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TOWARD AN ANALYTIC PERTURBATIVE SOLUTION FOR THE

ABJM QUANTUM SPECTRAL CURVE

R. N. Lee∗ and A. I. Onishchenko†

We recently showed how nonhomogeneous second-order difference equations that appear in describing the

ABJM quantum spectral curve can be solved using a Mellin space technique. In particular, we provided

explicit results for anomalous dimensions of twist-1 operators in the sl(2) sector at arbitrary spin values

up to the four-loop order. We showed that the obtained results can be expressed in terms of harmonic

sums with additional factors in the form of a fourth root of unity, and the maximum transcendentality

principle therefore holds. Here, we show that the same result can also be obtained by directly solving the

mentioned difference equations in the space of the spectral parameter u. The solution involves new highly

nontrivial identities between hypergeometric functions, which can have various applications. We expect

that this method can be generalized both to higher loop orders and to other theories, such as the N=4

supersymmetric Yang–Mills theory.
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1. Introduction

After the discovery of the AdS/CFT duality [1]–[4], we have recently seen much progress in understand-
ing the integrable structures underlying quantum field theories with extended supersymmetry in dimensions
greater than two (see [5]–[11] for a review and introduction). The best-understood theories are the N=4
SYM in four dimensions and the N=6 super Chern–Simons theory (ABJM model) in three dimensions [12].
It was shown that different techniques from the realm of integrable systems, such as the worldsheet and
spin-chain S-matrices [13]–[21], the asymptotic Bethe ansatz [22]–[27], the thermodynamic Bethe ansatz
(TBA) [28]–[31], and also Y and T systems [32]–[38] are applicable for computing the conformal spec-
trum of these theories. The integrability-based methods were also used to study the quark–antiquark
potential [39]–[42], polygonal Wilson loops at a strong coupling and beyond [43]–[48], eigenvalues of the
BFKL kernel [49]–[52], structure constants [53]–[57], correlation functions [53]–[63], one-point functions of
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operators in the defect conformal field theory [64]–[66], and thermal observables such as the Hagedorn
temperature of the N=4 SYM [67], [68].

A further detailed study of the TBA equations for the N=4 SYM and ABJM models led to the discovery
of the quantum spectral curve (QSC) formulation for these models [69]–[75]. The QSC is an alternative
reformulation of the TBA equations in terms of a nonlinear Riemann–Hilbert problem. The numerical
solution of the QSC for these theories at a finite coupling applicable even for a complexified spin was
presented in [76]–[78]. The iterative procedure for perturbatively solving these Riemann–Hilbert problems
for these theories at a weak coupling was given in [79], [80] up to an arbitrary loop order in principle. But
the techniques presented there are limited to the situation where the state quantum numbers are explicitly
given as some integer numbers. They suffice for reconstructing the full analytic structure of the conserved
charges in the corresponding spin chains if a finite basis of functions is known in terms of which they can be
written explicitly. If this is not the case, then we can, for example, use a Mellin space technique to solve the
QSC equations without assigning specific integer values to state quantum numbers [81]. Here, we want to
show that there is in fact a way to solve the QSC equations directly in the space of the spectral parameter
u without imposing any restriction on the state quantum numbers. In fact, we here restrict ourself to only
the case of twist-1 operators in the sl(2) sector of the ABJM model up to the four-loop order and defer
the generalization to higher loops and other states to forthcoming publications. The presented approach,
which is still work in progress, also has the potential for generalization to the case of twisted N=4 SYM and
ABJM QSCs with different nonpolynomial large spectral parameter asymptotic forms for functions in the
corresponding Riemann–Hilbert problems. Moreover, similar ideas should be useful in studying the BFKL
regime in the QSC approach [50]–[52], which still uses a perturbative expansion in the coupling constant
g and the parameter w ≡ S + 1 describing the proximity of the Lorentz spin S to −1 such that the ratio
g2/w remains fixed.

This paper is organized as follows. In Sec. 2, we present the set of equations together with the strategy
used to find a perturbative solution of the ABJM QSC in the case of twist-1 operators in the sl(2) sector.
In Sec. 3, we present the details of solution of the corresponding Baxter equations. In Sec. 4, we discuss
our results for anomalous dimensions of twist-1 operators through the four-loop order. Finally, in Sec. 5,
we present our conclusion.

