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TIME EVOLUTION OF QUADRATIC QUANTUM SYSTEMS:

EVOLUTION OPERATORS, PROPAGATORS, AND INVARIANTS

Sh. M. Nagiyev∗ and A. I. Ahmadov†

We use the evolution operator method to describe time-dependent quadratic quantum systems in the

framework of nonrelativistic quantum mechanics. For simplicity, we consider a free particle with a variable

mass M(t), a particle with a variable mass M(t) in an alternating homogeneous field, and a harmonic

oscillator with a variable mass M(t) and frequency ω(t) subject to a variable force F (t). To construct the

evolution operators for these systems in an explicit disentangled form, we use a simple technique to find

the general solution of a certain class of differential and finite-difference nonstationary Schrödinger-type

equations of motion and also the operator identities of the Baker–Campbell–Hausdorff type. With known

evolution operators, we can easily find the most general form of the propagators, invariants of any order,

and wave functions and establish a unitary relation between systems. Results known in the literature

follow from the obtained general results as particular cases.
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1. Introduction

A principal problem in quantum theory is studying the time evolution of physical systems. The
evolution of nonrelativistic quantum systems from a given initial state ψ(t0) to a subsequent state ψ(t) is
defined by the nonstationary Schrödinger equation [1]

̂S(t)ψ(t) = 0, ̂S(t) = i�∂t − H(t) (1.1)

or the unitary evolution operator U(t, t0),

ψ(t) = U(t, t0)ψ(t0), (1.2)

where ̂S(t) is the Schrödinger operator, H(t) is the system Hamiltonian, and t > t0. If we substitute (1.2)
in (1.1), then we find that the operator U satisfies the Schrödinger equation ̂S(t)U(t, t0) = 0 with the initial
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state U(t0, t0) = 1. According to the principles of quantum theory, information about the dynamics of a
quantum system is encoded in the matrix elements of the evolution operator

U(t, t0) = T exp
{

− i

�

∫ t

t0

H(t′) dt′
}

, (1.3)

where T is the chronological ordering operator.
The kernel of operator (1.3) is the Green’s function (or the Feynman propagator) in the appropriate

coordinate, momentum, mixed, or other representation. It follows from definition (1.3) that the evolution
operator has the group property: for t > t1 > t0,

T exp
{

− i

�

∫ t

t0

H(t′) dt′
}

= T exp
{

− i

�

∫ t

t1

H(t′) dt′
}

T exp
{

− i

�

∫ t1

t0

H(t′) dt′
}

. (1.4)

Exactly solvable problems play a special role in nonstationary problems in quantum mechanics. But
constructing exact analytic solutions of equations of motion is a difficult problem and is not always solvable.
Schrödinger equation (1.1) can be exactly solved only in some cases (see, e.g., [2]–[21]). Nonstationary quan-
tum mechanical problems can usually be solved using approximate methods, for example, time-dependent
perturbation theory, the adiabatic approximation, the sudden perturbation method, and numerical methods
among others. Constructing exact analytic solutions of the nonstationary Schrödinger equation describing
the time-evolution of quantum systems is of great interest because exact solutions allow following varia-
tions of physical quantities characterizing the considered system most closely, i.e., obtaining more physical
information about a system.

One more reason for focusing much attention on describing the behavior of physical systems analytically
is as follows. Exact solutions can serve as models of real physical processes and allow, first, analyzing
both the mathematical side of the problem and the physical features of the considered process deeply and
comprehensively and, second, justifying the approximate methods used to solve a problem.

In particular, the nonstationary quadratic quantum systems from a free particle to a time-dependent
harmonic oscillator are exactly solvable nonrelativistic systems. These systems have long attracted the
attention of physicists because they are important for applications in many branches of quantum theory:
statistical mechanics, superconductivity theory, atomic physics, molecular spectroscopy, nuclear physics,
quantum field theory, etc. (see the references in [9], [10]). Various methods are used to study nonsta-
tionary quantum systems such as the method of invariants (integrals of motion) [4], [7], the path integral
method [2], the space–time transformation method [17], the generating function method [3], [21], and the
evolution operator method [22], [23]. We note that although the evolution operator method (S-matrix the-
ory) plays a central role in quantum field theory [22], it has rarely been used to solve problems in quantum
mechanics [18], [23]–[25].

Here, our purpose is to study physical properties of time-dependent quadratic nonrelativistic quantum
systems using the evolution operator method. We consider a free particle with a variable mass M(t), a
particle with a variable mass M(t) in an alternating homogeneous field, and a harmonic oscillator with a
variable mass M(t) and frequency ω(t) subject to a variable force F (t). To obtain the evolution operators
of the considered quantum systems in an explicit disentangled form, we use a simple technique to find
the general solution of a certain class of differential and finite-difference nonstationary Schrödinger-type
equations of motion (1.1). We show that the evolution operator method allows obtaining solutions of the
nonstationary Schrödinger equation for quadratic systems directly and relatively easily. For these models,
we find the general form of the evolution operators, which we use to construct the propagator, invariants,
and wave functions. From the obtained general expressions, we obtain the known results as particular cases.
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This paper is organized as follows. In Sec. 2, we find the general form of the solution of a certain
class of differential and finite-difference nonstationary Schrödinger-type equations of motion; as a result,
we find operator identities of the Baker–Campbell–Hausdorff type. We consider particular cases of these
operator identities. We devote Sec. 3 to the evolution operators. In Sec. 4, we obtain propagators and their
particular cases. We construct the invariants in Sec. 5 and the wave functions in Sec. 6.

2. Operator identities of the Baker–Campbell–Hausdorff type

In this section, we use a simple tool to derive some new operator identities of the Baker–Campbell–
Hausdorff type, which we use in the following sections. For this, we consider the nonstationary Schrödinger-
type equation of motion in the momentum y-representation [26]:

i� ∂tu(y, t) = [H0(y, t) − i�F (t)g(y)∂y]u(y, t). (2.1)

Here, H0(y, t) is the time-dependent “free Hamiltonian,” F (t) is the time-dependent force, g(y) is some
function included in the “potential energy,” and the dependence of the functions H0, F , and g on their
arguments is arbitrary. The Hamiltonian in (2.1) is a Hermitian operator (but it can also be non-Hermitian).

We present particular cases of Eq. (2.1):

1. If H0(y, t) = y2/2M(t) and g(y) = 1, where y = p, then it coincides with the Schrödinger equation
describing a nonrelativistic particle with a variable mass M(t) in an alternating homogeneous field [1].

2. If H0(y, t) = mc2 cosh y and g(y) = 1/mc, where y = χ = log[(p + p0)/mc] is the rapidity, and
p0 =

√

p2 + m2c2, then it describes the motion of a relativistic quantum particle in an alternating
homogeneous field [18].

