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parameter values.

Keywords: Cayley tree, configuration, Potts model, Gibbs measure, periodic measure, translation-
invariant measure

DOI: 10.1134/S004057791905009X

1. Introduction

Solutions of problems arising in studying the thermodynamic properties of physical and biological
systems primarily lead to problems in the theory of Gibbs measures. It is known that each limit Gibbs
measure is associated with one phase of the physical system. The Potts model is a generalization of the
Ising model and is well studied on the lattice Z

d and on the Cayley tree. The concept of the Gibbs measure
for the Potts model on the Cayley tree is introduced in the conventional manner (see [1]–[4]).

The ferromagnetic Potts model with three states on a second-order Cayley tree was studied in [5], where
it was shown that a critical temperature Tc exists such that three translation-invariant and uncountable
number of non-translation-invariant Gibbs measures exist for T < Tc. The results in [5] were generalized
to the Potts model with a finite number of states on a Cayley tree of an arbitrary (finite) order in [6].

On a Cayley tree of an arbitrary order, the translation-invariant Gibbs measure of the antiferrimagnetic
Potts model with q states and with an external field was shown to be unique (see [4]). The Potts model
with a countable number of states and with a nonzero external field was studied in [7], where it was proved
that the model has a unique translation-invariant Gibbs measure.

Periodic Gibbs measures were studied in [8], where it was proved that under certain conditions, all peri-
odic Gibbs measures are translation-invariant. In particular, under certain conditions, for the ferromagnetic
Potts model with three states on a Cayley tree of an arbitrary order and for the antiferromagnetic Potts
model with three states on a second-order Cayley tree, all periodic Gibbs measures are translation-invariant.
Moreover, the conditions were found under which the Potts model with a nonzero external field has periodic
Gibbs measures. The results in [8] were followed up in [9], where the existence of at least three periodic
Gibbs measures with the period two on a third- or fourth-order Cayley tree for the Potts model with three
states and a zero external field was proved. In [10], the Potts model with q states on a Cayley tree of order
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k ≥ 3 was studied, and on certain invariants, the existence of periodic (not translation-invariant) Gibbs
measures was shown under certain conditions on the model parameters. Moreover, the lower bound of the
number of the existing periodic Gibbs measures was shown. In [11], translation-invariant Gibbs measures
for the ferromagnetic Potts model with q states were described in detail, and the number of them was
shown not to exceed 2q − 1, and the problem of extremes of these measures was studied in [12]. In [13],
the results reported in [10] were improved, and explicit equations were derived for the translation-invariant
Gibbs measures for the Potts model with three states on a Cayley tree of order k = 3.

Here, we generalize certain results in [8]. For the antiferromagnetic Potts model with q states on
a second-order Cayley tree, we show that all periodic Gibbs measures are translation-invariant for any
parameter value. Moreover, for the ferromegnatic Potts model with q states on a kth-order Cayley tree, we
show that all the periodic Gibbs measures are translation-invariant.

2. Definitions and known facts

The Cayley tree. We assume that �k = (V, L) is a Cayley tree of order k ≥ 1, i.e., an infinite graph
without cycles and with exactly k+1 edges at each vertex of the graph. Here, V is the set of all vertices
�k, and L is the set of all edges. Two vertices x and y are called nearest neighbors if there exists an edge
l ∈ L that connects them. We then write l = 〈x, y〉.

For a fixed point x0 ∈ V , we assume that Wn = {x ∈ V | d(x, x0) = n}, Vn =
⋃n

m=0 Wm, and
Ln = {〈x, y〉 ∈ L | x, y ∈ Vn}, where d(x, y) is the distance between the vertices x and y on the Cayley
tree, i.e., the number of edges of the minimum path connecting the vertices x and y. We write x ≺ y if the
path from x0 to y passes through x. A vertex y is called the direct descendant of x if y � x and x and
y are nearest neighbors. The set of the direct descendants of x is denoted by S(x), i.e., if x ∈ Wn, then
S(x) = {yi ∈ Wn+1 | d(x, yi) = 1, i = 1, 2, . . . , k}.

