
Theoretical and Mathematical Physics, 199(2): 675–694 (2019)

ALGEBRO-GEOMETRIC INTEGRATION OF THE MODIFIED

BELOV–CHALTIKIAN LATTICE HIERARCHY

Xianguo Geng,∗ Jiao Wei,∗ and Xin Zeng∗

Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified Belov–

Chaltikian lattice hierarchy associated with a discrete 3×3 matrix spectral problem. Using the charac-

teristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve Km−2 of arithmetic

genus m−2. We study the asymptotic properties of the Baker–Akhiezer function and the algebraic function

carrying the data of the divisor near P∞1 , P∞2 , P∞3 , and P0 on Km−2. Based on the theory of trigonal

curves, we obtain the explicit theta-function representations of the algebraic function, the Baker–Akhiezer

function, and, in particular, solutions of the entire modified Belov–Chaltikian lattice hierarchy.
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1. Introduction

Differential–difference equations have been at the center of considerable research activity, to a great
extent because of their burgeoning relevance in various applications. For instance, the Toda lattice models
the motions of a sequence of identical particles that interact with their nearest neighbors through exponential
forces [1], [2], the Kac–van Moerbeke lattice describes the population dynamics of competing species in
biology, a model in plasma physics is encountered when studying the collapse of Langmuir waves [3], [4],
the nonlinear self-dual network equation describes the propagation of electrical signals in a cascade of four-
terminal nonlinear LC self-dual circuits, and so forth [5]–[7]. On the other hand, this class of differential–
difference equations has various beautiful algebraic and geometric properties, such as Lax pairs, the Painlevé
property, N -soliton solutions, bi-Hamiltonian structures, infinite conservation laws, general symmetries, and
a prolongation structure, to name a few [8].

The importance of seeking quasiperiodic solutions of discrete soliton equations is well known. In addi-
tion to being interesting in themselves, quasiperiodic solutions are also reducible to multisoliton and other
solutions. Over the past decades, a fairly satisfactory understanding has been obtained for quasiperiodic
solutions of soliton equations associated with 2×2 matrix spectral problems, including the continuous and
discrete cases [9]–[22]. But we encounter great difficulty in trying to study quasiperiodic solutions of soliton
equations related to 3×3 matrix spectral problems because it involves the theory of trigonal curves [23]–
[32], not the hyperelliptic curves for the 2×2 problems. Nevertheless, certain quasiperiodic solutions of
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the Boussinesq equation related to a third-order differential operator were found as special solutions of
the Kadomtsev–Peviashvili equation or by the reduction theory of the Riemann theta function [23]–[28].
A unified framework proposed in [33], [34] yields all quasiperiodic solutions of the entire Boussinesq hi-
erarchy associated with a third-order differential operator. In [35], a general method was developed for
introducing a trigonal curve using the characteristic polynomial of the Lax matrix. Based on that, we
successfully obtained quasiperiodic solutions for the modified Boussinesq, Kaup–Kupershmidt, and coupled
mKdV hierarchies associated with continuous 3×3 matrix spectral problems [35]–[37].

Our main aim here is to show that the above approaches apply equally well to the discrete case. For
most continuous cases, it suffices to consider only the infinite points on the corresponding three-sheeted
Riemann surface, but when the research focus shifts from partial differential equations to differential–
difference equations, a major problem in this direction is to analyze not only the infinite points but also the
zero points on the associated three-sheeted Riemann surface. They are equally important in the discrete
case. We must give detailed asymptotic expansions of the meromorphic function and the Baker–Akhiezer
function near the infinite and zero points. On the other hand, the Riemann theta-function representation
of the Baker–Akhiezer function depends on the second Abel differentials and also the Abel differentials of
the third kind because of the discrete variable.

Starting from a discrete 3×3 matrix spectral problem, we here derive quasiperiodic solutions of the
entire modified Belov–Chaltikian lattice hierarchy based on the theory of trigonal curves. The first nontrivial
member in the hierarchy is

un,t =
1

vn+1
− 1

vn−2
, vn,t =

un+1

vn+1
− un

vn−1
, (1.1)

where un = u(n, t) and vn = v(n, t) are functions of the discrete variable n ∈ Z and the continuous variable
t ∈ R.

This paper has the following structure. In Sec. 2, we give details about the construction of the modified
Belov–Chaltikian lattice hierarchy related to a discrete 3×3 matrix spectral problem with two potentials.
In Sec. 3, we introduce the Baker–Akhiezer function, an algebraic function carrying the data of the divisor,
and the trigonal curve Km−2 of arithmetic genus m−2 using the characteristic polynomial of the Lax matrix
for the hierarchy. We then derive Dubrovin-type equations. In Sec. 4, we obtain explicit theta-function
representations of the Baker–Akhiezer function, the algebraic function, and, in particular, solutions of the
entire modified Belov–Chaltikian lattice hierarchy. Using essential properties of the algebraic function φ

carrying the data of the divisor and the Baker–Akhiezer function ψ3 near the three infinite points P∞s ,
s = 1, 2, 3 and the triple point P0, we derive their Riemann theta-function representations. The Riemann–
Jacobi inverse problem is obtained by comparing the asymptotic expansion of the meromorphic function and
its Riemann theta-function representation, whence we obtain quasiperiodic solutions of the entire modified
Belov–Chaltikian lattice hierarchy by virtue of the Riemann theta functions.

2. The modified Belov–Chaltikian lattice hierarchy

Throughout this paper, we assume the following hypothesis.

Hypothesis. The functions u and v satisfy u( · , t), v( · , t) ∈ C
Z, t ∈ R, u(n, · ), v(n, · ) ∈ C1(R),

n ∈ Z, v(n, t) �= 0, and (n, t) ∈ Z × R, where C
Z denotes the set of all complex-valued sequences indexed

by Z.

The shift operators and the difference operator are defined by

Ef(n) = f(n + 1), E−1f(n) = f(n − 1), Δf(n) = (E − 1)f(n), n ∈ Z.
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For convenience, we usually write f(n) = f , E±f = f±, and f(n + k) = Ekf , n, k ∈ Z. We consider the
discrete 3×3 matrix spectral problem

Eψ = Uψ, ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

⎞
⎟⎟⎠ , U =

⎛
⎜⎜⎝

0 λ 0

u λv 1

1 0 0

⎞
⎟⎟⎠ , (2.1)

where u = u(n, t) and v = v(n, t) are two potentials and λ is a constant spectral parameter. For this, we
introduce two sets of Lenard recurrence relations:

Kĝj = Jĝj+1, ĝj = (âj , b̂j, ĉj)T, j ≥ 0, (2.2)

Kǧj = Jǧj+1, ǧj = (ǎj , b̌j, čj)T, j ≥ 0, (2.3)

with the starting points

ĝ0 =

⎛
⎜⎜⎝

0

1/v−

0

⎞
⎟⎟⎠ , ǧ0 =

⎛
⎜⎜⎝

ǎ0

−č0/v−

č0

⎞
⎟⎟⎠ , (2.4)

where ǎ0 and č0 satisfy v−ǎ0ǎ
+
0 = č2

0 − 1 and č+
0 = uǎ+

0 − č0 with ǎ0 �= 0 and the two difference operators
K and J are defined as

K =

⎛
⎜⎜⎝

0 E2 − E−1 0

E3 − 1 EuE − u 0

E−1uE − uE EvE − vE E2 − E−1

⎞
⎟⎟⎠ ,

J =

⎛
⎜⎜⎝

vE2 − E−1vE u(vE − EvE) u(1 − E2)

0 v(vE − EvE) v(E − E2)

E−1uE − uE EvE − vE E2 − E−1

⎞
⎟⎟⎠ .

