z) is given by

T3,3(z)Br(ū) = λ3(z)f(z, ū)f(z + c/2, ū)Br(ū) +

+ 2λ3(z)
r∑

i=1

g(ui, z)f(z + c/2, ūi)f(ui, ūi)Br(ūi, z) +

+ 2λ3(z)
r∑

i<j

f({ui, uj}, ūi,j)
h(z, {ui, uj})

Br(ūi,j , z, z + c/2). (4.23)

Summing all three Eqs. (4.21)–(4.23) and gathering the coefficients of the Bethe vectors Br(ū), Br(ūi, z),
Br(ūi, z + c/2), and Br(ūi,j , z, z + c/2), we see that if the Bethe parameters satisfy the system of Bethe
equations

λ2(ui)
λ3(ui)

=
f(ui, ūi)
f(ūi, ui)

, (4.24)

then the Bethe vector Br(ū) becomes the eigenvector of the transfer matrix T (z),

T (z)Br(ū) = τ(z|ū)Br(ū), (4.25)

with the eigenvalue

τ(z|ū) = λ1(z)f(ū, z)f(ū, z + c/2) + λ2(z)f(ū, z)f(z + c/2, ū) + λ3(z)f(z, ū)f(z + c/2, ū). (4.26)

We note that taking constraint (3.24) into account, we can also write the Bethe equations in the form

λ1(ui − c/2)
λ2(ui − c/2)

=
f(ui, ūi)
f(ūi, ui)

. (4.27)

It is easy to see that systems of equations (4.24) and (4.27) are equivalent to the condition that eigen-
value (4.26) has no poles at z = ui and z = ui − c/2.

We do not give explicit formulas for the action of lower-triangular elements of T (u): they are quite
cumbersome. We only note that these formulas can be used to compute scalar products of Bethe vectors.
We thus obtain

Sso3
r (ū|v̄) = 2−rSgl2

r (ū|v̄)
∣
∣
c→c/2

, (4.28)

where Sso3
r (ū|v̄) denotes the scalar product of Br(v̄) with the dual vector of Br(ū) and S

gl2
r (ū|v̄) is the same

object for the generalized model based on Y (gl2). Equation (4.28) is unsurprising because the Yangians
Y (so3) and Y (gl2) are isomorphic. In fact, the equality can already be seen at the level of Bethe vectors:

B
so3
r (ū) = 2−r/2

B
gl2
r (ū)

∣
∣
c→c/2

. (4.29)

We note that the isomorphism is rather explicit and simple in the current representation but is more
involved in terms of the monodromy matrix elements (see [20] for an explicit construction in the RTT

representation).
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5. Proofs

To prove Theorem 4.1, we need a special representation for pre-Bethe vectors (4.4) in terms of the
normalized product of currents (4.3) and the “negative” Gauss coordinates F−

3,2(ui). This representation
is a direct consequence of projection properties (3.47). To formulate it, we introduce several additional
notions.

For any formal series G(ū) depending on a set of parameters ū = {u1, . . . , ur}, we define a deformed
symmetrization by the sum

Symū G(ū) =
∑

σ∈Sr

∏

�<�′,
σ(�)>σ(�′)

f(uσ(�′), uσ(�))
f(uσ(�), uσ(�′))

G(σū), (5.1)

where Sr is a permutation group of the set ū and σū = {uσ(1), . . . , uσ(r)}. If c = 0, then the deformed
symmetrization coincides with the usual symmetrization Symu.

Let F(ū) be the ordered product of the currents F (ui) defined by (4.3). Then F(ū) ∈ UF is a formal
series of the generators of the DB1 algebra. It can be represented in the normal ordered form via (3.47),
coproduct properties (3.39), and commutation relations (3.30):

F(ū) = Symū

( r∑

s=0

1
s!(r − s)!