The Potts model. We assume that Φ = {1, 2, . . . , q}, q ≥ 2, and σ ∈ Ω = ΦV is a configuration, i.e.,
σ = {σ(x) ∈ Φ: x ∈ V }. For the subset A ⊂ V , we define ΩA as the set of all configurations defined on A

and taking values in Φ.
We consider the Hamiltonian of the Potts model

H(σ) = −J
∑

〈x,y〉∈L

δσ(x)σ(y) − α
∑

x∈V

δ1σ(x), (1)

where J ∈ R, α ∈ R is the external field, 〈x, y〉 are nearest neighbors, and δij is the Kronecker symbol.
The Gibbs measure. For each n, the measure μn on ΩVn is defined as

μn(σn) = Z−1
n exp

{

−βHn(σn) +
∑

x∈Wn

h̃σ(x),x

}

, (2)

where {h̃x = (h̃1,x, . . . , h̃q,x) ∈ R
q, x ∈ V } is the set of vectors, β = 1/T (T is the temperature, T > 0),

σn = {σ(x), x ∈ Vn} ∈ ΩVn , Z−1
n is the normalizing factor, and Hn(σn) = −J

∑
〈x,y〉∈Ln

δσ(x)σ(y) −
α

∑
x∈Vn

δ1σ(x).
The consistency condition for the measures μn(σn), n ≥ 1, and σn−1 ∈ ΦVn−1 is

∑

ωn∈ΦWn

μn(σn−1 ∨ ωn) = μn−1(σn−1). (2′)

Here, σn−1 ∨ ωn is the union of configurations, i.e., σn−1 ∨ ωn ∈ ΦVn such that (σn−1 ∨ ωn)
∣
∣
Vn−1

= σn−1

and (σn−1 ∨ ωn)
∣
∣
Wn

= ωn.
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We assume that μn, n ≥ 1, is the sequence of the measures on ΩVn satisfying consistency condition (2′).
In this case, there exists a unique measure μ on ΦV such that μ({σ|Vn = σn}) = μn(σn) for all n and
σn ∈ ΦVn . This measure is called the splitting Gibbs measure corresponding to Hamiltonian (1) and the
vector-valued function h̃x, x ∈ V .

According to [14], measures (2) satisfy consistency condition (2′) if and only if the equation

hx =
∑

y∈S(x)

F (hy, θ, α) (3)

is satisfied for any x ∈ V , where F : h = (h1, . . . , hq−1) ∈ R
q−1 → F (h, θ, α) = (F1, . . . , Fq−1) ∈ R

q−1 is
defined as

Fi = αβδ1i + log
(θ − 1)ehi +

∑q−1
j=1 ehj + 1

θ +
∑q−1

j=1 ehj

,

θ = eJβ , S(x) is the set of direct descendants of x, and hx = (h1,x, . . . , hq−1,x) under the condition that
hi,x = h̃i,x − h̃q,x, i = 1, . . . , q − 1.

It is known that there exists a one-to-one correspondence between the set of V vertices of the Cayley
tree of order k ≥ 1 and the group Gk that is the free product of k+1 cyclic groups of second order with the
corresponding generators a1, a2, . . . , ak+1.

We assume that Ĝk is the normal divisor of the finite index of the group Gk.

Definition 1. A set of vectors h = {hx, x ∈ Gk} is said to be Ĝk-periodic if hyx = hx for any x ∈ Gk

and y ∈ Ĝk.
A Ĝk-periodic set is said to be translation-invariant.

Definition 2. A measure μ is said to be Ĝk-periodic if it corresponds to a Ĝk-periodic set of vectors h.

The following theorem was proved in [8].

Theorem 1 [8]. Let H be the normal divisor of the finite index in Gk. Then for the Potts model,

all H-periodic Gibbs measures are either G
(2)
k -periodic or translation-invariant, where G

(2)
k is the subgroup

comprising words of even length.

3. Antiferromagnetic case

We consider the case q ≥ 3, α = 0, i.e., σ : V → Φ = {1, 2, . . . , q}. By Theorem 1, the only G
(2)
k -periodic

Gibbs measures correspond to the set of vectors h = {hx ∈ R
q−1 : x ∈ Gk} of the form

hx =

⎧
⎨

⎩

h for even |x|,

l for odd |x|.

Here, h = (h1, h2, . . . , hq−1) and l = (l1, l2, . . . , lq−1). By virtue of Eq. (3), we then have

hi = k log
(θ − 1)eli +

∑q−1
j=1 elj + 1

∑q−1
j=1 elj + θ

, li = k log
(θ − 1)ehi +

∑q−1
j=1 ehj + 1

∑q−1
j=1 ehj + θ

, i = 1, q − 1.