(2.5)

The respective recurrence relations (2.2) and (2.3) then determine ĝj and ǧj uniquely up to a term in KerJ ,
which we always assume to be zero. For example,

ĝ1 =
(

1
v−v−− , − u

v(v−)2
− u−

(v−)2v−− ,
u

vv−

)T

.

To generate a hierarchy of nonlinear evolution equations associated with spectral problem (2.1), we
solve the stationary zero-curvature equation

(EV )U − UV = 0, V =

⎛
⎜⎜⎝

λV11 λV12 λV13

V21 λV22 V23

V31 λV32 λV33

⎞
⎟⎟⎠ , (2.6)
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which is equivalent to
uV +

12 + V +
13 − V21 = 0,

V +
11 + vV +

12 − V22 = 0,

V +
12 − V23 = 0,

λuV +
22 + V +

23 − λuV11 − λvV21 − V31 = 0,

V +
21 + λvV +

22 − uV12 − λvV22 − V32 = 0,

V +
22 − uV13 − vV23 − V33 = 0,

uV +
32 + V +

33 − V11 = 0,

V +
31 + λvV +

32 − V12 = 0,

V +
32 − V13 = 0.

(2.7)

We now define each element Vij of the 3×3 matrix V as

V11 = c, V12 = b, V13 = a+,

V21 = a++ + ub+, V22 = vb+ + c+, V23 = b+,

V31 = b− − λv−a, V32 = a, V33 = c− − u−a.

(2.8)

Substituting (2.8) in (2.7) yields the Lenard equation

KG = λJG, G = (a, b, c)T. (2.9)

Expanding a, b, and c into Laurent polynomials in λ, we obtain

a =
∑
j≥0

ajλ
−j , b =

∑
j≥0

bjλ
−j , c =

∑
j≥0

cjλ
−j . (2.10)

Equation (2.9) is equivalent to the recurrence relation

KGj = JGj+1, JG0 = 0, j ≥ 0, (2.11)

where Gj = (aj , bj , cj)T. Because the equation JG0 = 0 has a solution

G0 = α0ĝ0 + β0ǧ0, (2.12)

we can express Gj as
Gj = α0ĝj + β0ǧj + · · · + αj ĝ0 + βj ǧ0, j ≥ 0, (2.13)

where αj and βj are arbitrary constants.
Let ψ satisfy discrete spectral problem (2.1) and the auxiliary problem

ψtr = Ṽ (r)ψ, Ṽ (r) =

⎛
⎜⎜⎝

λṼ
(r)
11 λṼ

(r)
12 λṼ

(r)
13

Ṽ
(r)
21 λṼ

(r)
22 Ṽ

(r)
23

Ṽ
(r)
31 λṼ

(r)
32 λṼ

(r)
33

⎞
⎟⎟⎠ , (2.14)
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where each Ṽ
(r)
ij = Vij(ã(r), b̃(r), c̃(r)),

ã(r) =
r∑

j=0

ãjλ
r−j , b̃(r) =

r∑
j=0

b̃jλ
r−j , c̃(r) =

r∑
j=0

c̃jλ
r−j , (2.15)

and G̃j = (ãj , b̃j, c̃j)T is determined by

G̃j = α̃0ĝj + · · · + α̃j ĝ0, j ≥ 0, (2.16)

where {α̃j} are constants chosen independent of {αj}. The compatibility condition for (2.1) and (2.14)
then yields the zero-curvature equation Utr − (EṼ (r))U + UṼ (r) = 0, which is equivalent to a hierarchy of
differential–difference equations,

(utr , vtr )T = Xr, r ≥ 0, (2.17)

where the vector fields
Xj = X(u, v; α̃(j)) = P(KG̃j) = P(JG̃j+1), j ≥ 0,

α̃(j) = (α̃0, . . . , α̃j), and P is the projective map (γ1, γ2, γ3)T → (γ1, γ2)T. The first two nontrivial members
in lattice hierarchy (2.17) are

ut0 = α̃0

(
1

v+
− 1

v−−

)
, vt0 = α̃0

(
u+

v+
− u

v−

)
(2.18)

and

ut1 = α̃0

[
− u++

v++(v+)2
− u+

(v+)2v
+

u−

v−(v−−)2
+

u−−

(v−−)2v−−−

]
+ α̃1

(
1

v+
− 1

v−−

)
,

vt1 = α̃0

[
1

v++v+
− 1

v−v−− − u++u+

v++(v+)2
− (u+)2

(v+)2v
+

u2

v(v−)2
+

uu−

(v−)2v−−

]
+ α̃1

(
u+

v+
− u

v−

)
.

(2.19)

Especially for α̃0 = 1 and t0 = t, Eq. (2.18) reduces to (1.1).

3. The Baker–Akhiezer function

In this section, we introduce the associated Baker–Akhiezer function. We then define a trigonal curve
Km−2 of degree m using the characteristic polynomial of the Lax matrix, whence we derive the algebraic
function carrying the data of the divisor. We decompose the modified Belov–Chaltikian lattice hierarchy
into a system of solvable ordinary differential equations.

We now introduce the Baker–Akhiezer function ψ(P, n, n0, tr, t0,r) by

Eψ(P, n, n0, tr, t0,r) = U(u(n, tr), v(n, tr); λ(P ))ψ(P, n, n0, tr, t0,r),

ψtr(P, n, n0, tr, t0,r) = Ṽ (r)(u(n, tr), v(n, tr); λ(P ))ψ(P, n, n0, tr, t0,r),

V (p)(u(n, tr), v(n, tr); λ(P ))ψ(P, n, n0, tr, t0,r) = y(P )ψ(P, n, n0, tr, t0,r),

ψ3(P, n0, n0, t0,r, t0,r) = 1, (n, tr) ∈ Z × R,

(3.1)

where V (p) = (λpV )+, V
(p)
ij = Vij(a(p), b(p), c(p)), and

a(p) =
p∑

j=0

ajλ
p−j , b(p) =

p∑
j=0

bjλ
p−j , c(p) =

p∑
j=0

cjλ
p−j . (3.2)
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The compatibility conditions for the first three expressions in (3.1) yield

Utr − (EṼ (r))U + UṼ (r) = 0, (3.3)

− (EV (p))U + UV (p) = 0, (3.4)

− V
(p)
tr

+ [Ṽ (r), V (p)] = 0. (3.5)

A direct calculation shows that yI−V (p) also satisfies Lax equations (3.4) and (3.5), which implies that the
characteristic polynomial Fm−2(λ, y) = det(yI − V (p)) of the Lax matrix V (p) is a constant independent of
n and tr, with the expansion [38]

det(yI − V (p)) = y3 − y2Rm(λ) + ySm(λ) − Tm(λ), (3.6)

where Rm(λ), Sm(λ), and Tm(λ) are polynomials with constant coefficients λ

Rm(λ) = λV
(p)
11 + λV

(p)
22 + λV

(p)
33 = λ(α0λ

p + . . . ),

Sm(λ) =

∣∣∣∣∣∣∣

λV
(p)
11 λV

(p)
12

V
(p)
21 λV

(p)
22

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

λV
(p)
11 λV

(p)
13

V
(p)
31 λV

(p)
33

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

λV
(p)
22 V

(p)
23

λV
(p)
32 λV

(p)
33

∣∣∣∣∣∣∣
= λ(−β2

0λ2p+1 + . . . ),

Tm(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λV
(p)
11 λV

(p)
12 λV

(p)
13

V
(p)
21 λV

(p)
22 V

(p)
23

V
(p)
31 λV

(p)
32 λV

(p)
33

∣∣∣∣∣∣∣∣∣∣∣∣∣

= λ(−α0β
2
0λ3p+2 + . . . ).