2. Perturbative solution of the ABJM QSC

The ABJM model is a three-dimensional N=6 Chern–Simons theory with the product gauge group
U(N) × ̂U(N) at levels ±k. The field content of the theory consists of two gauge fields Aμ and Âμ,
four complex scalars Y A, and four Weyl spinors ψA. The matter fields transform in the bifundamental
representation of the gauge group. The global symmetry group of the ABJM theory for a Chern–Simons
level k > 2 is given by the orthosymplectic supergroup OSp(6|4) [12], [82] and the “baryonic” U(1)b [82].
Here, as an example, we use anomalous dimensions of twist-1 sl(2)-like states given by single-trace operators
of the form tr[DS

+(Y 1Y †
4 )] (see [83]).

At present, the QSC method is the most advanced method for treating spin-chain spectral problems
that arise in studying the AdSd+1/CFTd duality. In the case of the ABJM model, the QSC formulation
was introduced in [73], [74] (also see [80]).

For the perturbative solution of the ABJM QSC, we use the same set of equations as in [80]. They
easily follow1 from the Riemann–Hilbert problem for the Pν system and in our case are given by

ν
[3]
1

P[1]
1

− ν
[−1]
1

P[−1]
1

− σ
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0
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1
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0
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(

P[1]
2

P[1]
1

− P[−1]
2

P[−1]
1

)

ν
[1]
2 , (2.1)

1See [80] for details.
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[2]
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where Pi = (xh)−1pi and x ≡ x(u) = (u +
√

u2 − 4h2)/2h is the Zhukovsky variable used to parameterize
the single cut of P functions on the defining Riemann sheet. It also follows from the analytic structure of
the νi(u) functions on the defining Riemann sheet that the combinations of functions
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are free of cuts on the whole real axis. Similarly to [79], [80], we seek the solution using the ansatz for P(u)
functions2
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,

where we take the correct large-u asymptotic behavior of the P functions into account [73]–[80], playing
the role of initial conditions for the above equations depending on the quantum numbers of the operators
in which we are interested,

Pa � (A1u
−1, A2u

−2, A3u
2, A4u, A0u

0),

A1A4 = −1
3
(Δ − 1 + S)(Δ − S)(Δ + 2 − S)(Δ + 1 + S),

A2A3 = − 1
12

(Δ + S − 2)(Δ − 1 − S)(Δ − S + 3)(Δ + S + 2).

2The ABJM QSC coupling constant h is a nontrivial function of the ABJM ’t Hooft coupling constant λ [26], [84], which

scales as h ∼ λ for a weak coupling constant and as h ∼
�

λ/2 for a strong coupling constant.
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The anomalous dimension γ in which we are interested is given by γ = �− 1 − S. The coefficients A
(l)
0 ,

A
(l)
3 , c

(l)
i,k, m

(l)
j , and k

(l)
j are some functions of only the spin S; otherwise, they are just constants. Here, we

also use the gauge freedom3 to set A1 = 1 and A2 = h2. The functions analytically continued across the
cut are defined as

P̃a =
(

x

h

)

L

p̃a, p̃a = pa

∣

∣

x→1/x
,

and the expansion of the νi(u) functions in terms of the QSC coupling constant h is given by νi(u) =
∑∞

l=0 h2l−Lν
(l)
i (u).

3. Solution of Baxter equations

The most complicated part of solving the QSC is solving two inhomogeneous Baxter equations at each
perturbation order. To solve these second-order finite-difference equations at arbitrary values of the spin
S in [81], we used a Mellin transform technique to convert difference equations to ordinary differential
equations. Here, we want to show that these Baxter equations can be more simply solved directly in the
space of the spectral parameter u. To iteratively seek the perturbative solution of Eqs. (2.1)–(2.8), we
expand Eqs. (2.1) and (2.2) up to hk and obtain inhomogeneous equations for q

(k)
1,2 = (ν(k)

1,2 )[−1] in the forms

(
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Here, V
(k)
1 depends on q

(l)
1,2, l < k, and V

(k)
2 also depends on q

(k)
1 . The solution of the homogeneous parts

of the Baxter equations was described in [81] and is given by

qhom
1 (S, u) = Φper

1 QS(u) + Φant
1 ZS(u), qhom

2 (S, u) = Φant
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2 ZS(u),

where (σ = (−1)S),
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1
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(

u +
i

2

)