We introduce the notation ehi = xi and eli = yi. We can then rewrite the last system of equations for
i = 1, q − 1 as

xi =
( (θ − 1)yi +

∑q−1
j=1 yj + 1

∑q−1
j=1 yj + θ

)k

, yi =
( (θ − 1)xi +

∑q−1
j=1 xj + 1

∑q−1
j=1 xj + θ

)k

. (4)
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We consider the map W : R
q−1 × R

q−1 → R
q−1 × R

q−1 defined by the equations

x′
i =

( (θ − 1)yi +
∑q−1

j=1 yj + 1
∑q−1

j=1 yj + θ

)k

, y′
i =

( (θ − 1)xi +
∑q−1

j=1 xj + 1
∑q−1

j=1 xj + θ

)k

. (5)

We note that system (4) is the equation z = W (z). To solve system of equations (4), we must find the
fixed points of (5): z′ = W (z), where z = (x1, . . . , xq−1, y1, . . . , yq−1).

Lemma 1. The following sets are invariant with respect to the map W :

I1 = {z ∈ R
2q−2 : x1 = x2 = · · · = xq−1 = y1 = y2 = · · · = yq−1},

I2 = {z ∈ R
2q−2 : x1 = x2 = · · · = xq−1, y1 = y2 = · · · = yq−1},

I3 = {z ∈ R
2q−2 : xi = yi, i = 1, 2, . . . , q − 1},

I4 = {z ∈ R
2q−2 : xi = yq−i, i = 1, 2, . . . , q − 1},

I5 = {z ∈ R
2q−2 : x1 = y1 = 1}, I6 = {z ∈ R

2q−2 : xq−1 = yq−1 = 1}.

The lemma is proved similarly to Lemma 2 in [8].

Remark 1. The map W can have invariant sets that differ from the sets I1, . . . , I6, i.e., the sets
I1, . . . , I6 do not fully describe all invariant sets of W .

Lemma 2. The Gibbs measures for the Potts model on the invariant sets I1 and I3 are translation-

invariant.

The proof is obvious because we have hx = const on the invariant sets I1 and I3.

Remark 2. 1. For q = 2, the Potts model coincides with the Ising model. The Ising case was first
rigorously analyzed in [15].

2. In the case k = 2, q = 3, J < 0, and α = 0, it was proved that all G
(2)
k -periodic Gibbs measures on

the invariant sets I1, . . . , I6 are translation-invariant (see [8]).

We have the following theorem.

Theorem 2. Let k = 2, q ≥ 2, J < 0, and α = 0. Then the G
(2)
k -periodic Gibbs measure for the Potts

model is unique. Moreover, this measure coincides with the unique translation-invariant Gibbs measure.

Proof. We note that xi = yi = 1, i = 1, 2, . . . , q − 1, is a solution of system of equations (4), which is
composed of 2q−2 equations. We show that system (4) has no other solutions. For this, we substitute the
expressions for yi in the right-hand sides of the first q−1 equations in (4). We then obtain the equalities

√
x1 =

θx̃1 + x̃2 + · · · + x̃q−1 + γ

x̃1 + x̃2 + · · · + x̃q−1 + θγ
,

√
x2 =

θx̃2 + x̃1 + · · · + x̃q−1 + γ

x̃1 + x̃2 + · · · + x̃q−1 + θγ
,

√
x3 =

θx̃3 + x̃1 + x̃2 + · · · + x̃q−1 + γ

x̃1 + x̃2 + · · · + x̃q−1 + θγ
, . . . ,

√
xq−1 =

θx̃q−1 + x̃1 + x̃2 + · · · + x̃q−2 + γ

x̃1 + x̃2 + · · · + x̃q−1 + θγ
,

(6)
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where

x̃1 = (θx1 + x2 + · · · + xq−1 + 1)2, x̃2 = (θx2 + x1 + · · · + xq−1 + 1)2,

x̃3 = (θx3 + x1 + x2 + · · · + xq−1 + 1)2, . . . ,

x̃q−1 = (θxq−1 + x1 + x2 + · · · + xq−2 + 1)2,

γ = (x1 + x2 + · · · + xq−1 + θ)2.

We subtract unity from both sides of all equalities in (6):

√
x1 − 1 =

(θ − 1)(x̃1 − γ)
x̃1 + x̃2 + · · · + x̃q−1 + θγ

,

√
x2 − 1 =

(θ − 1)(x̃2 − γ)
x̃1 + x̃2 + · · · + x̃q−1 + θγ

,

√
x3 − 1 =

(θ − 1)(x̃3 − γ)
x̃1 + x̃2 + · · · + x̃q−1 + θγ

, . . . ,

√
xq−1 − 1 =

(θ − 1)(x̃q−1 − γ)
x̃1 + x̃2 + · · · + x̃q−1 + θγ

.