3. With H0(y, t) = 3iy2/2 and −�F (t)g(y) = y3, it was used in [27] to analyze differences between
nonlinear classical and quantum dynamics by calculating the time evolution of the Wigner function
for simple polynomial Hamiltonians.

We find a solution of Eq. (2.1) by the evolution operator method with the initial condition u(y, t0) =
ϕ(y), where ϕ(y) is the initial “wave” function. We pass to a new variable η in Eq. (2.1) [19]:

i� ∂tu[G−1(η), t] = {H0[G−1(η), t] − i�F (t)∂η}u[G−1(η), t], (2.2)

where

η =
∫ y

y0

dy′

g(y′)
= G(y) − G(y0) (2.3)

and y0 is an arbitrary constant. The function g(y) must be such that integral (2.3) exists. For simplicity,
we hereafter assume that the lower integration limit y0 is a root of the equation G(y0) = 0. Then η = G(y)
and y = G−1(η).

It is easy to verify that the solution of Eq. (2.2) can be written as [18]

u(y, t) = exp
{

− i

�

∫ t

t0

H0[G−1(G(y) − δ(t) + δ(t′)), t′] dt′
}

ϕ[G−1(G(y) − δ(t))], (2.4)

where δ(t) =
∫ t

t0
F (t′) dt′ is a force pulse. We introduce the notation

A = −
∫ t

t0

h0(y, t′) dt′ − δ(t)g(y)∂y, A0 = −δ(t)g(y)∂y,

A1 = −
∫ t

t0

h0[G−1(G(y) − δ(t) + δ(t′)), t′] dt′, A2 = −
∫ t

t0

h0[G−1(G(y) + δ(t′))t′] dt′,
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where h0(y, t) = (i/�)H0(y, t). It follows from (2.4) that, first, the evolution operator for Eq. (2.1) can be
written in a disentangled form

Ug(t, t0) ≡ eA = eλA1eA0eλ1A2 , (2.5)

where λ = λ(t) is an arbitrary function of time and λ1 = 1−λ, and, second, the action of the operator eA0

on an arbitrary function ϕ(y) is defined by the formula

e−δg(y)∂yϕ(y) = ϕ[G−1(G(y) − δ)]. (2.6)

We consider particular cases of operator identity (2.5) and formula (2.6). It is clear that choosing
different functions h0(y, t) and g(y) in (2.5), we can obtain different Baker–Campbell–Hausdorff-type iden-
tities, which we can use either to solve differential and finite-difference equations by the operator method
or to disentangle exponential expressions that include noncommuting operators.

1. Let g(y) = 1. Then η = G(y) = y, y = G−1(η) = η. Setting h0(y, t) = ε1y
n at n �= −1 and

F (t) = F0 = const, we obtain the operator identity

eαyn+β∂y = exp
{

λ
α

β(n + 1)
[(y + β)n+1 − yn+1]

}

×

× eβ∂y exp
{

λ1
α

β(n + 1)
[yn+1 − (y − β)n+1]

}

. (2.7)

If n = −1, then instead of (2.7), we obtain

eα/y+β∂y = exp
{

λ
α

β
log

∣

∣

∣

∣

y + β

y

∣

∣

∣

∣

}

eβ∂y exp
{

λ1
α

β
log

∣

∣

∣

∣

y

y − β

∣

∣

∣

∣

}

. (2.8)

Formula (2.7) can be written for any two operators ̂A and ̂B with the commutation relation [ ̂A, ̂B] = −c,
where c is a number:

eα �An+β �B = exp
{

λ
α

βc(n + 1)
[( ̂A + βc)n+1 − ̂An+1]

}

×

× eβ �B exp
{

λ1
α

β(n + 1)c
[ ̂An+1 − ( ̂A − βc)n+1]

}

. (2.9)

Identity (2.8) can be also generalized to the case of two operators ̂A and ̂B satisfying the commutation
relation [ ̂A, ̂B] = c ̂A 2:

eα �A+β �B = exp
{

λα

βc
log |1 + βc ̂A |

}

eβ �B exp
{

−λ1α

βc
log |1 − βc ̂A |

}

. (2.10)

2. Let g(y) = y. Then η = G(y) = log y, y = G−1(η) = eη. If we choose the function h0 in the form
h0 = ε1y

ν , ν ∈ R, and assume a constant force F (t) = F0 = const, then we obtain the identity

eαyν+βy∂y = exp
{

λα

νβ
(eνβ − 1)yν

}

eβy∂y exp
{

λ1α

νβ
(1 − e−νβ)yν

}

(2.11)

from (2.5). This identity can be generalized to the case of any two operators ̂A and ̂B with the commutation
relation [ ̂A, ̂B] = −c ̂A:

eα �An+β �B = exp
{

λα

nβc
(enβc − 1) ̂An

}

eβ �B exp
{

λ1α

nβc
(1 − e−nβc) ̂An

}

, n ∈ N. (2.12)
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3. Now let g(y) = 1/y. Then η = G(y) = y2/2 and y = G−1(η) =
√

2η. Setting h0(y, t) = ε1y
4 and

F (t) = F0 = const, we obtain the identity

eα �A+β �B = exp
{

λα

[

̂A +
1
2
βc ̂A 1/2 +

1
12

β2c2

]}

eβ �B exp
{

λ1α

[

̂A − 1
2
βc ̂A 1/2 +

1
12

β2c2

]}

, (2.13)

which holds for any two operators ̂A and ̂B satisfying the commutation relation [ ̂A, ̂B] = −c ̂A 1/2.

We give one more important particular case of formula (2.6), where g(y) = −yν , ν ∈ R, and ν �= 1:

eδyν∂y ϕ(y) = ϕ[(yν1 + ν1δ)1/ν1 ], (2.14)

where ν1 = 1 − ν. For ν = 1, the right-hand side of Eq. (2.1) is equal to

lim
ν1→0

ϕ[(yν1 + ν1δ)1/ν1 ] = ϕ[ lim
ν1→0

(yν1 + ν1δ)1/ν1 ] = ϕ(eδy). (2.15)

We now write operator identity (2.5) in the configurational x-representation:

eB = eλB1eB0eλ1B2 , (2.16)

where we introduce the notation

B = −
∫ t

t0

h0(−i�∂x, t′) dt′ +
i

�
δ(t)g(−i�∂x)x, B0 =

i

�
δ(t)g(−i�∂x)x,

B1 = −
∫ t

t0

h0[G−1(G(−i�∂x) − δ(t) + δ(t′)), t′] dt′,

B2 = −
∫ t

t0

h0[G−1(G(−i�∂x) + δ(t′)), t′] dt′.