(3.7)

We then naturally obtain the trigonal curve Km−2 of degree m by

Km−2 : Fm−2(λ, y) = y3 − y2Rm(λ) + ySm(λ) − Tm(λ) = 0, (3.8)

where m = 3p + 3 for α0β0 �= 0. We assume that β0(α0 + β0)(α0 − β0) �= 0. Then the trigonal curve Km−2

has three different infinite points P∞1 , P∞2 , and P∞3 , which are not branch points. For convenience, we also
let the same symbol Km−2 denote the compactification of Km−2. Hence, Km−2 becomes a three-sheeted
Riemann surface of arithmetic genus m − 2 if it is nonsingular and irreducible. A point P on Km−2 is
represented as P = (λ, y) satisfying (3.8) together with P∞s , s = 1, 2, 3. The complex structure on Km−2

is standardly defined by introducing local coordinates η : P → (λ − λ′) near points P ′ ∈ Km−2 that are
neither branch nor infinite points of Km−2, ζ : P → λ−1 near the infinite points P∞s ∈ Km−2, s = 1, 2, 3,
ξ : P → λ1/3 near the point P0 = (0, 0), which is the triple point of Km−2, and similarly at other branch
points of Km−2.

An algebraic function carrying the data of the divisor is closely related to ψ(P, n, n0, tr, t0,r): the
meromorphic function φ(P, n, tr) on Km−2 defined by

φ(P, n, tr) =
ψ1(P, n, n0, tr, t0,r)
ψ3(P, n, n0, tr, t0,r)

, P ∈ Km−2, (n, tr) ∈ Z × R, (3.9)
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which with (3.1) implies that

φ =
yV

(p)
12 + Cm

yV
(p)
32 + Am

=
λFm−2

y2V
(p)
12 − y(Cm + V

(p)
12 Rm) + Dm

=

=
y2V

(p)
32 − y(Am + V

(p)
32 Rm) + Bm

Em−2
, (3.10)

where

Am = V
(p)
12 V

(p)
31 − λV

(p)
11 V

(p)
32 ,

Bm = λV
(p)
32 (λV

(p)
22 V

(p)
33 − V

(p)
23 V

(p)
32 ) + λV

(p)
31 (V (p)

12 V
(p)
33 − V

(p)
13 V

(p)
32 ),

Cm = λV
(p)
13 V

(p)
32 − λV

(p)
12 V

(p)
33 ,

Dm = λV
(p)
12 (λV

(p)
11 V

(p)
22 − V

(p)
12 V

(p)
21 ) + λV

(p)
13 (λV

(p)
11 V

(p)
32 − V

(p)
12 V

(p)
31 ),

(3.11)

and

Em−2 = λV
(p)
32 (V (p)

21 V
(p)
32 − V

(p)
22 V

(p)
31 ) + V

(p)
31 (λV

(p)
11 V

(p)
32 − V

(p)
12 V

(p)
31 ),

Fm−2 = V
(p)
12 (V (p)

12 V
(p)
23 − λV

(p)
13 V

(p)
22 ) + λV

(p)
13 (V (p)

12 V
(p)
33 − V

(p)
13 V

(p)
32 ).

(3.12)

For later use, we also introduce

Am = λV
(p)
21 V

(p)
32 − λV

(p)
22 V

(p)
31 . (3.13)

We can easily show that there exist various interrelations between the polynomials Am, Bm, Cm, Dm,
Em−2, Fm−2, Rm, Sm, Tm, and Am, some of which we list:

V
(p)
32 λFm−2 = V

(p)
12 Dm − (V (p)

12 )2Sm − C2
m − V

(p)
12 CmRm,

AmλFm−2 = (V (p)
12 )2Tm + CmDm,

V
(p)
12 Em−2 = V

(p)
32 Bm − (V (p)

32 )2Sm − A2
m − V

(p)
32 AmRm,

CmEm−2 = (V (p)
32 )2Tm + AmBm,

(3.14)

Em−2 = V
(p)
32 Am − V

(p)
31 Am,

Fm−2 = −E+
m−2.

(3.15)

By inspection of (2.13) and (3.12), we infer that Em−2(λ, n, tr) and Fm−2(λ, n, tr) are polynomials in λ of
degree m − 2. Hence, we can write them in the form of two finite products as

Em−2(λ, n, tr) = β0(α2
0 − β2

0)
1

v−−(n, tr)
ǎ0(n, tr)

m−2∏
j=1

(λ − μj(n, tr)),

Fm−2(λ, n, tr) = β0(β2
0 − α2

0)
1

v−(n, tr)
ǎ+
0 (n, tr)

m−2∏
j=1

(λ − μ+
j (n, tr)).

(3.16)
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Defining {μ̂j(n, tr)}j=1,...,m−2 ⊂ Km−2 and {μ̂+
j (n, tr)}j=1,...,m−2 ⊂ Km−2 by

μ̂j(n, tr) = (μj(n, tr), y(μ̂j(n, tr))) =
(

μj(n, tr),−
Am(μj(n, tr), n, tr)

V
(p)
32 (μj(n, tr), n, tr)

)
=

=
(

μj(n, tr),−
Am(μj(n, tr), n, tr)

V
(p)
31 (μj(n, tr), n, tr)

)
, (3.17)

μ̂+
j (n, tr) = (μ+

j (n, tr), y(μ̂+
j (n, tr))) =

(
μ+

j (n, tr),−
Cm(μ+

j (n, tr), n, tr)

V
(p)
12 (μ+

j (n, tr), n, tr)

)
, (3.18)

we can easily see that the two representations of μ̂j(n, tr) are equivalent. In fact, from (3.15) and (3.16),
we deduce that

Em−2|λ=μj(n,tr) = (V (p)
32 Am − V

(p)
31 Am)|λ=μj(n,tr) = 0, (3.19)

which means that
Am(μj(n, tr), n, tr)

V
(p)
32 (μj(n, tr), n, tr)

=
Am(μj(n, tr), n, tr)

V
(p)
31 (μj(n, tr), n, tr)

. (3.20)

The dynamics of the zeros {μj(n, tr)}j=1,...,m−2 of Em−2(λ, n, tr) are then described in terms of Dubrovin-
type equations as follows.

Lemma 1. Let the zeros {μj(n, tr)}j=1,...,m−2 of Em−2(λ, n, tr) remain distinct for (n, tr) ∈ Z × R.