We introduce the notation L = (θ− 1)/(x̃1 + x̃2 + · · ·+ x̃q−1 + θγ) and rewrite the last system of equations
as √

xi − 1 = L(x̃i − γ), i = 1, 2, . . . , q − 1. (7)

We calculate the differences x̃i − γ, i = 1, 2, . . . , q − 1,

x̃i − γ = (θ − 1)(xi − 1)
[

(θ + 1)(xi + 1) + 2
( q−1∑

i=1

xi − xi

)]

,

and substitute them in (7). After some transformation, we then have

(
√

xi − 1)
[

1 − L(θ − 1)(
√

xi + 1)
(

(θ + 1)(xi + 1) + 2
( q−1∑

i=1

xi − xi

))]

= 0.

Hence, for i = 1, 2, . . . , q − 1, we have xi = 1 or

1 − L(θ − 1)(
√

xi + 1)
[

(θ + 1)(xi + 1) + 2
( q−1∑

i=1

xi − xi

)]

= 0. (8)

We note that the solution xi = 1, i = 1, 2, . . . , q − 1, corresponds to a translation-invariant Gibbs measure.
Therefore, we consider the case where xi 
= 1. We rewrite system of equations (8) as

1
L

= (θ − 1)(
√

xi + 1)
[

(θ + 1)(xi + 1) + 2
( q−1∑

i=1

xi − xi

)]

, i = 1, 2, . . . , q − 1.

For i 
= j, i, j = 1, 2, . . . , q − 1, we then have

(θ + 1)(
√

xi + 1)(xi + 1) + 2(
√

xi + 1)
( q−1∑

i=1

xi − xi

)

=

= (θ + 1)(
√

xj + 1)(xj + 1) + 2(
√

xj + 1)
( q−1∑

i=1

xi − xj

)

.
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After some transformation, we have the equality

(
√

xi −
√

xj )
[

(θ + 1)(xi + xj + 1) + (θ − 1)(
√

xi +
√

xj +
√

xixj ) + 2
( q−1∑

i=1

xi − xi − xj

)]

= 0.

Hence, xi = xj or

(θ + 1)(xi + xj + 1) + (θ − 1)(
√

xi +
√

xj +
√

xixj ) + 2
( q−1∑

i=1

xi − xi − xj

)

= 0. (9)

In the case xi = xj , we have the solution xi = xj = 1, which corresponds to the translation-invariant Gibbs
measure. Let xi 
= xj . Then it follows from (9) that

θ(xi + xj + 1 +
√

xi +
√

xj +
√

xixj ) + 2(x1 + x2 + · · · + xq−1 − xi − xj) +

+ xi + xj + 1 − (
√

xi +
√

xj +
√

xixj ) = 0. (10)

We prove that Eq. (10) has no solutions. For this, it suffices to prove that the inequality xi + xj + 1 >
√

xi+
√

xj +√
xixj holds. Introducing notation

√
xi = s and √

xj = t, we obtain a quadratic inequality in s,
s2−(t+1)s+t2−t+1 > 0, and its discriminant D = −3(t−1)2 < 0 is negative for t 
= 1. Therefore, system of
equations (4) has solutions only of a form xi = xj , i.e., z = (x1, . . . , xq−1, y1, . . . , yq−1) ∈ I1. Therefore, all
G

(2)
k -periodic Gibbs measures are translation-invariant, and uniqueness of the G

(2)
k -periodic Gibbs measure

follows from the uniqueness of the translation-invariant Gibbs measure for the antiferromagnetic Potts
model (see [4]). The theorem is proved.

Remark 3. For the antiferromagnetic Potts model, the unique translation-invariant Gibbs measure is
associated with a solution of system of equations (4) like xi = yi = 1, i = 1, 2, . . . , q − 1.

4. Ferromagnetic case

The following theorem was proved in [8].

Theorem 3 [8]. For the Potts model with a zero external field for k ≥ 1, q = 3, and J > 0, all

G
(2)
k -periodic Gibbs measures are translation-invariant.

The following theorem generalizes the statement of Theorem 3.

Theorem 4. Let k ≥ 2, q ≥ 3, J > 0, and α = 0. Then all G
(2)
k -periodic Gibbs measures for the Potts

model are translation-invariant.