(2.17)

From the identity in general form (2.16), we can also obtain various operator identities of the Baker–
Campbell–Hausdorff type. We here consider only two of them, which we use to disentangle the evolution
operators of quadratic systems. We set g(−i�∂x) = 1 in the first case and g(−i�∂x) = −i�∂x in the second
case and then obtain the respective identities

exp
{

−
∫ t

t0

h0(−i�∂x, t′) dt′ +
i

�
δ(t)x

}

= exp
{

−λ

∫ t

t0

h0[−i�∂x − δ(t) + δ(t′), t′]dt′
}

×

× ei�−1δ(t)x exp
{

−λ1

∫ t

t0

h0[−i�∂x + δ(t′), t′] dt′
}

, (2.18)

exp
{

−
∫ t

t0

h0(−i�∂x, t′) dt + δ(t)∂xx

}

= exp
{

−λ

∫ t

t0

h0(−i�∂xe−δ(t)+δ(t′), t′) dt′
}

×

× eδ(t)∂xx exp
{

−λ1

∫ t

t0

h0(−i�∂xeδ(t′), t′) dt′
}

. (2.19)
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If we now set h0(−i�∂x, t) = −a(t)∂n
x , n ∈ N, in these identities, then we obtain two necessary identities:

exp
{∫ t

t0

a(t′) dt′∂n
x +

i

�
δ(t)x

}

= exp
{

λ

(

i

�

)

n ∫ t

t0

a(t′)[−i�∂x − δ(t) + δ(t′)]n dt′
}

×

× ei�−1δ(t)x exp
{

λ1

(

i

�

)

n ∫ t

t0

a(t′)[−i�∂x + δ(t′)]n dt′
}

, (2.20)

exp
{∫ t

t0

a(t′) dt′∂n
x + δ(t)∂xx

}

= exp
{

λe−nδ(t)

∫ t

t0

a(t′)enδ(t′) dt′ ∂n
x

}

×

× eδ(t)∂xx exp
{

λ1

∫ t

t0

a(t′)enδ(t′) dt′ ∂n
x

}

. (2.21)

3. Evolution operators

In what follows, the evolution operator of a quantum system, which (as stated above) contains complete
information about the system, plays a very important role. In this section, we construct the evolution op-
erators for the considered systems. It is well known that they can be described by Hermitian Hamiltonians.

3.1. Free particle with a variable mass. We consider the time-dependent Schrödinger equation
in R for a free particle with a variable mass M(t):

̂SF(x, t)ψF(x, t) = 0, ̂SF(x, t) = i�∂t +
�

2

2M(t)
∂2

x + V0(t), (3.1)

where V0(t) is a potential well (barrier) whose depth (height) varies with time. The evolution operator for
Eq. (3.1) has the simplest form:

UF(x, t) = eiΛ0(t)+i�S2(t)∂2
x , (3.2)

where

Λ0(t) =
1
�

∫ t

t0

V0(t′) dt′, S2(t) =
∫ t

t0

dt′

2M(t′)
.

3.2. Particle with a variable mass in an alternating homogeneous field. A particle with a
variable mass in an alternating homogeneous field can be described by the Schrödinger equation

̂SL(x, t)ψL(x, t) = 0, ̂SL(x, t) = i�∂t +
�

2

2M(t)
∂2

x + F (t)x + V0(t). (3.3)

In this case, the evolution operator in a disentangled form is given by the formula [18], [23]

UL(x, t) = VL(x, t)UF(x, t), (3.4)

where we introduce the notation

VL(x, t) = eiϕ0(x,t)e−S1(t)∂x = e−S1(t)∂xei�−1[M(t)Ṡ1(t)x+σL(t)], (3.5)

ϕ0(x, t) =
1
�
[xδ(t) − S0(t)], (3.6)

S0(t) =
∫ t

t0

δ2(t′)
2M(t′)

dt′, S1(t) =
∫ t

t0

δ(t′)
M(t′)

dt′. (3.7)
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Here, σL is the classical action for a particle in an alternating homogeneous field,

σL(t) = δ(t)S1(t) − S0(t) =
∫ t

t0

[

1
2
M(t′)Ṡ2

1(t′) + F (t′)S1(t
′)

]

dt′,

and the function S1(t) satisfies the equation

d

dt
[M(t)Ṡ1(t)] = F (t) (3.8)

with the initial conditions S1(t0) = 0 and Ṡ1(t0) = 0. For M(t) = m = const, we have

S0(t) =
δ2(t)
2m

, S1(t) =
δ1(t)
m

, S2(t) =
τ

2m
,

where δ1(t) =
∫ t

t0
δ(t′) dt′, δ2(t) =

∫ t

t0
δ2(t′) dt′, and τ = t − t0.

Formulas (3.2) and (3.4) establish a unitary relation between a free quantum particle with a variable
mass and a quantum particle with a variable mass in an alternating homogeneous field [23]:

ψL(x, t) = VL(x, t)ψF(x, t), ψF(x, t) = V −1
L (x, t)ψL(x, t),

̂SL = VL
̂SFV −1

L , ̂SF = V −1
L

̂SLVL.

3.3. Harmonic oscillator with a variable mass and frequency subject to a variable force.
A harmonic oscillator with a variable mass and frequency subject to a variable force can be described by
the Schrödinger equation

̂SH(x, t)ψH(x, t) = 0,

̂SH(x, t) = i�∂t +
�

2

2M(t)
∂2

x − 1
2
M(t)ω2(t)x2 + F (t)x + V0(t).

(3.9)

To find the evolution operator, we first reduce problem (3.9) to the case where the oscillator is not subject
to a force. For this, we perform the unitary transformation of the wave function ψH (cf. [3], [21]):

ψH(x, t) = U1(x, t)ψ(0)
H (x, t), (3.10)

where the unitary operator U1 is

U1(x, t) = e−ξ(t)∂xei�−1[M(t)ξ̇(t)x+σH(t)], (3.11)

the function ξ(t) satisfies the classical equation of motion

d

dt
[M(t)ξ̇(t)] + M(t)ω2(t)ξ(t) = F (t), (3.12)

and σH(t) is the classical action of a harmonic oscillator with F (t) �= 0,

σH(t) =
∫ t

t0

[

1
2
M(t′)ξ̇2(t′) − 1

2
M(t′)ω2(t′)ξ2(t′) + F (t′)ξ(t′)

]

dt′. (3.13)
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Without loss of generality, we can take a real solution ξ(t) of Eq. (3.12), which together with its first
derivative ξ̇(t) vanishes at the initial instant: ξ(t0) = 0 and ξ̇(t0) = 0. We hence obtain the initial condition
for operator (3.11) in the form U1(x, t0) = 1. In addition, it is clear that if F (t) ≡ 0, then necessarily
ξ(t) ≡ 0.