P−
f (F2(ur) · · ·F2(us+1)) · P+

f (F2(us) · · ·F2(u1))
)

. (5.2)

Multiplying both sides by the factor γ(ū) given by (4.2) and using the fact that

γ(ū) Symū(G(ū)) = Symū(γ(ū)G(ū)) (5.3)

for any formal series G(ū), we obtain the ordering rule for the normalized symmetric product of the currents

Fr(ū) = Symū

( r∑

s=0

∏r
j=s+1

∏s
i=1 f(uj, ui)

s!(r − s)!
P−

f (Fr−s(ur, . . . , us+1)) · P+
f (Fs(us, . . . , u1))

)

.

Because both P−
f (Fr−s(ur, . . . , us+1)) and P+

f (Fs(us, . . . , u1)) are symmetric over their arguments, the
sum over permutations within the subsets {ur, . . . , us+1} and {us, . . . , u1} leads to cancellation of the
combinatorial factor s!(r − s)!. The sum over permutations of the whole set ū thus becomes a sum over
partitions of this set into two nonintersecting subsets ūI and ūII with the cardinalities # ūI = s and # ūII =
r − s for any s:

Fr(ū) =
∑

{ūI,ūII}	ū

f(ūII, ūI)P−
f (Fr−s(ūII)) · P+

f (Fs(ūI)). (5.4)

Using the relation P−
f (F2(u)) = −F−

3,2(u) and calculating the projection via (3.49)

P−
f (F2({uj, ui})) =

(
f(uj , ui)F−

3,2(uj) − g(uj , ui)F−
3,2(ui)

)
F−

3,2(ui),

we can write the pre-Bethe vector P+
f (Fr(ū)) in the form

P+
f (Fr(ū)) = Fr(ū) +

r∑

i=1

f(ui, ūi)F−
3,2(ui)P+

f (Fr−1(ūi)) −

−
r∑

i<j

f({uj, ui}, ūi,j)
(
f(uj , ui)F−

3,2(uj) − g(uj, ui)F−
3,2(ui)

)
×

× F−
3,2(ui)P+

f (Fr−2(ūi,j)) + W. (5.5)

Here, W denotes all the terms that contain at least three “negative” Gauss coordinates F−
3,2(ui) on the left

of the product.
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5.1. Action of the elements Ti,3(z). Formula (4.9) with r = 2, u2 = u1 + c/2, and u1 = z is

P+
f (F (z + c/2)F (z)) = F+

3,2(z + c/2)
(

F+
3,2(z) − 1

2
F+

3,2(z + c/2)
)

. (5.6)

According to commutation relation (3.21) at u = z + c/2 and v = z, this projection is equal to

P+
f (F (z + c/2)F (z)) =

1
2
(F+

3,2(z))2. (5.7)

This means that the monodromy matrix element T+
1,3(z) can be expressed in terms of the current generators

as
T +

1,3(z) = −P+
f (F (z + c/2)F (z)k+

3 (z)). (5.8)

On the other hand, the properties of the projection onto U+
F imply that for any F1,F2 ∈ UF ,

P+
f (F1 · P+

f (F2)) = P+
f (F1) · P+

f (F2). (5.9)

Commutation relations (2.4) in the DB1 algebra,

f(u, z)T +
1,3(z)T−

2,3(u) = T−
2,3(u)T +

1,3(z) + g(u, z)T−
1,3(u)T +

2,3(z), (5.10)

and property (5.9) yield
P+

f (T +
1,3(z)F−

3,2(u)) = 0 (5.11)

or, equivalently,
P+

f (F (z + c/2)F (z)k+
3 (z)F−

3,2(u)) = 0. (5.12)

The action of T +
1,3(z) on Bethe vector is then

T +
1,3(z) · Br(ū) = −P+

f (F (z + c/2)F (z)k+
3 (z)) · P+

f (Fr(ū))|0〉 =

= −P+
f (F (z + c/2)F (z)k+

3 (z) · P+
f (Fr(ū)))|0〉 =

= −λ3(z)f(z, ū)P+
f (F (z + c/2)F (z)Fr(ū))|0〉 =

= −λ3(z)
2

Br+2(z + c/2, z, ū). (5.13)