Then {μj(n, tr)}j=1,...,m−2 satisfy the system of differential equations

μj,tr (n, tr) = [Ṽ (r)
32 (μj(n, tr), n, tr)V

(p)
31 (μj(n, tr), n, tr) −

− Ṽ
(r)
31 (μj(n, tr), n, tr)V

(p)
32 (μj(n, tr), n, tr)] ×

× 3y2(μ̂j(n, tr)) − 2y(μ̂j(n, tr))Rm(μj(n, tr)) + Sm(μj(n, tr))

β0(α2
0 − β2

0) ǎ0(n,tr)
v−−(n,tr)

∏m−2
k=1
k �=j

(μj(n, tr) − μk(n, tr))
, 1 ≤ j ≤ m − 2. (3.21)

Proof. From (3.5) and (3.11)–(3.15), we obtain

Em−2,tr = (λV
(p)
21 (V (p)

32 )2 + λV
(p)
31 V

(p)
32 (V (p)

11 − V
(p)
22 ) − V

(p)
12 (V (p)

31 )2)tr =

= (3λṼ
(r)
33 − R̃m)Em−2 + Ṽ

(r)
31 (3V

(p)
12 Am − 3λV

(p)
11 Am + 2AmRm + V

(p)
32 Sm) −

− Ṽ
(r)
32 (3λV

(p)
21 Am − 3λV

(p)
22 Am + 2AmRm + V

(p)
31 Sm) =

= (3λṼ
(r)
33 − R̃m)Em−2 + 3Ṽ

(r)
31 (V (p)

12 Am − λV
(p)
11 Am) −

− 3Ṽ
(r)
32 (λV

(p)
21 Am − λV

(p)
22 Am) +

+ 2(Ṽ (r)
31 Am − Ṽ

(r)
32 Am)Rm + (Ṽ (r)

31 V
(p)
32 − Ṽ

(r)
32 V

(p)
31 )Sm, (3.22)

where R̃m = λ(Ṽ (r)
11 + Ṽ

(r)
22 + Ṽ

(r)
33 ). Taking (3.17) into account, we obtain

Am

V
(p)
32

∣∣∣∣
λ=μj(n,tr)

=
Am

V
(p)
31

∣∣∣∣
λ=μj(n,tr)

= −y(μ̂j(n, tr)). (3.23)
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Substituting (3.23) in (3.22) naturally yields

Em−2,tr |λ=μj(n,tr) = − 3y(μ̂j(n, tr))(Ṽ
(r)
31 Am − Ṽ

(r)
32 Am)|λ=μj(n,tr) +

+ (−2y(μ̂j(n, tr))Rm(μj(n, tr)) +

+ Sm(μj(n, tr)))(Ṽ
(r)
31 V

(p)
32 − Ṽ

(r)
32 V

(p)
31 )|λ=μj(n,tr) =

= [3y2(μ̂j(n, tr)) − 2y(μ̂j(n, tr))Rm(μj(n, tr)) + Sm(μj(n, tr))] ×

× (Ṽ (r)
31 V

(p)
32 − Ṽ

(r)
32 V

(p)
31 )|λ=μj(n,tr). (3.24)

On the other hand, (3.16) implies that

Em−2,tr |λ=μj(n,tr) = −β0(α2
0 − β2

0)
ǎ0(n, tr)

v−−(n, tr)
μj,tr(n, tr)

m−2∏
k=1
k �=j

(μj(n, tr) − μk(n, tr)). (3.25)

Comparing (3.24) and (3.25), we can write the expression for μj,tr (n, tr). �

4. Quasiperiodic solutions

In this section, we derive explicit Riemann theta-function representations for the meromorphic function
φ(P, n, tr), the Baker–Akhiezer function ψ3(P, n, n0, tr, t0,r), and in particular for the potentials u(n, tr) and
v(n, tr) for the entire hierarchy of differential–difference equations.

Lemma 2. Let P ∈ Km−1 \ {P∞1 , P∞2 , P∞3 , P0}, (n, tr) ∈ Z × R. Then

φ(P, n, tr) =
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v−−(n, tr)ζ−1 +
u−−(n, tr)
v−−−(n, tr)

+ O(ζ), P → P∞1 ,

1 − č0(n, tr)
v−(n, tr)ǎ0(n, tr)

+ O(ζ), P → P∞2 ,

− 1 + č0(n, tr)
v−(n, tr)ǎ0(n, tr)

+ O(ζ), P → P∞3 ,

ζ = λ−1, (4.1)

φ(P, n, tr) =
ξ→0

ξ + O(ξ2), P → P0, ξ = λ1/3. (4.2)

Proof. A direct calculation shows that φ(P, n, tr) satisfies the Riccati-type equation

φ++(P, n, tr)φ+(P, n, tr)φ(P, n, tr) =

= λ[(u(n, tr) + v(n, tr)φ+(P, n, tr))φ(P, n, tr) + 1]. (4.3)

In terms of the local coordinate ζ = λ−1 near P∞s , s = 1, 2, 3, we substitute three sets of ansatzes,

s = 1: φ(P, n, tr) =
ζ→0

κ1,−1(n, tr)ζ−1 + κ1,0(n, tr) + O(ζ),

s = 2: φ(P, n, tr) =
ζ→0

κ2,0(n, tr) + O(ζ),

s = 3: φ(P, n, tr) =
ζ→0

κ3,0(n, tr) + O(ζ),
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in (4.3). Comparing like powers of ζ yields (4.1). Similarly, choosing the local coordinate ξ = λ1/3 near P0

and substituting
φ(P, n, tr) =

ξ→0
κ0,1(n, tr)ξ + O(ξ2)

in (4.3), we obtain (4.2). �

Examining expression (3.10), we find that μ̂+
1 (n, tr), . . . , μ̂+

m−2(n, tr) are m−2 zeros and μ̂1(n, tr), . . . ,
μ̂m−2(n, tr) are m−2 poles of the meromorphic function φ(P, n, tr). Combining the asymptotic expansions
near P0 and P∞1 in Lemma 2, we finally obtain the divisor of φ(P, n, tr):

(φ(P, n, tr)) = DP0,μ̂+
1 (n,tr),...,μ̂+

m−2(n,tr)(P ) −DP∞1 ,μ̂1(n,tr),...,μ̂m−2(n,tr)(P ). (4.4)

We equip the Riemann surface Km−2 with the homology basis, {aj, bj}m−2
j=1 , where the cycles are

independent and have the intersection numbers

aj ◦ bk = δjk, aj ◦ ak = 0, bj ◦ bk = 0, j, k = 1, . . . , m − 2.

For now, as our basis, we choose the set

l =
1

3y2 − 2yRm + Sm

⎧⎪⎨
⎪⎩

λl−1 dλ, 1 ≤ l ≤ 2p + 1,(
y − Rm

3

)
λl−2p−2 dλ, 2p + 2 ≤ l ≤ m − 2,

(4.5)

which are m−2 linearly independent holomorphic differentials on Km−2. Using the homology basis {aj}m−2
j=1

and {bj}m−2
j=1 , we can construct the period matrices A = (Ajk) and B = (Bjk) as

Ajk =
∫

ak

j, Bjk =
∫

bk

j . (4.6)

We can show that A and B are invertible. We now define the matrices C and τ by C = A−1, τ = A−1B.
We can show that τ is symmetric (τjk = τkj) and has a positive-definite imaginary part (Im τ > 0) [39], [40].
If we normalize l into a new basis ω = (ω1, . . . , ωm−2),

ωj =
m−2∑
l=1

Cjll, (4.7)

then we have ∫

ak

ωj = δjk,

∫

bk

ωj = τjk, j, k = 1, . . . , m − 2.