As a result, (3.9) becomes the Schrödinger equation for a harmonic oscillator with a variable mass and
frequency:

̂S
(0)
H (x, t)ψ(0)

H (x, t) = 0, ̂S
(0)
H (x, t) = i�∂t +

�
2

2M(t)
∂2

x − 1
2
M(t)ω2(t)x2 + V0(t). (3.14)

We next choose the wave function ψ
(0)
H in the form

ψ
(0)
H (x, t) = U2(x, t)ψH2(x, t), U2(x, t) = eiα(t)x2

, (3.15)

where the real function α(t) satisfying the initial condition α(t0) ≡ 0 is defined from the nonlinear first-order
differential equation (Riccati equation)

α̇(t) +
2�

M(t)
α2(t) = − 1

2�
M(t)ω2(t). (3.16)

It is well known that introducing a new function η(t) instead of α(t) via the formula

α(t) =
M(t)η̇(t)
2�η(t)

, (3.17)

we can reduce Riccati equation (3.16) to a linear homogeneous second-order differential equation

d

dt
[M(t)η̇(t)] + M(t)ω2(t)η(t) = 0. (3.18)

It follows from the initial condition α(t0) = 0 that η(t0) �= 0 and η̇(t0) = 0. Substituting (3.15) in (3.14)
yields the equation for ψH2(x, t):

̂SH2(x, t)ψH2(x, t) = 0,

̂SH2(x, t) = i�∂t +
�

2

2M(t)
∂2

x +
i�2

M(t)
α(t)(∂xx + x∂x) + V0(t).

(3.19)

Taking formula (2.21) with n = 2 into account, we can now represent the evolution operator U3(x, t) for
Eq. (3.19) in a disentangled form as

U3(x, t) = eiΛ0(t)+ b(t)
2 (∂xx+x∂x)eiS(t)∂2

x , (3.20)

where

b(t) = −2�

∫ t

t0

α(t′)
M(t′)

dt′, S(t) = �

∫ t

t0

e2b(t′)

2M(t′)
dt′ (3.21)

or, in terms of the function η(t) in (3.17),

b(t) = log
η(t0)
η(t)

, S(t) = �η2(t0)
∫ t

t0

dt′

2M(t′)η2(t′)
. (3.22)
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It is now clear that evolution operator (3.9) for harmonic oscillator with a variable mass and frequency
subject to a variable force is equal to the product of the unitary operators U1(x, t) in (3.11), U2(x, t)
in (3.15), and U3(x, t) in (3.20), i.e., UH = U1U2U3 or, explicitly,

UH(x, t) = e−
b(t)
2 +iΛ0(t)+ i

�
σH(t)e−ξ(t)∂xe

i
�

M(t)ξ̇(t)xeiα(t)x2
eb(t)∂xxeiS(t)∂2

x . (3.23)

We represent it as
UH(x, t) = U1(x, t)U (0)

H (x, t), (3.24)

where
U

(0)
H (x, t) = e

b(t)
2 +iΛ0(t)eiα(t)x2

eb(t)x∂xeiS(t)∂2
x (3.25)

is the evolution operator for a harmonic oscillator with a variable mass and frequency. It follows from (3.24)
that the harmonic oscillator problem is unitarily equivalent to the problem of an oscillator subject to a force.
By virtue of the operator relation eb∂xxeiS∂2

x = eiSe−2b∂2
xeb∂xx (see identities (2.21)), we rewrite U

(0)
H (x, t)

given by (3.25) as
U

(0)
H (x, t) = e

b(t)
2 +iΛ0(t)eiα(t)x2

eiSe−2b∂2
xebx∂x . (3.26)

We note that there is a close analogy between the operators VL given by (3.5) and U1 given by (3.11).
First, they are operators “generating” the action of the force: VL generates the action of F (t) on a free
particle, and U1 generates the action of F (t) on an oscillator; second, both operators are expressed in terms
of a classical action: VL is expressed in terms of the classical action of a particle in a homogeneous field,
and U1 is expressed in terms of the classical action of an oscillator in a homogeneous field. In addition,
Eq. (3.12) for the “coordinate” ξ(t) of a classical oscillator in a homogeneous field with ω(t) = 0 transforms
into Eq. (3.8) for the “coordinate” S1(t) of a classical particle in a homogeneous field. Therefore, in the
limit as ω → 0, we have the relations

lim
ω→0

ξ(t) = S1(t), lim
ω→0

S(t) = �S2(t). (3.27)

The first relation is obvious, and we prove the second. As ω → 0, the limits

lim
ω→0

α(t) = 0, lim
ω→0

η̇(t) = 0, (3.28)

must exist from physical considerations, i.e., η(t) → const or η(t) → 0. Consequently, as ω → 0, equali-
ties (3.27) follow from Eq. (3.21). It is clear from limit relations (3.27) and (3.28) that

lim
ω→0

U
(0)
H (x, t) = UF(x, t), lim

ω→0
UH(x, t) = UL(x, t), (3.29)

i.e., the evolution operator for an oscillator in the limit ω → 0 coincides with the evolution operator for
a free particle, and the evolution operator for an oscillator subject to a force coincides with the evolution
operator for a particle in a homogeneous field.

We introduce the notation

V
(0)
FH (x, t) = eb(t)/2eiα(t)x2

eb(t)x∂x , VFH(x, t) = U1(x, t)V (0)
FH (x, t) (3.30)

and the notions of a renormalized mass MRen(t) = M(t)e−2b(t), the renormalized free Schrödinger equation

̂S Ren
F (x, t)ψRen

F (x, t) = 0, ̂S Ren
F (x, t) = i�∂t +

�
2

2MRen(t)
∂2

x + V0(t), (3.31)
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and the renormalized evolution operator for a free particle

URen
F (x, t) = UF(x, t)

∣

∣

M→MRen
= eiΛ0(t)eiS(t)∂2

x . (3.32)

Here, the difference from formulas (3.1) and (3.2) is that the renormalized mass appears in expressions (3.31)
and (3.32).

Comparing U
(0)
H given by (3.25), UH given by (3.24), and URen

F given by (3.32), we conclude that the
harmonic oscillator problem (subject to a force or not) is unitarily equivalent to the problem of a free
particle with a renormalized mass, i.e., we have the relations

U
(0)
H (x, t) = V

(0)
FH (x, t)URen

F (x, t), UH(x, t) = VFH(x, t)URen
F (x, t). (3.33)

Based on formulas (3.24) and (3.33), we therefore conclude as follows:

1. The operator U1(x, t) transforms each solution of Eq. (3.14) into a solution of Eq. (3.9), and the
operator U−1

1 (x, t) performs the inverse transformation.

2. The operator V
(0)
FH (x, t) transforms each solution of renormalized Schrödinger equation (3.31) for a free

particle into a solution of Eq. (3.14), and the operator V
(0)−1
FH (x, t) performs the inverse transformation.

3. Similarly, the operator VFH(x, t) transforms each solution of renormalized equation (3.31) into a solu-
tion of Eq. (3.9), and the operator V −1

FH (x, t) performs the inverse transformation.