QS(u),

and Φper
i and Φant

i are arbitrary periodic and antiperiodic functions of the spectral parameter u. Otherwise,
they are arbitrary functions of the spin S to be determined from the consistency conditions mentioned
in the preceding section. We parameterize their dependence on u similarly to [79], [80] with the basis of
periodic and antiperiodic combinations of Hurwitz functions defined as

Pk(u) = ηk(u) + sgn k (−1)kηk(i − u) = sgnkPk(u + i), k �= 0, k ∈ Z,

where

ηa(u) =
∞
∑

k=0

(sgn a)k

(u + ik)|a|
.

3See [80] for details.
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The functions Φper
a and Φant

a then become

Φper
a (u) = φper

a,0 +
Λ

∑

j=1

φper
a,j Pj(u), Φant

a (u) =
Λ

∑

j=1

φant
a,j P−j(u),

where Λ is a cutoff dependent on the perturbation theory order.
To find a particular solution of the inhomogeneous Baxter equation, we first rewrite the original Baxter

equations in a more convenient form. Substituting the ansatz q
(k)
1 (u) = QS(u)F (k)

S (u + i/2) in Baxter
equation (3.1), we obtain

−∇−(uQ
[1]
S Q

[−1]
S ∇+F

(k)
S ) = Q

[1]
S V

(k)[1]
1 ,

where ∇+f = f − f [2] and ∇−f = f + f [2]. Introducing the inverse operators Ψ± such that ∇±Ψ±f = f

and solving this difference equation for F
(k)
S (u), we obtain
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.

Using the remarkable relation4 (see its proof in the appendix)

1

uQ
[1]
S Q

[−1]
S

=
(−1)S

u
+ i(−1)S

[(S−1)/2]
∑

k=0

1
S − k

(

Q
[−1]
S−1−2k

Q
[−1]
S

+
Q

[1]
S−1−2k

Q
[1]
S

)

=

= (−1)S∇−

(

η−1(u) + i

[(S−1)/2]
∑

k=0

1
S − k

Q
[−1]
S−1−2k

Q
[−1]
S

)
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we obtain an expression for F
(k)
S (u) of the form

F
(k)
S (u) = −(−1)SΨ+

{
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Using the relation5 ∇−f [−1]Ψ−g[1] = −∇+(fΨ−g)[−1] + (fg)[−1], we obtain

F
(k)
S (u) = − (−1)SΨ+

(

1
u

Ψ−(QSV
(k)
1 )[1]

)

+

+ (−1)S P
[−1]
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Q
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S
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(k)
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(k)
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where

PS(u) = i

[(S−1)/2]
∑

k=0

1
S − k

QS−1−2k(u).

Finally, for q
(k)
1 (u), we obtain

q
(k)
1 (u) = − (−1)SQSΨ+

(

1
u + i/2

Ψ−(QSV
(k)
1 )[2]

)

+

+ (−1)SPSΨ−(QSV
(k)
1 ) − (−1)SQSΨ+(PSV

(k)
1 ).

4We stress that we in fact initially guessed this identity. It was used in [81] to find a second solution of the homogeneous
Baxter equation, where a rigorous proof that it is in fact the desired solution was presented in Appendix B. We note that a
similar identity could be written for twist-2 operators.

5This relation is easily derived using summation by parts.
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Introducing the operator FS
1 as

FS
1 [f ] = −QSΨ+

(

1
u + i/2

Ψ−(QS(−1)Sf)[2]
)

− QSΨ+(PS(−1)Sf) + PSΨ−(QS(−1)Sf),

we obtain the general solution of the first Baxter equation in the form

q
(k)
1 = FS

1 [V (k)
1 ] + QSΦper,(k)

1 + ZSΦant,(k)
1 .

Similarly, for the second Baxter equation, we obtain

q
(k)
2 = FS

2 [V (k)
1 ] + QSΦant,(k)

2 + ZSΦper,(k)
2 ,

where

FS
2 [f ] = −QSΨ−

(

1
u + i/2

Ψ+(QS(−1)Sf)[2]
)

+ QSΨ−(PS(−1)Sf) − PSΨ+(QS(−1)Sf).