Proof. We consider the differences xi − yi, i = 1, 2, . . . , q − 1, in system of equations (4):

xi − yi =
[ (θ − 1)yi +

∑q−1
j=1 yj + 1

∑q−1
j=1 yj + θ

−
(θ − 1)xi +

∑q−1
j=1 xj + 1

∑q−1
j=1 xj + θ

]

Ai =

=
Ai

XY

[

(θ2 − θ)(yi − xi) + (θ − 1)
(

yi

q−1∑

j=1

xj − xi

q−1∑

j=1

yj

)

+ (θ − 1)
( q−1∑

j=1

yj −
q−1∑

j=1

xj

)]

,
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where

Ai =
( (θ − 1)yi +

∑q−1
j=1 yj + 1

∑q−1
j=1 yj + θ

)k−1

+ · · · +
( (θ − 1)xi +

∑q−1
j=1 xj + 1

∑q−1
j=1 xj + θ

)k−1

,

X =
q−1∑

j=1

xj + θ, Y =
q−1∑

j=1

yj + θ, i = 1, q − 1.

After some transformations, we obtain the expression

xi − yi =
Ai(θ − 1)

XY

(

θ(yi − xi) + yi

q−1∑

j=1

(xj − yj) + (yi − xi)
q−1∑

j=1

yj +
q−1∑

j=1

yj −
q−1∑

j=1

xj

)

.

As a result, we have the system of equations

a11(x1 − y1) + a12(x2 − y2) + · · · + a1q−1(xq−1 − yq−1) = 0,

a21(x1 − y1) + a22(x2 − y2) + · · · + a2q−1(xq−1 − yq−1) = 0,

...

aq−11(x1 − y1) + aq−12(x2 − y2) + · · · + aq−1q−1(xq−1 − yq−1) = 0,

(11)

where

aii = 1 +
Ai(θ − 1)(θ + 1 +

∑q−1
j=1 yj − yi)

XY
, ail =

(θ − 1)(1 − yi)Ai

XY
, i 
= l, i, l = 1, q − 1.

This system is known to have a zero solution if the determinant

detA =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 +
A1(θ − 1)(1 + Y − y1)

XY

(θ − 1)(1 − y1)A1

XY
· · · (θ − 1)(1 − y1)A1

XY
(θ − 1)(1 − y2)A2

XY
1 +

A2(θ − 1)(1 + Y − y2)
XY

. . .
...

...
. . . . . . (θ − 1)(1 − yq−1)Aq−1

XY
(θ − 1)(1 − yq−1)Aq−1

XY

(θ − 1)(1 − yq−1)Aq−1

XY
· · · 1 +

Aq−1(θ − 1)(1 + Y − yq−1)
XY

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

is nonzero where A is the matrix of the given system. We rewrite the determinant of A:

detA = C

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 + B1 1 · · · 1

1 1 + B2
. . .

...
...

. . . . . . 1

1 · · · 1 1 + Bq−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where

C =
A1(θ − 1)(1 − y1)

XY

A2(θ − 1)(1 − y2)
XY

· · · Aq−1(θ − 1)(1 − yq−1)
XY

,

Bi =
XY + Ai(θ − 1)Y
Ai(θ − 1)(1 − yi)

.

We show that detA 
= 0. For this, we use the following lemma.
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Lemma 3 [16]. The determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 + a1 1 · · · 1

1 1 + a2
. . .

...

...
. . .

. . . 1

1 · · · 1 1 + an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= a1a2 · · · an

(

1 +
1
a1

+
1
a2

+ · · · + 1
an

)

.

Using Lemma 3, we calculate the determinant of A:

detA =
1

Xq−1Y q−1
(XY + A1(θ − 1)Y )(XY + A2(θ − 1)Y ) × · · · ×

× (XY + Aq−1(θ − 1)Y )
(

1 +
A1(θ − 1)(1 − y1)
XY + A1(θ − 1)Y

+

+
A2(θ − 1)(1 − y2)
XY + A2(θ − 1)Y

+ · · · + Aq−1(θ − 1)(1 − yq−1)
XY + Aq−1(θ − 1)Y

)

.