We hence have

ψH(x, t) = U1(x, t)ψ(0)
H (x, t), ψ

(0)
H (x, t) = U−1

1 (x, t)ψH(x, t),

ψ
(0)
H (x, t) = V

(0)
FH (x, t)ψRen

F (x, t), ψRen
F (x, t) = V

(0)−1
FH (x, t)ψ(0)

H (x, t),

ψH(x, t) = VFH(x, t)ψRen
F (x, t), ψRen

F (x, t) = V −1
FH (x, t)ψH(x, t).

(3.34)

In addition, the Schrödinger operators ̂S Ren
F (x, t), ̂S

(0)
H (x, t), and ̂SH(x, t) are related to each other by the

formulas
̂SH = U1

̂S
(0)
H U−1

1 , ̂S
(0)
H = U−1

1
̂SHU1,

̂S
(0)
H = V

(0)
FH

̂S Ren
F V

(0)−1
FH , ̂S Ren

F = V
(0)−1
FH

̂S
(0)
H V

(0)
FH ,

̂SH = VFH
̂S Ren
F V −1

FH , ̂S Ren
F = V −1

FH
̂SHVFH.

(3.35)

4. Propagators

Because the propagator at the initial instant is K(x2, t0; x1, t0) = δ(x2−x1), in analogy to formula (1.2),
there is the well-known relation

K(x2, t; x1, t0) = θ(t − t0)U(x2, t)δ(x2 − x1). (4.1)

We first find the propagators for the considered systems (3.1), (3.3), and (3.9) in the x-representation using
formula (4.1). In this case, we take into account that the action of the operators eα∂2

x , eαx∂x , and eα∂x on
an arbitrary function f(x) is given by the equalities

eα∂2
xf(x) =

1√
4πα

∫ ∞

−∞
e−

(x−ξ)2

4α f(ξ) dξ,

eαx∂xf(x) = f(eαx), eα∂xf(x) = f(x + α).

(4.2)

We obtain the following results:
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1. The propagator for a free particle with a variable mass is

KF(x2, t; x1, t0) =
θ(t − t0)

√

4πi�S2(t)
e

i(x2−x1)2

4�S2(t) +iΛ0(t)
. (4.3)

For M(t) = m = const, we obtain a known formula from (4.3) [2]:

KF(x2, t; x1, t0)
∣

∣

M=m
= θ(t − t0)

√

m

2πi�(t − t0)
e

im(x2−x1)2

2�(t−t0) +iΛ0(t)
. (4.4)

2. The propagator for a free-particle with a renormalized variable mass is

KRen
F (x2, t; x1, t0) = θ(t − t0)URen

F (x2, t)δ(x2 − x1) =
θ(t − t0)
√

4πiS(t)
e

i(x2−x1)2

4S(t) +iΛ0(t). (4.5)

3. The propagator for a particle with a variable mass in an alternating homogeneous field is

KL(x2, t; x1, t0) =
θ(t − t0)

√

4πi�S2(t)
exp

{

iϕ0(x2, t) +
i[x2 − x1 − S1(t)]2

4�S2(t)
+ iΛ0(t)

}

. (4.6)

This is the most general expression for the propagator of a quantum particle in an external homoge-
neous field where both the mass and the force acting on the particle from the field arbitrarily depend
on the time. This expression can also be obtained from propagator (4.3) of a free particle using the
action of the shift operator VL(x, t) given by (3.5):

KL(x2, t; x1, t0) = VL(x2, t)KF(x2, t; x1, t0) = eiϕ0(x2,t)KF(x2 − S1(t), t; x1, t0). (4.7)

Obviously, propagator (4.6) coincides with propagator (4.3) if F (t) = 0.

4. The propagator of a harmonic oscillator with a variable mass and frequency subject to a variable force
is

KH(x2, t; x1, t0) =
θ(t − t0)
√

4πiS(t)
e

b(t)
2 +iΛ0(t)+ i

�
σH(t) ×

× exp
{

i

[

M(t)ξ̇(t)
�

(x2 − ξ(t)) + α(t)(x2 − ξ(t))2
]}

×

× exp
{

i
[eb(t)(x2 − ξ(t)) − x1]2

4S(t)

}

. (4.8)

This is the most general expression for the propagator of a harmonic oscillator with a variable mass
and frequency subject to a variable force. We note that according to relations (3.33), propagator (4.8)
can be obtained from the renormalized free-particle propagator (4.5) of a free particle via the action
of the operator VFH:

KH(x2, t; x1, t0) = VFH(x2, t)KRen
F (x2, t; x1, t0) =

= e
b(t)
2 + i

�
σH(t) exp

{

i

[

M(t)ξ̇(t)
�

(x2 − ξ(t)) + α(t)(x2 − ξ(t))2
]}

×

× KRen
F (eb(t)[x2 − ξ(t)], t; x1, t0). (4.9)

We consider particular cases of propagator (4.8):
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4.1. Let M(t) = m = const and ω(t) = ω0 = const. Then the solutions of Eqs. (3.12) and (3.18) with
the initial conditions ξ(t0) = 0, ξ̇(t0) = 0, η(t0) �= 0, η̇(t0) = 0 are

ξ(t) =
1

mω0

∫ t

t0

F (t′) sin ω0(t − t′) dt′, η(t) = ω0 cos(ω0τ).

In this case, we obtain a known formula for the propagator of a stationary harmonic oscillator
subject to a variable force [2].

4.2. Let ω(t) = 0. Because b(t) = 0, α(t) = 0, ξ(t) = S1(t), η(t) = 1, and S(t) = �S2(t), σH(t) =
S1(t)δ(t) − S0(t) = σL(t) in this case, propagator (4.8) coincides with propagator (4.6), i.e.,
KH|ω=0 = KL.

4.3. Let F (t) = 0. In this case, ξ(t) = 0, σH(t) = 0, and we obtain the propagator for a harmonic
oscillator with a variable mass and frequency from (4.8):

K
(0)
H (x2, t; x1, t0) =

θ(t − t0)
√

2πiμ1(t)
eiΛ0(t)ei[α1(t)x2

2+β1(t)x2x1+γ1(t)x
2
1], (4.10)

where

μ1(t) = 2S(t)e−b(t), α1(t) = α(t) +
e2b(t)

4S(t)
, β1(t) = − 1

μ1(t)
, γ1(t) =

1
4S(t)

. (4.11)

Obviously, there is a relation between the propagators of an oscillator and of a free particle with
a renormalized mass analogous to relation (4.9),

K
(0)
H (x2, t; x1, t0) = V

(0)
FH (x2, t)KRen

F (x2, t; x1, t0) =

= eb(t)/2eiα(t)x2
2KRen

F (eb(t)x2, t; x1, t0). (4.12)

We also present the relation between propagators (4.8) and (4.10):

KH(x2, t; x1, t0) = U1(x2, t)K
(0)
H (x2, t; x1, t0) =

= e
i
�
(M(t)ξ̇(t)(x2−ξ(t))+σH(t))K

(0)
H (x2 − ξ(t), t; x1, t0). (4.13)

Formula (4.10) yields the most general expression for the propagator for a harmonic oscillator
with a variable mass and frequency. All the propagators found in [10] can be obtained from this
propagator as particular cases. We here consider only three particular cases of formula (4.10):

4.3.1. Let ω(t) = 0. In this case α(t) = 0, b(t) = 0, η(t) = 1, and S(t) = �S2(t). Then

μ1(t) = 2�S2(t), α1(t) = γ1(t) =
1

4�S2(t)
, β1(t) = − 1

μ1(t)
,

and propagator (4.10) coincides with propagator (4.3) for a free particle with a variable
mass.