Let Tm−2 be the period lattice {z ∈ C
m−2|z = N + Mτ, N, M ∈ Z

m−2}. The complex torus Jm−2 =
C

m−2/Tm−2 is called the Jacobian variety of Km−2. An Abel map A : Km−2 → Jm−2 is defined by

A(P ) = (A1(P ), . . . ,Am−2(P )) =
(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωm−2

)
(mod Tm−2), (4.8)

with the natural linear extension to the quotient group Div(Km−2),

A
(∑

nkPk

)
=

∑
nkA(Pk), (4.9)
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where the same path is chosen from Q0 to P for all j = 1, . . . , m − 2. We define

ρ(n, tr) = A
( m−2∑

k=1

μ̂k(n, tr)
)

=
( m−2∑

k=1

∫ μ̂k(n,tr)

Q0

ω

)
(mod Tm−2), (4.10)

where ρ(n, tr) is linearized on Jm−2 in what follows.
Let θ(z) denote the Riemann theta function associated with Km−2 equipped with an appropriately

fixed homology basis:
θ(z) =

∑
N∈Zm−2

exp{πi〈Nτ, N〉 + 2πi〈N, z〉}. (4.11)

Here, z = (z1, . . . , zm−2) ∈ C
m−2 is a complex vector. The angle brackets denote the Euclidean scalar

product:

〈N, z〉 =
m−2∑
i=1

Nizi, 〈Nτ, N〉 =
m−2∑
i,j=1

τijNiNj. (4.12)

Expression (4.11) implies that

θ(z + N + Mτ) = exp{−πi〈Mτ, M〉 − 2πi〈M, z〉}θ(z). (4.13)

For brevity, we define the function z : Km−2 × σm−2Km−2 → C
m−2 as

z(P, μ̂(n, tr)) = Λ −A(P ) + ρ(n, tr), P ∈ Km−2, (4.14)

where σm−2Km−2 denotes the (m−2)th symmetric power of Km−2 and Λ = (Λ1, . . . , Λm−2) is the vector
of Riemann constants depending on the base point Q0 according to

Λj =
1
2
(1 + τjj) −

m−2∑
l=1
pl �=j

∫

al

ωl(P )
∫ P

Q0

ωj, j = 1, . . . , m − 2. (4.15)

The normalized Abelian differential of the third kind ω
(3)
P0,P∞1

(P ) is holomorphic on Km−2 \ {P0, P∞1}
with simple poles at P0 and P∞1 with the respective residues +1 and −1, i.e.,

ω
(3)
P0,P∞1

(P ) =
ξ→0

(ξ−1 + O(1)) dξ, P → P0, ξ = λ1/3,

ω
(3)
P0,P∞1

(P ) =
ζ→0

(−ζ−1 + ω∞1
0 + O(ζ)) dζ, P → P∞1 , ζ = λ−1.

(4.16)

We then have
∫ P

Q0

ω
(3)
P0,P∞1

=
ξ→0

log ξ + e
(3)
0 (Q0) + O(ξ), P → P0, ξ = λ1/3,

∫ P

Q0

ω
(3)
P0,P∞1

=
ζ→0

− log ζ + e
(3)
1 (Q0) + ω∞1

0 ζ + O(ζ2), P → P∞1 , ζ = λ−1,

(4.17)

where e
(3)
0 (Q0) and e

(3)
1 (Q0) are integration constants and Q0 is an appropriately chosen base point on

Km−1 \ {P∞1 , P∞2 , P∞3 , P0}. The b-periods of the differential ω
(3)
P0,P∞1

(P ) are denoted by

U (3) = (U (3)
1 , . . . , U

(3)
m−2), U

(3)
j =

1
2πi

∫

bj

ω
(3)
P0,P∞1

, j = 1, . . . , m − 2. (4.18)

The Riemann theta-function representation of the meromorphic function φ(P, n, tr) is then given by the
following theorem.
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Theorem 1. If the curve Km−2 is nonsingular and irreducible, P = (λ, y) ∈ Km−2 \ {P∞1 , P∞2 , P∞3 ,

P0}, (n, tr), (n0, t0,r) ∈ Z × R, and Dμ̂(n,tr) is also nonspecial for each (n, tr) ∈ Z × R, then

φ(P, n, tr) =
θ(z(P0, μ̂(n, tr)))

θ(z(P0, μ̂
+(n, tr)))

θ(z(P, μ̂+(n, tr)))
θ(z(P, μ̂(n, tr)))

exp
( ∫ P

Q0

ω
(3)
P0,P∞1

− e
(3)
0 (Q0)

)
. (4.19)

Proof. Let Φ be defined by the right-hand side of (4.19) with the aim to prove that φ = Φ. It follows
from (4.17) that

exp
( ∫ P

Q0

ω
(3)
P0,P∞1

(P ) − e
(3)
0 (Q0)

)
=

ξ→0
ξ + O(ξ2),

P → P0, ξ = λ1/3,

exp
( ∫ P

Q0

ω
(3)
P0,P∞1

(P ) − e
(3)
0 (Q0)

)
=

ζ→0
ζ−1ee

(3)
1 (Q0)−e

(3)
0 (Q0) + O(1),

P → P∞1 , ζ = λ−1.

(4.20)

Using (4.4), we immediately see that φ has simple zeros at μ̂+(n, tr) and P0, and simple poles at μ̂(n, tr) and
P∞1 . By (4.20) and a special case of Riemann’s vanishing theorem, we see that Φ has the same properties.
Using the Riemann–Roch theorem, we conclude that the holomorphic function Φ/φ = γ, where γ is a
constant. Using (4.20) and Lemma 2, we obtain

Φ
φ

=
ξ→0

(ξ + O(ξ2))(1 + O(ξ))
ξ + O(ξ2)

=
ξ→0

1 + O(ξ), P → P0, ξ = λ1/3. (4.21)

We then conclude that γ = 1, which completes the proof of (4.19). �

To study the properties of ψ3(P, n, n0, tr, t0,r), we first do some preparation. We obtain the expression
for ψ3(P, n, n0, tr, t0,r) from (3.1) and (3.9):

ψ3(P, n, n0, tr, t0,r) = exp
( ∫ tr

t0,r

[
Ṽ

(r)
31 (λ, n0, t

′)φ(P, n0, t
′) + Ṽ

(r)
32 (λ, n0, t

′) ×

× φ+(P, n0, t
′)φ(P, n0, t

′) + λṼ
(r)
33 (λ, n0, t

′)
]

dt′
)
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
n′=n0

φ(P, n′, tr), n ≥ n0 + 1,

1, n = n0,
n0−1∏
n′=n

φ(P, n′, tr)−1, n ≤ n0 − 1.