Here, we use (5.5) and (5.12) to replace P+
f (F(ū)) with F(ū) in the second line of (5.13) and the obvious

relations f(z + c/2, z) = 2 and f(z + c/2, u)f(z, u) = f(z, u). We have thus proved action formula (4.15).
Combining formulas (2.4) for the values of the indices {i, j, k, l} to {2, 3, 2, 3} and {3, 3, 1, 3} in the

double Yangian DB1, we obtain the commutation relations

T +
2,3(z)T−

2,3(u) =
f(z + c/2, u)
f(u + c/2, z)

T−
2,3(u)T +

2,3(z) +

+
2

h(z, u)

(

T +
1,3(z)T−

3,3(u) − f(z + c/2, u)f(z, u)
f(u + c/2, z)f(u, z)

T−
1,3(u)T +

3,3(z)
)

. (5.14)

Using explicit expressions for the monodromy matrix elements in terms of Gauss coordinates, from (5.14),
we conclude that

P+
f (T +

2,3(z)F−
3,2(u)) =

2
h(z, u)

T +
1,3(z). (5.15)
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Combining this formula with Eq. (5.11), we obtain

P+
f (T +

2,3(z)F−
3,2(u)F−

3,2(v)) = 0. (5.16)

Equations (5.15) and (5.16) together with representation (5.5) now yield

T +
2,3(z) · Br(ū) = P+

f (F (z)k+
3 (z)) · P+

f (Fr(ū))|0〉 =

= λ3(z)f(z, ū)P+
f (F (z)Fr(ū))|0〉 + 2

r∑

i=1

f(ui, ūi)
h(z, ui)

P+
f (T +

1,3(z)P+
f (Fr−1(ūi)))|0〉 =

= λ3(z)
(

f(z + c/2, ū)Br+1({z, ū}) −
r∑

i=1

f(ui, ūi)
h(z, ui)

Br+1({z + c/2, z, ū})
)

.

We have thus proved (4.18).
Taking the equality T +

3,3(z) = k+
3 (z) into account, from commutation relations (2.4) in the double

Yangian DB1, we obtain the formula

T +
3,3(z)F−

3,2(u) = f(z, u)F−
3,2(u)T +

3,3(z) + g(u, z)T +
2,3(z), (5.17)

which together with (5.11), (5.15), and (5.16) yields the equalities

P+
f (T +

3,3(z)F−
3,2(u)) = g(u, z)T +

2,3(z),

P+
f (T +

3,3(z)F−
3,2(u)F−

3,2(v)) =
2g(u, z)
h(z, v)

T +
1,3(z),

P+
f (T +

3,3(z)F−
3,2(u)F−

3,2(v)F−
3,2(w)) = 0.

(5.18)

Using these equations and the first three terms in the right-hand side of (5.5), we prove (4.23).
All the other action formulas in Theorem 4.1 can be proved similarly. But it is clear that to calculate

the action of the lower-triangular elements of the monodromy matrix, we should compute more terms in
the right-hand side of representation (5.5) contained in the term W. This makes the calculations rather
cumbersome. Instead, there is a more elegant way to calculate these actions using the zero modes of the
monodromy matrix and commutation relations (2.9). We explain this approach in the next subsection.

5.2. Action of zero modes. In what follows, we use the zero modes of the lower-triangular elements
of the monodromy matrix,

T+
2,1[0] = −T +

3,2[0] = −E+
2,3[0], (5.19)

and the action of the zero mode E+
2,3[0] on the Bethe vector Br(ū). To calculate this action, we use again

representation (5.5) and the commutation relations following from (3.13) and (3.30)

E+
2,3[0]F−

3,2(u) = F−
3,2(u)E+

2,3[0] + c
(
k−
2 (u)(k−

3 (u))−1 − 1
)
, (5.20)

E+
2,3[0]F (u) = F (u)E+

2,3[0] + c
(
k+
2 (u)(k+

3 (u))−1 − k−
2 (u)(k−

3 (u))−1
)
, (5.21)

k+
2 (u)(k+

3 (u))−1F (v) =
f(v, u)
f(u, v)

F (v)k+
2 (u)(k+

3 (u))−1. (5.22)
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Equation (5.20) means that only two terms in the right-hand side of (5.5) contribute to the action of the zero
mode E+