4.3.2. Let M(t) = ω−1
0 e2λt, ω(t) = ω0, t0 = 0, and � = 1. This choice corresponds to the model

of a damped quantum oscillator: the Caldirola–Kanai model (see, e.g., [10], [28]), which is
defined by the Hamiltonian

H =
ω0

2
(e−2λtp̂2 + e2λtx̂2). (4.14)
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In this case, from Eqs. (3.17), (3.18), and (3.22), we obtain

η(t) = e−λtQ(t), Q(t) = ω cos(ωt) + λ sin(ωt),

α(t) = −ω0 sin(ωt)
2�Q(t)

e2λt, b(t) = log
ωeλt

Q(t)
, S(t) =

�ω0

2Q(t)
sin(ωt),

(4.15)

where ω =
√

ω2
0 − λ2 > 0. For coefficients (4.11) in the case of Hamiltonian (4.14), we

obtain the expressions

μ1(t) =
�ω0

ω
e−λt sin(ωt), α1(t) =

1
2�ω0

(ω cot(ωt) − λ)e2λt, γ1(t) =
Q(t)

2�ω0 sin(ωt)
,

which coincide with the results obtained in [10] in a different way.

4.3.3. Let M(t) = 1, ω2(t) = ω2
0 + 2λ2/ cosh2(λt), t0 = 0, and � = 1. Then we obtain the

Hamiltonian of a parametric oscillator [10],

H =
1
2
(p̂2 + ω2(t)x̂2). (4.16)

In this case, the solution of Eq. (3.18) with the initial conditions η(0) = ω0 and η̇(0) = 0
can be written as

η(t) = ω0 cos(ω0t) − λ sin(ω0t) tanh(λt). (4.17)

Consequently, b(t) = log(ω0/η(t)), α(t) = η̇(t)/2�η(t), and the function S(t) is

S(t) =
�ω0

2(ω2
0 + λ2)η(t)

[ω0 sin(ω0t) + λ cos(ω0t) tanh(λt)]. (4.18)

Coefficients (4.11) are

μ1(t) =
�ω0

ω2
0 + λ2

[ω0 sin(ω0t) + λ cos(ω0t) tanh(λt)],

α1(t) =
[ω2

0 + λ2 cosh−2(λt)] cos(ω0t) − λω0 sin(ω0t) tanh(λt)
2[ω0 sin(ω0t) + λ cos(ω0t) tanh(λt)]

,

(4.19)

and these expressions also coincide with the results in [10].

We note that in view of the limit formula limα→0(πα)−1/2e−x2/α = δ(x), it is easy to verify that all
the obtained propagators satisfy the required initial condition limt→t0 K = δ(x2 − x1).

5. Invariants: General expressions

Invariants play an important role in studying properties of nonstationary quadratic systems [4], [7].
In this section, we construct invariant operators for the considered systems using the method of evolution
operator U(t). By the invariants of a quantum system, we mean time-dependent operators I(t) whose means
are independent of time, i.e., dĪ(t)/dt = 0. An invariant I(t) commutes with the Schrödinger operator,
[̂S(t), I(t)] = 0, and consequently transforms each solution of the Schrödinger equation into another solution
of this equation. On the other hand, we know (see, e.g., [7]) that we can use the evolution operator to
construct 2N independent invariants for any quantum system, where N is the number of degrees of freedom
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in the system. In our case, there are two independent (basis) invariants x̂0(t) and p̂0(t). We construct these
invariants using the formulas

x̂0(t) = U(t)x̂U−1(t), p̂0(t) = U(t)p̂U−1(t). (5.1)

The physical meaning of these invariants is that they are operators of the initial coordinate and momentum.
In general, operators (5.1) are linear combinations of the operators x̂ and p̂ with time-dependent coefficients,

x̂0(t) = e1(t)x̂ + e2(t)p̂ + e3(t), p̂0(t) = d1(t)x̂ + d2(t)p̂ + d3(t), (5.2)

where x̂0(t0) = x̂ and p̂0(t0) = p̂, i.e.,

e1(t0) = d2(t0) = 1, e2(t0) = e3(t0) = d1(t0) = d3(t0) = 0. (5.3)

It follows from the commutation relation [p̂0(t), x̂0(t)] = [p̂, x̂] = −i� that the coefficients in (5.2) satisfy
the equality d2e1 − d1e2 = 1, and the equations for these coefficients follow from the commutation relations
[̂S, x̂0] = 0 and [̂S, p̂0] = 0. If we write the system Hamiltonian as H = α2(t)p̂2 + β2(t)x̂2 − F (t)x̂, then
these equations become

ė1 = 2β2e2, ė2 = −2α2e1, ė3 = −Fe2,

ḋ1 = 2β2d2, ḋ2 = −2α2d1, α2d1ḋ3 = −Fd2.
(5.4)

We now present the most general forms of the operators x̂0(t) and p̂0(t) for the considered quadratic
systems explicitly:

1. For a free quantum particle with a variable mass, we have

x̂0F(t) = x̂ − 2S2(t)p̂, p̂0F(t) = p̂, (5.5)

i.e., e1 = 1, e2 = −2S2, e3 = 0, d1 = 0, d2 = 1, and d3 = 0. If M(t) = m = const, then

x̂0F = x̂ − p̂

m
τ, p̂0F = p̂. (5.6)

2. For a particle with a variable mass in an alternating homogeneous field, we have

x̂0L(t) = x̂ − 2S2(t)p̂ + 2δ(t)S2(t) − S1(t), p̂0L(t) = p̂ − δ(t), (5.7)

i.e., e1 = 1, e2 = −2S2, e3 = 2δS2 − S1, d1 = 0, d2 = 1, and d3 = −δ. If M(t) = m = const, then

x̂0L(t) = x̂ − p̂

m
τ +

1
m

(δτ − δ1), p̂0L(t) = p̂ − δ. (5.8)

3. For a harmonic oscillator with a variable mass and frequency subject to a variable force, we have

x̂0H(t) = −M(t)ȧ2(t)x̂ + a2(t)p̂ + M(t)Δ2(t),

p̂0H(t) = −M(t)ȧ1(t)x̂ + a1(t)p̂ + M(t)Δ1(t),
(5.9)
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i.e., e1 = −Mȧ2, e2 = a2, e3 = MΔ2, d1 = −Mȧ1, d2 = a1, and d3 = MΔ1, where

a1 = e−b(t) =
η(t)
η(0)

, a2 = −2
�
S(t)a1(t),

Δi ≡ Δi(t) = ȧi(t)ξ(t) − ai(t)ξ̇(t), i = 1, 2.

