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HIGHER HIROTA DIFFERENCE EQUATIONS AND THEIR

REDUCTIONS

A. K. Pogrebkov∗

We previously proposed an approach for constructing integrable equations based on the dynamics in

associative algebras given by commutator relations. In the framework of this approach, evolution equations

determined by commutators of (or similarity transformations with) functions of the same operator are

compatible by construction. Linear equations consequently arise, giving a base for constructing nonlinear

integrable equations together with the corresponding Lax pairs using a special dressing procedure. We

propose an extension of this approach based on introducing higher analogues of the famous Hirota difference

equation. We also consider some (1+1)-dimensional discrete integrable equations that arise as reductions

of either the Hirota difference equation itself or a higher equation in its hierarchy.
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1. Introduction

Here, we introduce and consider higher integrable generalizations of the famous Hirota difference
equation (HDE). It was introduced in [1], [2] in the bilinear form as an equation for the τ -function,

τ (1)(m)τ (2,3)(m) + τ (2)(m)τ (3,1)(m) + τ (3)(m)τ (1,2)(m) = 0, (1.1)

where τ(m) = τ(m1, m2, m3) is a function depending on three integers (independent variables) m1, m2, m3 ∈
Z. Here and hereafter, superscripts 1, 2, and 3 in parenthesis denote unit shifts of the variable with the
corresponding index:

τ (1)(m) = τ(m1 + 1, m2, m3), τ (2)(m) = τ(m1, m2 + 1, m3),

τ (2,3)(m) = τ(m1, m2 + 1, m3 + 1), and so on.
(1.2)

The HDE is a (2+1)-dimensional integrable equation to which many papers are devoted (see, e.g., [2]–
[11] and the references therein) because it generates many known integrable partial difference, difference–
differential, and differential equations via various continuous limits and (1+1)-dimensional integrable re-
ductions. In particular, such equations include the standard and modified Korteweg–de Vries (KdV) and
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Kadomtsev–Petviashvili equations and the two-dimensional Toda lattice, sine-Gordon, and Benjamin–Ono
equations, etc. Therefore, the HDE is often considered a fundamental integrable system.

The τ -function is well known as a tool for studying nonlinear integrable equations but is not convenient
for studying direct and inverse scattering problems. Therefore, in the literature (see, e.g., [6]), the function
v(m) = v(m1, m2, m3) was introduced by the equalities

v(1)(m) − v(3)(m) =
τ (1,3)(m)τ(m)
τ (1)(m)τ (3)(m)

, (1.3)

v(2)(m) − v(1)(m) =
τ (1,2)(m)τ(m)
τ (2)(m)τ (1)(m)

, (1.4)

which allows rewriting (1.1) in the form (see notation (1.2))

v(1,2)(v(1) − v(2)) + v(2,3)(v(2) − v(3)) + v(3,1)(v(3) − v(1)) = 0. (1.5)

In these terms, the Lax pair for the HDE is given by any two of the three equations

ϕ(2) = ϕ(1) + (v(2) − v(1))ϕ, (1.6a)

ϕ(3) = ϕ(2) + (v(3) − v(2))ϕ, (1.6b)

ϕ(1) = ϕ(3) + (v(1) − v(3))ϕ, (1.6c)

which emphasizes the symmetry of the HDE with respect to all three variables mi. At the same time,
we can regard Eq. (1.5) as an evolution equation, where, for example, m1 and m2 play the role of space
variables and m3 is the time variable.

Here, in deriving higher generalizations of the HDE, we follow [12]–[14], where nonlinear integrable
equations were derived as a result of a special procedure for dressing the corresponding linear equations.
Hence, the initial step in our approach is to derive these linear equations, in a sense, equations for the
scattering data. For this, we use the following construction. Let A and B be two arbitrary elements of an
associative algebra over C. We introduce the dependence of B on discrete or continuous parameters via the
commutators of some functions of A with B. We consider the term “commutator” in both senses: in the
algebraic sense for continuous parameters and in the group sense (similarity transformation) for discrete
parameters. We interpret these parameters as independent variables (times) yielding mutually commuting
flows on the algebra, continuous or discrete. The linear evolution equation is then a result of a commutator
identity specific for the chosen functions of A holding on an arbitrary associative algebra.

This paper is structured as follows. In Sec. 2, we use the example of the HDE to demonstrate the
main topics of our approach (see [13] for more details). In Sec. 3, we consider some reductions of this
(2+1)-dimensional integrable system to (1+1)-integrable systems. In Sec. 4. we give a generic construction
of higher equations of the HDE type, including a discrete analogue of the Zakharov–Shabat system. In
Sec. 5, we consider an example of such a higher HDE. In Sec. 6, we give some (1+1)-dimensional reductions
of this equation. In Sec. 7, we present concluding remarks.