It turns out that at least up to the NLO,6 the right-hand side of the Baxter equations can be transformed
into a form containing only Baxter polynomials QS(u) for different spin values S and products of Baxter
polynomials with the function η1. For the actions of FS

1,2 on the Baxter polynomials, we find

FS1
1 [QS2 ] = − i

2
QS1 − QS2

S1 − S2
, S1 �= S2, (3.4)

FS
1 [QS ] = −1

2
QS η1

(

u +
i

2

)

− i

2

S
∑

k=1

1 + (−1)k

k
QS−k, (3.5)

FS1
2 [QS2 ] = − i

2
QS2

S1 + S2 + 1
. (3.6)

In addition, we need one extra rule for FS
2 :

FS1
2 [η[1]

1 QS2 ] =
1

2i(S1 + S2 + 1)

{

η
[1]
1 QS2 + FS1

2 [Q[2]
S2

] + FS1
2 [Q[−2]

S2
]
}

. (3.7)

The elementary operations needed to transform the inhomogeneous part into the required form are7

QS

u ± i/2
=

(∓1)S

u ± i/2
− 2i

S
∑

k=1

(±1)k+1QS−k

k−1
∑

l=0

(−1)l

S − l
, (3.8)

Q
[±2]
S = QS + 2

S
∑

k=1

(±1)kQS−k, (3.9)

and
u QS =

i

2
(S + 1)QS+1 −

i

2
SQS−1. (3.10)

6The inhomogeneity in this case is polynomial or polynomial times η1. We will consider the generalization to an arbitrary
loop order in one of our future publications.

7We will derive Eqs. (3.4)–(3.10) elsewhere, but we prove some of these identities in proving Eq. (3.3) in the appendix.
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The results of solving these Baxter equations up to the NLO can be found in [81]. It is instructive to see the
types of functions in the solutions for q1,2 at different perturbation theory orders. For q

(0,1)
1 , for example,

we obtain8

q
(0)
1 = αQS ,

q
(1)
1 = 4αB1(S)QS

{

γE + log 2 − iη1

(

u +
i

2

)

− H1(S) + iπ tanh(πu)
}

+

+ α

S
∑

k=1

1 + (−1)k

k
(3B1(S) − B1(S − k))QS−k + φper

1,0QS + φper
1,1P1

(

u +
i

2

)

QS ,

where α2 = i/4B1(S), B1(S) = H1(S) − H−1(S), and9

φper
1,1 = −2iαB1(S),

φper
1,0 = α

{

4
3
B1(S)2 + B2(S) +

3B3(S) + 2H3(S) − 2H−3(S)
3B1(S)

− 2B1(S)(1 + 2 log 2)
}

.

The expressions for q
(0,1)
2 are too long to be presented here and can be found in [81].

Finally, we comment on the generalization of this approach to higher loops. There, we need FS
1,2

images for different products of Hurwitz functions with arbitrary indexes or fractions 1/(u ± i/2)a with
Baxter polynomials QS . As our preliminary results show, they all can be obtained algorithmically, and the
current procedure hence seems systematic. The details of higher-loop generalization will be the subject of
one of our forthcoming publications.

4. Anomalous dimensions

Knowing the solutions of the Baxter equations obtained as described in the preceding section, we
follow [81] in determining the coefficients10 A

(l)
0 , A

(l)
3 , and c

(l)
i,k in the ansatz for the functions P(u), and we

refer the interested reader to that publication for further details. Up to four loops, we thus obtained the
results for the anomalous dimensions of twist-1 operators

γ(S) = γ(0)(S)h2 + γ(1)(S)h4 + . . . ,

where

γ(0)(S) = 4(H1 + H−1 − 2Hi),

γ(1)(S) = 16{3H−2,−1 − 2H−2,i − H−2,1 − H−1,−2 + 2H−1,2i − H−1,2 − 6Hi,−2 +

+ 12Hi,2i − 6Hi,2 − 6H2i,−1 + 4H2i,i + 2H2i,1 − H1,−2 + 2H1,2i − H1,2 + 3H2,−1 −

− 2H2,i − H2,1 + 2H−1,i,−1 − 2H−1,i,1 + 8Hi,−1,−1 − 12Hi,−1,i + 4Hi,−1,1 −

− 16Hi,i,−1 + 16Hi,i,i + 4Hi,1,−1 − 4Hi,1,i + 2H1,i,−1 − 2H1,i,1} + 8(H−1 − H1)ζ2,

8See the definition of harmonic sums in the next section.
9See Appendix B in [81] for the definition of B2,3(S) sums.