(5.10)

The functions a1, a2, Δ1, and Δ2 satisfy the initial conditions

a1(t0) = 1, ȧ1(t0) = 0, a2(t0) = 0, M(t0)ȧ2(t0) = −1, Δ1(t0) = Δ2(t0) = 0.

We consider two particular cases of formulas (5.9):

3.1. The Hamiltonian for Caldirola–Kanai oscillator (4.14) subject to a variable force is

H =
p̂2

2m
e−2λt +

mω2
0

2
x̂2e2λt − F (t)x̂, (5.11)

and we obtain (τ = t − t0 and τ ′ = t′ − t0 here)

x̂0H(t) = x̂eλτ

(

cos(ωτ) − λ

ω
sin(ωτ)

)

− p̂

mω
e−λ(t+t0) sin(ωτ) +

+
1

mω

∫ t

t0

e−λ(t′+t0)F (t′) sin(ωτ ′) dt′,

p̂0H(t) = x̂mω2
0e

λ(t+t0)
sin ωτ

ω
+

p̂

ω
e−λtQ(t) − 1

ω

∫ t

t0

e−λt′F (t′)Q(t′) dt′,

(5.12)

where Q(t′) = ω cos(ωτ ′) + λ sin(ωτ ′). For λ = 0, formulas (5.12) coincide with the formulas for
a stationary oscillator subject to a variable force. For ω0 = 0, we obtain the operators x̂0L(t)
and p̂0L(t) (see (5.7)) for a linear potential in the case of a variable mass M(t) = me2λt:

x̂0L(t) = x̂ − p̂

mλ
e−λ(t+t0) sinh(λτ) +

1
mλ

∫ t

t0

e−λ(t′+t0)F (t′) sinh(λτ ′) dt′,

p̂0L(t) = p̂ − δ(t).

(5.13)

In the limit case λ → 0, we hence obtain operators (5.8) for a linear potential with M(t) = m =
const.

3.2. For parametric oscillator (4.17), we have

x̂
(0)
0H (t) =

x̂

ω2
0 + λ2

[

ω2
0 cos(ω0τ) − λω0 sin(ω0τ) tanh(λτ) +

λ2 cos(ω0τ)
cosh2(λτ)

]

−

− p̂

m(ω2
0 + λ2)

[ω0 sin(ω0τ) + λ cos(ω0τ) tanh(λτ)],

p̂
(0)
0H (t) = mx̂

[

ω0 sin(ω0τ) + λ cos(ω0τ) tanh(λτ) +
λ2 sin(ω0τ)

ω0 cosh2(λτ)

]

+

+ p̂

[

cos(ω0τ) − λ

ω0
sin(ω0τ) tanh(λτ)

]

.

(5.14)
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For λ = 0, these formulas coincide with the formulas for the stationary oscillator with F = 0. In
the limit ω0 → 0, from (5.14), we obtain the formulas for the oscillator with a variable frequency
ω2(t) = 2λ2/ cosh2(λt):

x̂
(0)
0H (t) = x̂ cosh−2(λτ) − p̂

mλ
tanh(λτ),

p̂
(0)
0H (t) = mx̂λ[tanh(λτ) + λτ cosh−2(λτ)] + p̂[1 − λτ tanh(λτ)].

(5.15)

It is now clear that the most general form of the (either Hermitian or non-Hermitian) nth-order invariant
(n = 1, 2, . . . ) after its expansion in powers of x̂0 and p̂0 is

In(t) =
n

∑

m=1

Qnm(t) + Cn0, (5.16)

where

Qnm(t) =
m

∑

k=0

[A(n)
0mkx̂k

0(t)p̂m−k
0 (t) + B

(n)
0mkp̂m−k

0 (t)x̂k
0(t)] (5.17)

and the coefficients A
(n)
0mk, B

(n)
0mk, and Cn0 are arbitrary constants. In general, these quantities can be

complex. Hence, all invariants In(t) (n = 1, 2, . . . ) can be expressed in terms of basis invariants (5.2). Here,
we construct only the linear and quadratic invariants. In the most general case, we have the expressions
for them

I1(t) = A1(t)p̂ + B1(t)x̂ + C1(t),

I2(t) = A2(t)p̂2 + B2(t)x̂2 + C2(t)p̂x̂ + ˜C2(t)x̂p̂ + D2(t)p̂ + E2(t)x̂ + F2(t).
(5.18)

Here, the coefficients of the linear invariant are

A1(t) = A10d2 + B10e2, B1(t) = A10d1 + B10e1, C1(t) = A10d3 + B10e3 + C10, (5.19)

and the coefficients of the quadratic invariant are

A2(t) = A20d
2
2 + B20e

2
2 + (C20 + ˜C20)d2e2,

B2(t) = A2(d2 → d1, e2 → e1),

C2(t) = A20d1d2 + B20e1e2 + C20d2e1 + ˜C20d1e2,

˜C2(t) = C2(C20 ↔ ˜C20),

D2(t) = 2A20d2d3 + 2B20e2e3 + (C20 + ˜C20)(d2e3 + d3e2) + D20d2 + E20e2,

E2(t) = D2(d2 → d1, e2 → e1),

F2(t) = A20d
2
3 + B20e

2
3 + (C20 + ˜C20)d3e3 + D20d3 + E20e3 + F20.

(5.20)

The initial conditions for coefficients (5.19) and (5.20) are A1(t0) = A10, A2(t0) = A20, and so on. It is
clear that the quadratic invariants of the type I2

1 , I+
1 I1, and so on are particular cases of the invariant

I2 given by (5.18). For instance, if we choose coefficients (5.20) in the form A20 = A2
10, B20 = B2

10,
C20 = ˜C10 = A10B10, D20 = 2A10C10, E20 = 2B10C10, and F20 = C2

10, then I2
1 = I2.
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The differential equations for the coefficient functions involved in the invariants I1 and I2 follow from
the commutation relations [̂S, I1] = 0 and [̂S, I2] = 0. We can write these equations as

Ȧ1 = −2α2B1, Ḃ1 = 2β2A1, Ċ1 = −FA1 (5.21)

and
Ȧ2 = −2α2(C2 + ˜C2), Ḃ2 = 2β2(C2 + ˜C2), Ċ2 = ˙̃

C2 = 2β2A2 − 2α2B2,

Ḋ2 = −2FA2 − 2α2E2, Ė2 = −F (C2 + ˜C2) + 2β2D2, Ḟ2 = −FD2.

(5.22)

It in turn follows from the first two equations in (5.21) that

α2Ä1 − α̇2Ȧ1 + 4α2
2β2A1 = 0.