(4.22)

By inspection, we verify that

ψ3(P, n, n0, tr, t0,r) = ψ3(P, n0, n0, tr, t0,r)ψ3(P, n, n0, tr, tr). (4.23)

Motivated by the integrand in (4.22) and because Ṽ
(r)
31 = b̃(r)− − λv−ã(r), Ṽ

(r)
32 = ã(r), and Ṽ

(r)
33 = c̃(r)− −

u−ã(r), we define the function

Ir(P, n, tr) = (b̃(r)− − λv−ã(r))φ + ã(r)φ+φ + λ(c̃(r)− − u−ã(r)), (4.24)
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whose homogeneous case is denoted by

Îr(P, n, tr) = (b̂(r)− − λv−â(r))φ + â(r)φ+φ + λ(ĉ(r)− − u−â(r)), (4.25)

where ĝ(r) = (â(r), b̂(r), ĉ(r))T denotes the corresponding homogeneous case of g̃(r) = (ã(r), b̃(r), c̃(r))T, i.e.,

ĝ(r) = g̃(r)|α̃0=1, α̃1=···=α̃r=0 =
r∑

l=0

ĝlλ
r−l, (4.26)

where ĝl = (âl, b̂l, ĉl)T is defined in (2.2). Hence,

Ir(P, n, tr) =
r∑

l=0

α̃r−lÎl(P, n, tr). (4.27)

Lemma 3. Let (n, tr) ∈ Z × R. Then

Îr(P, n, tr) =
ζ→0

⎧⎪⎪⎨
⎪⎪⎩

ζ−r−1 − v−−b̂−r+1 − ĉ−r+1 + O(ζ), P → P∞1 ,

(u− + v−κ2,0)âr+1 − ĉ−r+1 + O(ζ), P → P∞2 ,

(u− + v−κ3,0)âr+1 − ĉ−r+1 + O(ζ), P → P∞3 ,

ζ = λ−1, (4.28)

Îr(P, n, tr) =
ξ→0

O(ξ), P → P0, ξ = λ1/3. (4.29)

Proof. By induction, we prove that the first expression in (4.28) in this lemma holds. The other three
expressions can be proved similarly. For r = 0, â(r) = ĉ(r) = 0 and b̂(r) = 1/v−. It is then easy to see that

Î0(P, n, tr) =
1

v−−φ = ζ−1 +
u−−

v−−v−−− + O(ζ) =

= ζ−1 − v−−b̂−1 − ĉ−1 + O(ζ), P → P∞1 . (4.30)

We suppose that Îr(P, n, tr) has the expansion

Îr(P, n, tr) =
ζ→0

ζ−r−1 +
∞∑

j=0

σj(n, tr)ζj , P → P∞1 , (4.31)

for some coefficients {σj(n, tr)}, j ≥ 0, to be determined. Differentiating (3.9) with respect to tr and
using (3.1) yield

φtr =
(

ψ+
3

ψ3

)

tr

=
ψ+

3

ψ3

(
ψ+

3,tr

ψ+
3

− ψ3,tr

ψ3

)
= φΔ(Ṽ (r)

31 φ + Ṽ
(r)
32 φ+φ + λṼ

(r)
33 ) = φΔIr. (4.32)

Furthermore, we obtain
φ(P, n, tr)tr = φ(P, n, tr)ΔÎr(P, n, tr). (4.33)

Using (2.17) and Lemma 2 and comparing like powers of ζ in (4.33), we obtain

Δσ0 =
(v−−)tr

v−− = v−−b̂−r+1 − v−b̂r+1 + ĉ−r+1 − ĉr+1 = Δ(−v−−b̂−r+1 − ĉ−r+1),

Δσ1 =
1

v−−

((
u−−

v−−−

)

tr

− u−−

v−−−Δσ0

)
=

=
âr+1

v−−− −
â−−

r+1

v−− +
u−−b̂−r+1

v−−− −
u−−b̂−−

r+1

v−− =

= Δ
(
−

âr+1 + u−−b̂−r+1

v−−− − v−−b̂−r+2 − ĉ−r+2

)
,

(4.34)
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whence we can infer that

σ0(n, tr) = −v−−b̂−r+1 − ĉ−r+1,

σ1(n, tr) = −
âr+1 + u−−b̂−r+1

v−−− − v−−b̂−r+2 − ĉ−r+2,

(4.35)

where the summation constants are taken as zero because there are no arbitrary constants in the expansion
of φ(P, n, tr) near P∞1 nor in the coefficients âr, b̂r, and ĉr with the condition ΔΔ−1 = Δ−1Δ = 1. It
follows that

Îr+1(P, n, tr) = ζ−1Îr + (b̂−r+1 − ζ−1v−âr+1)φ + âr+1φ
+φ + ζ−1(ĉ−r+1 − u−âr+1) =

= ζ−r−2 − v−−b̂−r+2 − ĉ−r+2 + O(ζ). (4.36)

We have thus proved that Îr(P, n, tr) has the expansion in (4.28) near P∞1 . �

From Lemma 3 and (4.27), we obtain

Ir(P, n, tr) =
ζ→0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r∑
l=0

α̃r−lζ
−l−1 + α̃r+1 − v−−b̃−r+1 − c̃−r+1 + O(ζ), P → P∞1 ,

(u− + v−κ2,0)ãr+1 − c̃−r+1 + O(ζ), P → P∞2 ,

(u− + v−κ3,0)ãr+1 − c̃−r+1 + O(ζ), P → P∞3 ,

ζ = λ−1, (4.37)

Ir(P, n, tr) =
ξ→0

O(ξ), P → P0, ξ = λ1/3. (4.38)

Let ω
(2)
P∞1 ,jbe the normalized second-kind differential holomorphic on Km−2 \ {P∞1} with a pole of

order j ≥ 2 at P∞1 satisfying

∫

ak

ω
(2)
P∞1,j

= 0, k = 1, . . . , m − 2,

ω
(2)
P∞1,j

(P ) =
ζ→0

(ζ−j + O(1)) dζ, P → P∞1 , ζ = λ−1.

(4.39)

Moreover, using (4.37) and (4.38), we introduce the Abelian differential

Ω̃(2)
r (P ) =

r∑
l=0

α̃r−l(l + 1)ω(2)
P∞1 ,l+2(P ). (4.40)

Integrating (4.40) yields

∫ P

Q0

Ω̃(2)
r =

ζ→0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
r∑

l=0

α̃r−lζ
−l−1 + ẽ

(2)
1 (Q0) + O(ζ), P → P∞1 ,

ẽ
(2)
2 (Q0) + O(ζ), P → P∞2 ,

ẽ
(2)
3 (Q0) + O(ζ), P → P∞3 ,

ζ = λ−1, (4.41)

∫ P

Q0

Ω̃(2)
r =

ξ→0
ẽ
(2)
0 (Q0) + O(ξ), P → P0, ξ = λ1/3, (4.42)
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where ẽ
(2)
1 (Q0), ẽ

(2)
2 (Q0), ẽ

(2)
3 (Q0), and ẽ

(2)
0 (Q0) are integration constants. The b-periods of the differential

Ω̃(2)
r (P ) are denoted by

Ũ
(2)

r = (Ũ (2)
r,1 , . . . , Ũ

(2)
r,m−2), Ũ

(2)
r,j =

1
2πi

∫

bj

Ω̃(2)
r , j = 1, . . . , m − 2. (4.43)

After this preparation, we can give the theta-function representation of the Baker–Akhiezer function
ψ3(P, n, n0, tr, t0,r) in the following theorem.