10The coefficients m
(l)
j and k

(l)
j are left undetermined because of the QSC gauge symmetry (see [81] for details).
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and we introduce the new sums

Ha,b,...(S) =
S

∑

k=1

Re[(a/|a|)k]
k|a| Hb,...(k), Ha,... = Ha,...(S), Ha,... = Ha,...(2S)

such that for real indices, these sums reduce to ordinary harmonic sums. Imaginary indices correspond
to the generalization of the harmonic sums with the fourth root of unity factor (eiπ/2)n. The obtained
expression respects the maximum transcendentality principle [85], [86] and completely agrees with the
previously obtained results [87]–[90]. This result could in fact be further rewritten in terms of cyclotomic
or S-sums (see [89], [90]) if we would extend the definition of the latter to complex values of the parameters
xi. It can also be expressed in terms of the twisted η-functions in [41].

5. Conclusion

We have shown that multiloop Baxter equations arising in QSC problems can be solved directly in
the space of the spectral parameter u by reducing inhomogeneous second-order difference equations with
complex hypergeometric functions to a purely algebraic problem. As a particular example, we considered
the anomalous dimensions of twist-1 operators in the ABJM model up to the four-loop order. The result
is expressible in terms of harmonic sums with imaginary indices and respects the principle of maximum
transcendentality. The presented technique can be further generalized both to higher loops and to higher
twists of the considered operators.

The procedure seems systematic because all required FS
1,2 images for different products of Hurwitz

functions with arbitrary indices or fractions 1/(u± i/2)a with leading-order Baxter polynomials appearing
at different orders of the perturbative expansion in the coupling constant can be obtained algorithmically.
Also, similarly to [79], [80], where all operations close on trilinear combinations of rational, η-, and Pk-
functions, all our operations close on quadrilinear combinations of rational, η-, Pk-, and QS-functions.
But the resulting sums that we obtain are written in a form different from generalized harmonic sums,
and extra work is needed to reduce them to the latter. Nevertheless, if we already know the basis of the
sums in the final answer, then the reduction procedure can be performed by fixing the coefficients in a
known function basis. The advantage of the approach under development is that the required number of
anomalous dimensions for different spin values can be computed much more quickly. All these details will
be the subject of one of our subsequent publications.

The presented techniques should also be applicable for solving twisted N=4 and ABJM QSCs with P
functions having twisted nonpolynomial asymptotic forms at large spectral parameter values. Those models
are interesting in connection with the recent progress with so-called fishnet theories [91]–[100]. Moreover,
we think that similar ideas should also be useful in studying the BFKL regime in the QSC approach [50]–[52]
for the N=4 SYM because the latter uses a perturbative expansion in both the coupling constant g and
the parameter w ≡ S + 1 describing the proximity of the Lorentz spin of the operator S to −1 such that
the ratio g2/w remains fixed.

Appendix: Some identities for Baxter polynomials

We derive identities presented in the main text. We use a powerful approach based on the generating
function for Baxter polynomials. It has the form [81]

W (x, u) =
∞
∑

S=0

xSQS(u) = (1 − x)−1/2+iu(1 + x)−1/2−iu. (A.1)
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Using this generating function, we can easily establish various linear relations between the Baxter polyno-
mials. In what follows, when writing an identity for the generating function, we imply that it can be easily
verified using explicit form (A.1).