This equation is d
dt [M(t)Ȧ1(t)] = 0 in the case of a free particle and a particle in a homogeneous field and

d

dt
[M(t)Ȧ1(t)] + M(t)ω2(t)A1(t) = 0

in the case of an oscillator. As a consequence of formulas (5.21), we find that linear invariant (5.18) can be
expressed only in terms of the coefficient A1(t):

I1(t) = A1(t)p̂ − M(t)Ȧ1(t)x̂ −
∫ t

t0

F (t′)A1(t′) dt′,

where (2α2)−1 = M(t). Another relation between A1(t) and B1(t) also holds:

A1(t)B
∗
1(t) − A∗

1(t)B1(t) = A10B
∗
10 − A∗

10B10 = const,

which can be easily verified using the equality e2ḋ2 − ė2d2 = 2α2. It follows from the definition of the
functions a1(t) and a2(t) given by (5.10) that they also satisfy Eq. (3.18),

d

dt
[M(t)ȧi(t)] + M(t)ω2(t)ai(t) = 0, i = 1, 2,

and the relation M(a2ȧ1 − a1ȧ2) = 1.

6. Conclusion

We have used the evolution operator method to study the physical properties of simple nonstationary
quadratic quantum systems, namely, a free particle with a variable mass, a quantum particle with a variable
mass in an alternating homogeneous field, and a harmonic oscillator with a variable mass and frequency
subject to a variable force. By successive unitary transformations of the Schrödinger equation, we con-
structed the evolution operators for these systems in an explicit disentangled form. In this regard, we note
that in the particular case where the mass M = m = const and Λ0(t) = 0, formula (3.25) was obtained
in [29] using a different method: using the Feynman method to disentangle noncommuting operators. But
there is a misprint in formula (28′) in [29]: it must be written as b(t) = i

∫ t

t0
e−2ic(t′) dt′.

As emphasized in [23], the evolution operator method for studying quadratic systems turns out to be
rather simple and fruitful at the same time; for example, using this method, first, we easily established
unitary relations between the considered systems, and second, we found various exact solutions of the
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equations of motion with an arbitrary time variation for the Hamiltonian parameters (mass M(t), frequency
ω(t), and force F (t)), which itself is of research interest.

A unitary relation allows obtaining the wave functions for the harmonic oscillator subject to a force
from the appropriate expressions for a free particle with a variable mass. For example, a free particle with
a variable mass has the oscillator states [23]

ψF
n(x, t) = NnF

(

ε∗F(t)
εF(t)

)

n/2

exp
{

− λ1x
2

2�εF(t)

}

Hn

(

x√
�|εF(t)|

)

, (6.1)

where NnF = N0F/
√

2n n! is the normalization factor, N0F = (π�)−1/4[εF(t)]−1/2, and Hn(x) are Hermite
polynomials. We can then write the appropriate expressions for a nonstationary oscillator with a variable
driving force as

ψH
n(x, t) = VFHψRen F

n (x, t) = NnH

(

εH∗(t)
εH(t)

)

n/2

ei(φ0+�
−1M(t)ξ̇(t)[x−ξ(t)]) ×

× exp
{

i
M(t)ε̇H(t)
2�εH(t)

[x − ξ(t)]2
}

Hn

(

x − ξ(t)√
�|εH(t)|

)

, (6.2)

where

εH(t) = a1(t)εRen
F (t) = λ2a1(t) − iλ1a2(t), εRen

F (t) = λ2 + 2iλ1�
−1S(t),

NnH =
N0H√
2n n!

, N0H = (π�)−1/4[εH(t)]−1/2,

λ1 and λ2 are the complex numbers satisfying the condition Re(λ∗
1λ2) = 1, and

ψRen F
n (x, t) = ψF

n(x, t)
∣

∣

εF→εRen
F

, εF = εRen
F

∣

∣

S→�S2
.

Functions (6.1) and (6.2) are normalized by the conditions

∫ ∞

−∞
|ψF

n(x, t)|2 dx = 1,

∫ ∞

−∞
|ψH

n(x, t)|2 dx = 1. (6.3)

We emphasize a feature of the unitary relation between a harmonic oscillator and a free particle: the
problem of a harmonic oscillator is unitarily equivalent to the problem of not only a free particle but also
a free particle with a renormalized mass. Hence, knowing some states of a free particle, we can construct
appropriate states of both a particle in a homogeneous field and a harmonic oscillator (whether the latter
is subject to a force or not) by applying a unitary operator.

The third result in our paper is that using the evolution operator method, we immediately obtain the
most general expressions for the propagators of a free particle, of a particle in an alternating homogeneous
field, and of a nonstationary oscillator. Using the unitary relation established above, we express the prop-
agators of both a particle with a variable mass in an alternating homogeneous field and a nonstationary
harmonic oscillator in terms of the propagator of a free particle. As particular cases, these general ex-
pressions contain results already known in the research literature, which we demonstrated with particular
examples. We note that problems with a time-dependent particle mass have long been considered in the
literature (see, e.g., [28]). There is reason to believe that such problems are directly related to real physical
unstable systems, to the systems with dissipation, and also to real physical processes in an alternating
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homogeneous gravitational field arising in the early evolutionary stages of the Universe (see [30] and the
references therein).

The evolution operator method can be also useful for other quantum mechanical problems that are
not specified by quadratic Hamiltonians, of course, if the evolution operators can be constructed in an
explicit form. For example, such systems can include a singular oscillator with a variable frequency [5]
and a relativistic quantum particle in an alternating homogeneous field described by a finite-difference
equation [18]. Other examples can be systems defined by Eq. (2.1) and also some thermal conductivity
problems.

We note that for quadratic quantum systems defined by Hamiltonians of the most general form

H = A(t)p̂2 + B(t)x̂2 + C(t)(p̂x̂ + x̂p̂) + D(t)p̂ + E(t)x̂ + F (t),

where the coefficients are real functions of time, the evolution operators can be completely disentangled, and
these systems are obviously unitarily equivalent to a free particle but, perhaps, with a mass renormalized
in a certain way. This means that we can, in principle, construct all the states of these systems from the
known states of a free particle using the unitary operators even if the parameters of the Hamiltonian A(t),
B(t), C(t), D(t), E(t), F (t) arbitrarily depend on the time.

We now briefly list advantages of the evolution operator method. If we know the evolution operator,
then we can

1. find a solution of an equation with a required property,

2. uniquely find an unlimited number of solutions of an equation with an arbitrary time dependence
of the Hamiltonian parameters (there is no problem of defining the phase in this case, unlike in the
method of invariants [4]),

3. easily determine the form of propagators,

4. easily determine the form of invariants of any order, and

5. easily establish a unitary relation between the considered systems.

We also note that we can use this method to construct a perturbation theory that is an analogue of the
Feynman diagram technique in quantum mechanics.
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