Theorem 2. Let the curve Km−2 be nonsingular and irreducible. Let P = (λ, y) ∈ Km−2\{P∞1 , P∞2 ,

P∞3 , P0} and (n, n0, tr, t0,r) ∈ Z
2 × R

2. If Dμ̂(n,tr) is nonspecial for each (n, tr) ∈ Z × R, then

ψ3(P, n, n0, tr, t0,r) =
θ(z(P0, μ̂(n0, t0,r)))
θ(z(P0, μ̂(n, tr)))

θ(z(P, μ̂(n, tr)))
θ(z(P, μ̂(n0, t0,r)))

×

× exp
(

(n − n0)
( ∫ P

Q0

ω
(3)
P0,P∞1

− e
(3)
0 (Q0)

)
+

+ (tr − t0,r)
(

ẽ
(2)
0 (Q0) −

∫ P

Q0

Ω̃(2)
r

))
. (4.44)

Proof. Letting Ψ3(P, n, n0, tr, t0,r) denote the right-hand side of (4.44), our goal is to prove that
Ψ3(P, n, n0, tr, t0,r) = ψ3(P, n, n0, tr, t0,r). In fact,

Ψ3(P, n, n0, tr, t0,r) = Ψ3(P, n, n0, tr, tr)Ψ3(P, n0, n0, tr, t0,r). (4.45)

It is easy to see from (4.19) and (4.22) that

ψ3(P, n, n0, tr, tr) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
n′=n0

φ(P, n′, tr), n ≥ n0 + 1,

1, n = n0,
n0−1∏
n′=n

φ(P, n′, tr)−1, n ≤ n0 − 1,

= Ψ3(P, n, n0, tr, tr). (4.46)

By (4.23) and (4.45), it remains to identify

ψ3(P, n0, n0, tr, t0,r) = Ψ3(P, n0, n0, tr, t0,r). (4.47)

In what follows, we inspect the zeros and poles of ψ3(P, n0, n0, tr, t0,r) on Km−2 \ {P∞1 , P∞2 , P∞3 , P0}.
Using (3.10), (3.12)–(3.16), and Lemma 1, we can compute

Ir(P, n, tr) = Ṽ
(r)
31 φ + Ṽ

(r)
32 φ+φ + λṼ

(r)
33 = Ṽ

(r)
31 φ + Ṽ

(r)
32

y − V
(p)
31 φ − λV

(p)
33

V
(p)
32

+ λṼ
(r)
33 =

=
(

Ṽ
(r)
31 − Ṽ

(r)
32

V
(p)
31

V
(p)
32

)
φ + y

Ṽ
(r)
32

V
(p)
32

− Ṽ
(r)
32

λV
(p)
33

V
(p)
32

+ λṼ
(r)
33 =

(
Ṽ

(r)
31 − Ṽ

(r)
32

V
(p)
31

V
(p)
32

)
×

× y2V
(p)
32 − y(Am + V

(p)
32 Rm) + V

(p)
12 Am + V

(p)
32 Sm + AmRm − λV

(p)
11 Am

Em−2
+
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+ y
Ṽ

(r)
32

V
(p)
32

− Ṽ
(r)
32

λV
(p)
33

V
(p)
32

+ λṼ
(r)
33 =

1
Em−2

[
1
3
Em−2,tr +

1
3
R̃mEm−2 +

+ (Ṽ (r)
31 V

(p)
32 − Ṽ

(r)
32 V

(p)
31 )

(
y2 − yRm +

2
3
Sm

)
+

+ (Ṽ (r)
32 Am − Ṽ

(r)
31 Am)

(
y − 1

3
Rm

)]
=

=
λ→μj(n,tr)

− μj,tr(n, tr)
λ − μj(n, tr)

+ O(1) =
λ→μj(n,tr)

∂tr log(λ − μj(n, tr)) + O(1).

Then

ψ3(P, n0, n0, tr, t0,r) = exp
( ∫ tr

t0,r

Ir(P, n0, t
′) dt′

)
=

λ − μj(n0, tr)
λ − μj(n0, t0,r)

O(1) =

=

⎧⎪⎪⎨
⎪⎪⎩

(λ − μj(n0, tr))O(1) for P near μ̂j(n0, tr) �= μ̂j(n0, t0,r),

O(1) for P near μ̂j(n0, tr) = μ̂j(n0, t0,r),

(λ − μj(n0, t0,r))−1O(1) for P near μ̂j(n0, t0,r) �= μ̂j(n0, tr),

(4.48)

where O(1) �= 0. Hence, all zeros and poles of ψ3(P, n0, n0, tr, t0,r) and Ψ3(P, n0, n0, tr, t0,r) on Km−2 \
{P∞1 , P∞2 , P∞3 , P0} are simple and coincide. It can be easily seen from (4.37), (4.38), (4.41), and (4.42)
that the singularities of ψ3(P, n0, n0, tr, t0,r) and Ψ3(P, n0, n0, tr, t0,r) at P∞1 , P∞2 , P∞3 , and P0 coincide.
It follows from the Riemann–Roch uniqueness that Ψ3(P, n0, n0, tr, t0,r)/ψ3(P, n0, n0, tr, t0,r) = γ, where γ

is a constant. Using (4.38) and (4.42), we obtain

Ψ3(P, n0, n0, tr, t0,r)
ψ3(P, n0, n0, tr, t0,r)

=
ξ→0

(1 + O(ξ))(1 + O(ξ))
1 + O(ξ)

=
ξ→0

1 + O(ξ), P → P0. (4.49)

We then conclude that γ = 1. �

Straightening the flows by the Abel map is described in our next result.

Theorem 3. Let (n, tr), (n0, t0,r) ∈ Z × R. Then

ρ(n, tr) = ρ(n0, t0,r) − U (3)(n − n0) + Ũ
(2)

r (tr − t0,r) (mod Tm−2). (4.50)

Proof. We introduce the meromorphic differential on Km−2

Ω(n, n0, tr, t0,r) =
∂

∂λ
log(ψ3(P, n, n0, tr, t0,r)) dλ. (4.51)

From representation (4.44), we obtain

Ω(n, n0, tr, t0,r) = (n − n0)ω
(3)
P0,P∞1

− (tr − t0,r)Ω̃(2)
r +

m−2∑
j=1

ω
(3)
μ̂j(n,tr),μ̂j(n0,t0,r) + ω̃, (4.52)

where ω̃ denotes a holomorphic differential on Km−2, i.e., ω̃ =
∑m−2

j=1 ejωj for some ej ∈ C, j = 1, . . . , m−2.
Because ψ3(P, n, n0, tr, t0,r) is single-valued on Km−2, all a- and b-periods of Ω are integer multiples of 2πi

and hence
2πiMk =

∫

ak

Ω(n, n0, tr, t0,r) =
∫

ak

ω̃ = ek, k = 1, . . . , m − 2, (4.53)
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for some Mk ∈ Z. Similarly, for some Nk ∈ Z,

2πiNk =
∫

bk

Ω(n, n0, tr, t0,r) = (n − n0)
∫

bk

ω
(3)
P0,P∞1

− (tr − t0,r)
∫

bk

Ω̃(2)
r +

+
m−2∑
j=1

∫

bk

ω
(3)
μ̂j(n,tr),μ̂j(n0,t0,r) +

∫

bk

ω̃ = 2πi(n − n0)U
(3)
k − 2πi(tr − t0,r)Ũ

(2)
r,k +

+ 2πi

m−2∑
j=1

∫ μ̂j(n,tr)

μ̂j(n0,t0,r)

ωk + 2πi

m−2∑
j=1

Mj

∫

bk

ωj =

= 2πi(n − n0)U
(3)
k − 2πi(tr − t0,r)Ũ

(2)
r,k +

+ 2πi

m−2∑
j=1

[ ∫ μ̂j(n,tr)

Q0

ωk −
∫ μ̂j(n0,t0,r)

Q0

ωk

]
+ 2πi

m−2∑
j=1

Mjτjk. (4.54)

Hence, we have

N = (n − n0)U (3) − (tr − t0,r)Ũ
(2)

r +
m−2∑
j=1

∫ μ̂j(n,tr)

Q0

ω −
m−2∑
j=1

∫ μ̂j(n0,t0,r)

Q0

ω + Mτ, (4.55)

where N = (N1, . . . , Nm−2) and M = (M1, . . . , Mm−2) ∈ Z
m−2. By symmetry of τ , this is equivalent

to (4.50). �

Our principal result, the Riemann theta-function representations for solutions of the entire hierarchy
now quickly follow from the prepared material.