2. The HDE as an example of a general construction

2.1. Commutator identity and a linear equation on an associative algebra. Here, we fol-
low [13] to illustrate details of our approach. We start with the simplest case of the HDE itself. Let there
be an associative algebra with a unit I, and for some element A in this algebra, let there exist inverse
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elements (A − aiI)−1 for some constants a1, a2, a3 ∈ C (a1 �= a2 �= a3 �= a1). Let B be another element of
this algebra. We introduce the dependence of B on three discrete variables m1, m2, and m3 belonging to
Z by the equalities (see notation (1.2))

B(1) = (A − a1I)B(A − a1I)−1,

B(2) = (A − a2I)B(A − a2I)−1,

B(3) = (A − a3I)B(A − a3I)−1.

(2.1)

Then B(m) satisfies the linear difference equation

a12{B(12) + B(3)} + cycle{1, 2, 3} = 0, (2.2)

where the differences
aij = ai − aj (2.3)

are nonzero. Equation (2.2) follows from the commutator identity

a12{(A − a1)(A − a2)B(A − a1)−1(A − a2)−1 +

+ (A − a3)B(A − a3)−1} + cycle(1, 2, 3) = 0, (2.4)

which holds on an arbitrary associative algebra. Equation (2.2) is a linearized version of HDE (1.5)
(see (2.27) below or [13]).

2.2. Operator realization and dressing procedure. In [13], we used an analogy to pseudodiffer-
ential operators to formulate a dressing procedure. We consider (infinite) matrices F, G, . . . and let T denote
the shift matrix Tm1,m′

1
= δm1,m′

1+1. For any matrix F = {Fij}i,j∈Z, we introduce fn(m1) = Fm1,m1−n,
and F can hence be written as

F =
∑

n∈Z

fnT n, (2.5)

where all matrices fn = diag{fn(m1)}m1∈Z are diagonal and are hence mutually commuting matrices. We
note that this is a leading consideration only; we therefore do not discuss convergence of the above series.
With this accuracy, we uniquely assign each matrix F its symbol

F̃ (m1, z) =
∑

n∈Z

fn(m1)zn, (2.6)

where m1 ∈ Z and z = z� + iz� ∈ C. It is easy to see that the standard product of matrices F and G in
terms of their symbols becomes

F̃G(m1, z) =
∮

|ζ|=1

dζ

2πiζ
F̃ (m1, zζ)

∑

m′
1∈Z

ζm1−m′
1G̃(m′

1, z). (2.7)

As useful examples, we mention that for the unit and shift matrices I and T , we have in(m1) = δm1,0 and
tn(m1) = δm1,1. Hence, by the above definition, we have the symbols

Ĩ(m, z) = 1, T̃ (m, z) = z. (2.8)
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Relation (2.5) shows that we use an analogue of the normal order: all shift operators are placed to the
right of multiplication operators. In particular, let F be a diagonal matrix, which means its symbol is
independent of z: F̃ (m1, z) ≡ F̃ (m1) (see (2.5)). By (2.7), we then have

F̃G(m1, z) = F̃ (m1)G̃(m1, z) (2.9)

for any operator G. Hence, operators with z-independent symbols play the role of multiplication operators.
Conversely, let G be a function of only the shift operator, i.e., by (2.5), its symbol is independent of the
discrete variable: G̃(m1, z) ≡ G̃(z). By (2.7), we then have

F̃G(m1, z) = F̃ (m1, z)G̃(z) (2.10)

for an arbitrary F . The similarity transformation by the operator T , as follows from (2.7) and (2.10), gives
a shift of the discrete variable:

T̃ FT−1(m1, z) = F̃ (m1 + 1, z), i.e., TFT−1 = F (1), (2.11)

where we use notation (1.2). This relation is essential for the construction below.
In what follows, we consider a set of “pseudomatrix” operators F, G, . . . given by their symbols F̃ , G̃, . . .

with the above composition law. We impose the condition that these symbols are tempered distributions in
their variables or Fourier coefficients of distributions. But in the generic case, we do not expect any relation
of type (2.5) for these operators with matrices; in particular, we do not expect any analyticity property of
the symbols of operators with respect to the variable z. Therefore, we can introduce operations on this set
that are well defined in terms of symbols but have no analogue on the set of matrices. In particular, in [13],
we defined the ∂̄-differentiation operation F → ∂̄F :

( ˜̄∂F )(m, z) =
∂F̃ (m, z)

∂z̄
. (2.12)

This derivative is a measure of the departure of the operator symbol from analyticity and hence also gives
a measure of the departure of operator from the infinite matrix, i.e., from the case where the series in (2.5)
converges. In particular, the unit and shift operators, as follows from (2.8), satisfy