First, expanding the identities

x∂x(1 ∓ x)W
(

x, u ± i

2

)

= −iux

[

W

(

x, u +
i

2

)

+ W

(

x, u +
i

2

)]

in x, we obtain
(

Q
[1]
S

Q
[−1]
S

)

=

(

1 − iu/S −iu/S

−iu/S −1 − iu/S

) (

Q
[1]
S−1

Q
[−1]
S−1

)

. (A.2)

In particular,
Q

[1]
S − Q

[−1]
S = Q

[1]
S−1 + Q

[−1]
S−1. (A.3)

This identity can be used to prove that

Q
[±2]
S = QS + 2

S
∑

k=1

(±1)kQS−k

by induction (we leave this as an exercise for the reader). Similarly, from

(1 + x) ∂x(1 − x)
W (x, u) − W (x, i/2)

u − i/2
= −2iW (x, u),

we obtain
(QS − QS−1)S

u − i/2
= −2iQS−1 −

(QS−1 − QS−2)(S − 1)
u − i/2

,

whence by induction we obtain
QS − QS−1

u − i/2
=

2i

S

S
∑

k=1

(−1)kQS−k.

This formula can in turn be used by induction to prove the identity

QS − 1
u − i/2

= 2i(−1)S
S

∑

k=1

(−1)k(H−1(S) − H−1(S − k))QS−k.

Replacing u → −u and using the symmetry QS(−u) = (−1)SQS(u), we obtain the second identity

QS − (−1)S

u + i/2
= −2i(−1)S

S
∑

k=1

(H−1(S) − H−1(S − k))QS−k.

We can similarly prove the identities

Q
[±1]
S − (±1)S

u ± i/2
= −2i

S
∑

k=1

(±1)k+1(H1(S) − H1(S − k))QS−k.

We now prove some identities quadratic in the Baxter polynomials. First, we have the identity

x∂xy∂y(x + y)(W [1]
x W [−1]

y + W [−1]
x W [1]

y ) = −iu[y∂y + x∂x](W [1]
x − W [−1]

x )(W [1]
y − W [−1]

y ),
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where Wx = W (x, u). From this identity, we obtain

S1S2[Q
[1]
S1

Q
[−1]
S2−1 + Q

[−1]
S1

Q
[1]
S2−1 + Q

[1]
S1−1Q

[−1]
S2

+ Q
[−1]
S1−1Q

[1]
S2

] =

= −iu(S1 + S2)(Q
[1]
S1

− Q
[−1]
S1

)(Q[1]
S2

− Q
[−1]
S2

). (A.4)

In particular, if S1 = S2 = S, then we have

Q
[1]
S Q

[−1]
S−1 + Q

[−1]
S Q

[1]
S−1 = − iu

S

(

Q
[1]
S − Q

[−1]
S

)2

. (A.5)

We also write the identity

Q
[1]
S Q

[−1]
S + Q

[1]
S−1Q

[−1]
S−1 =

−iu

2S
(Q[1]

S − Q
[−1]
S )(Q[1]

S + Q
[−1]
S + Q

[1]
S−1 − Q

[−1]
S−1), (A.6)

which can be proved by expressing Q
[±1]
S in terms of Q

[±1]
S−1 using Eq. (A.2).

We next prove the identity

1
2
[Q[1]

S + Q
[−1]
S + Q

[1]
S−1 − Q

[−1]
S−1] =

= 1 + (−1)S − iu

[

Q
[1]
S−1 + Q

[−1]
S−1

S
+

S−1
∑

n=1

1 + (−1)n+S

n
(Q[1]

n−1 + Q
[−1]
n−1)

]

. (A.7)

Multiplying this identity by xS−1 and summing over S from 1 to ∞, we obtain11

1
2

(

1 − x2

1 + x2

)

[(1 + x)W [1] + (1 − x)W [−1]] = 1 − iu

∫

dx (W [1] + W [−1]), (A.8)

where
∫

dx ◦ corresponds to the operator f(x) →
∫ x

0 dξ f(ξ). Equation (A.8) is equivalent to Eq. (A.7) and
can be explicitly verified by evaluating both sides of the equation and finding that they are both equal to
(1 − x)iu(1 + x)−iu.

We can now prove identity (3.3). Multiplying (3.3) by uQ
[1]
S Q

[−1]
S , we obtain

Q
[1]
S Q

[−1]
S = (−1)S − iu

S−1
∑

n=0

1 + (−1)n

2S − n
(Q[1]

S Q
[−1]
S−1−n + Q

[−1]
S Q

[1]
S−1−n).