2,3[0] on the Bethe vector. Because E+
2,3[0]|0〉 = 0, this action follows from the chain of equations

E+
2,3[0]Br(ū) = [E+

2,3[0], P+
f (Fr(ū))]|0〉 =

= P+
f

([

E+
2,3[0],

(

Fr(ū) −
r∑

i=1

f(ui, ūi)F−
3,2(ui)Fr−1(ūi)

)])

|0〉 =

= cP+
f

( r∑

i=1

f(ui, ūi)
(
k+
2 (ui)(k+

3 (ui))−1 − 1
)
Fr−1(ūi)

)

|0〉 =

= c
r∑

i=1

f(ui, ūi)
(

f(ūi, ui)
f(ui, ūi)

λ2(ui)
λ3(ui)

− 1
)

Br−1(ūi). (5.23)

We note that if the set ū satisfies Bethe equations (4.24), then the zero mode E+
2,3[0] annihilates the on-shell

Bethe vectors, which are highest-weight vectors of the finite-dimensional so3 algebra generated by the zero
modes. This a typical property of on-shell Bethe vectors in the models associated with Yangians. Indeed,
these models are invariant under the action of the finite-dimensional algebra generated by the zero modes,
and the highest-weight property is related to the completeness of the Bethe ansatz. This was previously
noted for models based on the glN symmetry [26].

Formula (2.9) at {i, j, k, l} = {1, 3, 3, 2} yields

T+
1,2(z) = −T +

2,3(z) + c−1[E+
2,3[0], T +

1,3(z)], (5.24)

which can be used to obtain the action of the monodromy matrix element T +
1,2(z) from the already known

actions of T +
2,3(z), T +

1,3(z), and E+
2,3[0]. To prove the rest of Theorem 4.1, we use the relations

T +
2,2(z) = −T +

3,3(z) + c−1[E+
2,3[0], T +

2,3(z)], T +
1,1(z) = T +

2,2(z) − c−1[E+
2,3[0], T +

1,2(z)],

T +
3,2(z) = c−1[E+

2,3[0], T +
3,3(z)], T +

2,1(z) = c−1[E+
2,3[0], T +

1,1(z)],

T +
3,1(z) = −c−1[E+

2,3[0], T +
3,2(z)],

which imply the action formulas for T +
2,2(z), T +

1,1(z), T +
3,2(z), T +

2,1(z), and T +
3,1(z).

6. Conclusion

We have begun a program of investigating soN -invariant quantum integrable models using the current
formalism of deformed Kac–Moody algebras and method of projections onto intersections of different Borel
subalgebras in these algebras. This method was formulated in [22], [16] and developed in [13]. In the
framework of this method, the off-shell Bethe vectors are defined in terms of the generators of the corre-
sponding infinite-dimensional algebra. The RTT formulation of this algebra uses the same R-matrix as
the intertwining relations of the monodromy matrix of soN -invariant quantum integrable model. Our main
goal here was to find formulas for the action of the monodromy matrix elements on Bethe vectors using the
current approach and the projection method. We showed that our approach allows obtaining such formulas
and expressing the result of these actions as linear combinations of off-shell Bethe vectors.

We note that we do not use explicit representations for the Bethe vectors in terms of the monodromy
matrix elements acting on the reference vector. Such explicit representations are still lacking, although
the recurrence relations derived here allow finding them, at least for the vectors with a small number of
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Bethe parameters. We showed that the projection method allows completely abandoning the use of such
representations.

In this paper, we restricted ourself to the simplest case of the so3-invariant quantum integrable models.
As noted (see the end of Sec. 4), they are equivalent to the models built on the gl2 algebra. Nevertheless,
the calculations leading to the Bethe vectors and the action formulas differ quite noticeably. For models
with gl2 symmetries, they reflect the general glN scheme, and for models with so3 symmetries, they are
closer to the soN approach. In this sense, although the presented calculations do not give new results on the
scalar products of Bethe vectors, they shed some light on the case of integrable models based on orthogonal
and symplectic Yangians. Indeed, it is clear that the method introduced here can be generalized to soN -
and sp2n-invariant models. The corresponding results will be published later.
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