Theorem 4. Let the curve Km−2 be nonsingular and irreducible and (n, tr) ∈ Z × R. If Dμ̂(n,tr) is

nonspecial, then u(n, tr) and v(n, tr) have the forms

u(n, tr) =
θ(K(1) − U (3)n + Ũ

(2)

r tr)θ(K(2) − U (3)n + Ũ
(2)

r tr)

θ(K(3) − U (3)n + Ũ
(2)

r tr)θ(K(0) − U (3)n + Ũ
(2)

r tr)
e2(e

(3)
1 (Q0)−e

(3)
0 (Q0)) ×

×
(

ω∞1
0 −

m−2∑
j=0

d
(∞1)
j,0 ∂zj log

θ(K(2) − U (3)n + Ũ
(2)

r tr)

θ(K(1) − U (3)n + Ũ
(2)

r tr)

)
, (4.56)

v(n, tr) =
(θ(K(2) − U (3)n + Ũ

(2)

r tr))2

θ(K(3) − U (3)n + Ũ
(2)

r tr)θ(K(1) − U (3)n + Ũ
(2)

r tr)
ee

(3)
1 (Q0)−e

(3)
0 (Q0),

where

K(s) = Λ −A(P0) + ρ(n0, t0,r) + U (3)n0 − U (3)s − Ũ
(2)

r t0,r, s = 0, 1, 2, 3,

d
(∞1)
j,0 = − 1

α2
0 − β2

0

Cj,2p+1 −
2α0

3(α2
0 − β2

0)
Cj,m−2.

Proof. Choosing the local coordinate ζ = λ−1 near P∞1 , from (3.1), we obtain

y = V
(p)
31 φ + V

(p)
32 φ+φ + λV

(p)
33 =

ζ→0
ζ−p−1(α0 + O(ζ)), P → P∞1 . (4.57)
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From (3.7) and (4.5), we obtain

ωj =
m−2∑
l=1

Cjll =
2p+1∑
l=1

Cjl
λl−1 dλ

3y2 − 2yRm + Sm
+

m−2∑
l=2p+2

Cjl
(y − Rm/3)λl−2p−2 dλ

3y2 − 2yRm + Sm
=

=
ζ→0

(d(∞1)
j,0 + O(ζ)) dζ, P → P∞1 , j = 1, . . . , m − 2. (4.58)

Combining (4.10) and (4.14), we obtain the asymptotic expansion

θ(z(P, μ̂+(n, tr)))
θ(z(P, μ̂(n, tr)))

=
θ(Λ −A(P ) + ρ+(n, tr))
θ(Λ −A(P ) + ρ(n, tr))

=

=
θ
(
Λ −A(P∞1) + ρ+(n, tr) +

∫ P∞1
P

ω
)

θ
(
Λ −A(P∞1 ) + ρ(n, tr) +

∫ P∞1
P ω

) =
ζ→0

=
ζ→0

θ(. . . , Λj −Aj(P∞1) + ρ+
j (n, tr) − d

(∞1)
j,0 ζ + O(ζ2), . . . )

θ(. . . , Λj −Aj(P∞1) + ρj(n, tr) − d
(∞1)
j,0 ζ + O(ζ2), . . . )

=
ζ→0

=
ζ→0

θ+
1 −

∑m−2
j=1 d

(∞1)
j,0 ∂zj θ

+
1 ζ + O(ζ2)

θ1 −
∑m−2

j=1 d
(∞1)
j,0 ∂zj θ1ζ + O(ζ2)

=
ζ→0

=
ζ→0

θ+
1

θ1

(
1 −

m−2∑
j=1

d
(∞1)
j,0 ∂zj log

θ+
1

θ1
ζ + O(ζ2)

)
, P → P∞1 , (4.59)

where θ1 = θ(z(P∞1 , μ̂(n, tr))) and θ+
1 = θ(z(P∞1 , μ̂

+(n, tr))). Expanding φ given by (4.19) near P∞1 , we
obtain

φ =
ζ→0

ζ−1 θ0θ
+
1

θ+
0 θ1

ee
(3)
1 (Q0)−e

(3)
0 (Q0)

[
1 +

(
ω∞1

0 −
m−2∑
j=1

d
(∞1)
j,0 ∂zj log

θ+
1

θ1

)
ζ + O(ζ2)

]
, (4.60)

where θ0 = θ(z(P0, μ̂(n, tr))) and θ+
0 = θ(z(P0, μ̂

+(n, tr))). Comparing with the asymptotic expansion near
P∞1 in Lemma 2, we find

u(n, tr) =
θ(z(P0, μ̂

+(n, tr)))θ(z(P∞1 , μ̂
+++(n, tr)))

θ(z(P0, μ̂
+++(n, tr)))θ(z(P∞1 , μ̂

+(n, tr)))
e2(e

(3)
1 (Q0)−e

(3)
0 (Q0)) ×

×
(

ω∞1
0 −

m−2∑
j=0

d
(∞1)
j,0 ∂zj log

θ(z(P∞1 , μ̂
+++(n, tr)))

θ(z(P∞1 , μ̂
++(n, tr)))

)
,

v(n, tr) =
θ(z(P0, μ̂

++(n, tr)))θ(z(P∞1 , μ̂
+++(n, tr)))

θ(z(P0, μ̂
+++(n, tr)))θ(z(P∞1 , μ̂

++(n, tr)))
ee

(3)
1 (Q0)−e

(3)
0 (Q0).

(4.61)

Applying Abel’s theorem to (4.4) yields

ρ+(n, tr) + A(P0) = ρ(n, tr) + A(P∞1), (4.62)

whence we infer that
θ(z(P∞1 , μ̂

+(n, tr))) = θ(z(P0, μ̂(n, tr))). (4.63)

Combining (4.61), (4.63), and Theorem 3, we can write u(n, tr) and v(n, tr) briefly in (4.56). �
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5. Conclusions

We have constructed quasiperiodic solutions of the Belov–Chaltikian lattice hierarchy. Starting from
a discrete 3×3 matrix spectral problem, we derived a hierarchy of the modified Belov–Chaltikian lattice
equation. We then defined a trigonal curve with three different infinite points and a zero point using
the characteristic polynomial of the Lax matrix for the hierarchy, whence we introduced the associated
meromorphic function and Baker–Akhiezer function. In view of their asymptotic expansions near the
three infinite points and the zero point and the Abel differentials, we obtained Riemann theta-function
representations of the meromorphic function, the Baker–Akhiezer function, and, in particular, solutions of
the entire modified Belov–Chaltikian lattice hierarchy.
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