We prove this identity by induction. The base case is easily verified. We prove the induction step. We find
that

Q
[1]
S Q

[−1]
S = Q

[1]
S Q

[−1]
S + Q

[1]
S−1Q

[−1]
S−1 − Q

[1]
S−1Q

[−1]
S−1

(A.6)
=

(A.6)
=

−iu

2S
(Q[1]

S − Q
[−1]
S )(Q[1]

S + Q
[−1]
S + Q

[1]
S−1 − Q

[−1]
S−1) − Q

[1]
S−1Q

[−1]
S−1

i.h=

i.h.= − iu

2S
(Q[1]

S − Q
[−1]
S )(Q[1]

S + Q
[−1]
S + Q

[1]
S−1 − Q

[−1]
S−1) +

+ (−1)S + iu

S−2
∑

n=0

1 + (−1)n

2S − 2 − n
(Q[1]

S−1Q
[−1]
S−2−n + Q

[−1]
S−1Q

[1]
S−2−n) =

= (−1)S − iu

S−1
∑

n=0

1 + (−1)n

2S − n
(Q[1]

S Q
[−1]
S−1−n + Q

[−1]
S Q

[1]
S−1−n) + A,

11In the course of transformations, we must change the order of summation over S and n as
�∞

S=1

�S−1
n=1 =

�∞
S=2

�S−1
n=1 =�∞

n=1

�∞
S=n+1.
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where “i.h.” denotes the induction hypothesis,

A = A1 + A2,

A1 = − iu

2S
(Q[1]

S − Q
[−1]
S )(Q[1]

S + Q
[−1]
S + Q

[1]
S−1 − Q

[−1]
S−1),

A2 = iu

S−1
∑

n=0

1 + (−1)n

2S − n
(Q[1]

S Q
[−1]
S−1−n + Q

[−1]
S Q

[1]
S−1−n) +

+ iu

S−2
∑

n=0

1 + (−1)n

2S − 2 − n
(Q[1]

S−1Q
[−1]
S−2−n + Q

[−1]
S−1Q

[1]
S−2−n).

Our goal is to prove that A = 0. Because of Eqs. (A.7) and (A.3), we can write A1 as

A1 = − iu

S
(Q[1]

S − Q
[−1]
S )

(

1 + (−1)S − iu

[

Q
[1]
S − Q

[−1]
S

S
+

S−1
∑

n=1

1 + (−1)n+S

n
(Q[1]

n − Q[−1]
n )

])

.

We now transform A2. We shift n → n − 2 in the second sum and normalize the summation limits by
adding/subtracting the terms with n = 0, 1 and n = S. We then change the summation variable n → S−n

and obtain

A2 = iu

S
∑

n=1

1 + (−1)n+S

S + n
(Q[1]

S Q
[−1]
n−1 + Q

[−1]
S Q

[1]
n−1 + Q

[1]
S−1Q

[−1]
n + Q

[−1]
S−1Q

[1]
n ) −

− iu

S
(Q[1]

S−1Q
[−1]
S + Q

[−1]
S−1Q

[1]
S ) +

iu

S
(1 + (−1)S)(Q[1]

S−1 + Q
[−1]
S−1).

The first line can be transformed using Eq. (A.4), and the second line can be transformed using Eqs. (A.3)
and (A.5). We obtain

A2 = u2 1
S

(Q[1]
S − Q

[−1]
S )

S
∑

n=1

1 + (−1)n+S

n
(Q[1]

n − Q[−1]
n ) +

+
u2

S2
(Q[1]

S − Q
[−1]
S )2 +

iu

S
(1 + (−1)S)(Q[1]

S − Q
[−1]
S ).

Comparing the final expressions for A1 and A2, we see that, indeed, A1 = −A2 and hence A = 0.
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54. B. Basso, V. Gonçalves, and S. Komatsu, “Structure constants at wrapping order,” JHEP, 1705, 124 (2017);

arXiv:1702.02154v1 [hep-th] (2017).

55. Y. Jiang, S. Komatsu, I. Kostov, and D. Serban, “Clustering and the three-point function,” J. Phys. A: Math.

Theor., 49, 454003 (2016); arXiv:1604.03575v2 [hep-th] (2016).

56. I. Balitsky, V. Kazakov, and E. Sobko, “Structure constant of twist-2 light-ray operators in the Regge limit,”

Phys. Rev. D, 93, 061701 (2016); arXiv:1506.02038v2 [hep-th] (2015).
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