Expanding, we obtain the equality detA = P/Xq−1Y q−1, where

P = (XY + A1(θ − 1)Y )(XY + A2(θ − 1)Y ) · · · (XY + Aq−1(θ − 1)Y ) +

+ (XY + A2(θ − 1)Y )(XY + A3(θ − 1)Y ) · · · (XY + Aq−1(θ − 1)Y ) ×

× A1(θ − 1)(1 − y1) + (XY + A1(θ − 1)Y )(XY + A3(θ − 1)Y ) × · · · ×

× (XY + Aq−1(θ − 1)Y )A2(θ − 1)(1 − y2) + · · · + (XY + A1(θ − 1)Y ) ×

× (XY + A2(θ − 1)Y ) · · · (XY + Aq−2(θ − 1)Y )Aq−1(θ − 1)(1 − yq−1).

We then group the expression for P into powers of (XY ):

P = (XY )q−1 + (XY )q−2(θ − 1) ×

×
[

Y

q−1∑

j=1

Aj + (1 − y1)A1 + (1 − y2)A2 + · · · + (1 − yn)An

]

+ (XY )q−3(θ − 1)2Y ×

×
[

Y (A1A2 + · · · + Aq−2Aq−1) +
q−1∑

i=1

( q−1∑

j=1

Aj − Ai

)

Ai(1 − yi)
]

+ · · · +

+ (XY )q−1−i(θ − 1)iY i−1[Y (A1A2 · · ·Ai + · · · + Aq−iAq−i+1 . . . Aq−1) +

+ (A2A3 . . . Ai + · · · + Aq−i+1 · · ·Aq−1)A1(1 − y1) +

+ (A1A3 . . . Ai + · · · + Aq−i+1 · · ·Aq−1)A2(1 − y2) + · · · +

+ (A1A2 · · ·Ai−1 + · · · + Aq−iAq−i+1 · · ·Aq−2)Aq−1(1 − yq−1)] + · · ·+

+ (θ − 1)q−1Y q−2[Y (A1A2 · · ·Aq−1) + A1A2 · · ·Aq−1(1 − y1) + · · · +

+ A1A2 · · ·Aq−1(1 − yq−1)].
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We show that P > 0. With the relations θ > 1, X > 0, Y > 0, and Ai > 0 taken into account, it
suffices to show that the expressions in square brackets are positive. Indeed, after some transformations,
the expression in the first square brackets is

Y

q−1∑

j=1

Aj + (1 − y1)A1 + (1 − y2)A2 + · · · + (1 − yn)An = (θ + 1)
q−1∑

j=1

Aj +
∑

j �=k

yjAk > 0,

the expression in the second square brackets is

Y (A1A2 + · · · + Aq−2Aq−1) +
( q−1∑

j=1

Aj − A1

)

A1(1 − y1) + · · · +
( q−1∑

j=1

Aj − Aq−1

)

Aq−1(1 − yq−1) =

= (θ + 1)(A1A2 + · · · + Aq−2Aq−1) + y1

∑

j �=k �=1

AjAk + · · · + yq−1

∑

j �=k �=q−1

AjAk > 0,

and the expression in the ith square bracket is

Y (A1A2 · · ·Ai + · · · + Aq−iAq−i+1 · · ·Aq−1) +

+ (A2A3 · · ·Ai + · · · + Aq−i+1 · · ·Aq−1)A1(1 − y1) +

+ (A1A3 · · ·Ai + · · · + Aq−i+1 · · ·Aq−1)A2(1 − y2) + · · · +

+ (A1A2 · · ·Ai−1 + · · · + Aq−iAq−i+1 · · ·Aq−2)Aq−1(1 − yq−1)) =

= (θ + 1)(A1 · · ·Ai + · · · + Aq−i · · ·Aq−1) + y1(A2 · · ·Ai+1 + · · · + Aq−i · · ·Aq−1) + · · · +

+ yq−1(A1 · · ·Ai + · · · + Aq−i−1 · · ·Aq−2) > 0.

Finally, the expression in the last square brackets is

Y A1A2 · · ·Aq−1 + A1A2 · · ·Aq−1(1 − y1) + · · · + A1A2 · · ·Aq−1(1 − yq−1) =

= A1A2 · · ·Aq−1(θ + 1) > 0.

Hence, P > 0. Therefore, system of equations (11) has solutions only of the form xi = yi, i.e., z =
(x1, . . . , xq−1, y1, . . . , yq−1) ∈ I3. According to Lemma 2, we have thus obtained the sought result. The
theorem is proved.

Remark 4. For the ferromagnetic Potts model, not more than 2q−1 translation-invariant Gibbs mea-
sures exist (see [11]).
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