∂̄I = 0, ∂̄T = 0. (2.13)

2.3. Dressing procedure. We regard operators A and B as operators of the above kind with symbols
Ã and B̃. The dependence of the symbol of B on m1, B(1) = (A − a1)B(A − a1)−1, is exactly the same as
under similarity transformation (2.11) using the operator T . We can therefore set

A = T + a1, i.e., Ã(m, z) = z + a1. (2.14)

In accordance with (2.1), we then have

B(1) = TBT−1, B(2) = (T + a12)B(T + a12)−1,

B(3) = (T + a13)B(T + a13)−1,
(2.15)

where we use notation (1.2) and (2.3). The symbol B̃(m1, m2, m3, z) of B now depends on the three discrete
variables m1, m2, m3 ∈ Z in addition to the variable z. In what follows, we use the notation B̃(m, z), setting

1782



m = {m1, m2, m3}. The dependence on m2 and m3 does not affect (2.7), where the product of symbols
must be considered pointwise with respect to these variables. Therefore,

(FG)(i) = F (i)G(i), i = 1, 2, 3, (2.16)

where this equality follows from (2.7) for i = 1.
Because of the m-dependence of the operator B specified in (2.15), we can represent its symbol as

B̃(m, z) =
∮

|ζ|=1

dζ

2πiζ
ζm1

(
zζ + a12

z + a12

)m2
(

zζ + a13

z + a13

)m3

b(ζ, z), (2.17)

where b(ζ, z) is some function. It was shown in [13] that to avoid growth of this symbol with respect to m2

and m3, it suffices to set all aj to be real and the support of the function b(ζ, z) to be accumulated on the
surface ζ = z̄/z. For the symbol of B, we hence have the representation

B̃(m, z) =
(

z̄

z

)m1
(

z̄ + a12

z + a12

)m2
(

z̄ + a13

z + a13

)m3

f(z), (2.18)

where f(z) is an arbitrary function of z ∈ C.
We introduce the main object of our construction, the dressing operator K with the symbol K̃(m, z),

as the solution of the ∂̄-problem

∂̄K = KB, lim
z→∞

K̃(m, z) = 1, (2.19)

where the product in the right-hand side is understood in the sense of (2.7). In what follows, we assume
the unique solvability of this problem, which is crucial for our construction but not essential for its results
(see Sec. 7). The dependence of K on the m variables is introduced via the same ∂̄-problem:

∂̄K(j) = K(j)B(j), lim
z→∞

K̃(j)(m, z) = 1, j = 1, 2, 3, (2.20)

where we take (2.16) into account.
The compatibility of the evolution equations for the operator B is obvious by construction. By (2.16)

and (2.20), we then have ∂̄K(i,j) = K(i,j)B(i,j) and ∂̄K(j,i) = K(j,i)B(i,j) for any i, j = 1, 2, 3. Therefore,
the difference K(i,j) − K(j,i) satisfies the ∂̄ equation in (2.19), but with zero asymptotic behavior. Hence,
this difference is equal to zero because we assumed the unique solvability. We consider consequences of
equality (2.15) for the operator K. We note that this operator, like any operator of the considered class,
satisfies (2.11),

K(1) = TKT−1, (2.21)

which is compatible with (2.20) for j = 1 because of the first equality in (2.15). We now consider j = 2.
From (2.13) and (2.15), we derive

∂̄(K(2)(T + a12)) = (K(2)(T + a12))B,

and the product K(2)(T + a12) hence satisfies the same ∂̄ equation but with a linear asymptotic growth at
large z. And again by the assumption that problem (2.19) is uniquely solvable, there exists a multiplication
operator X , an operator whose symbol is independent of z, such that K(2)(T +a12) = (T +X)K. Specifying
the asymptotic condition in (2.19) by the next term of the expansion,

K = I + uT−1 + . . . , z → ∞, (2.22)
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where the ellipsis denotes terms with symbols decaying faster than z−1 and where u is a multiplication
operator, because of (2.21), we obtain

K(2)(T + a12) = K(1)T + (a12 + u(2) − u(1))K. (2.23)

An analogous consideration shows that the evolution in m3 is given by the equation

K(3)(T + a13) = K(1)T + (a13 + u(3) − u(1))K. (2.24)

Because of (2.9) and (2.10), relations (2.22) and (2.23) in terms of symbols become

(z + a12)K̃(2)(m, z) = zK̃(1)(m, z) + (v(2)(m) − v(1)(m))K̃(m, z), (2.25a)

(z + a13)K̃(3)(m, z) = zK̃(1)(m, z) + (v(3)(m) − v(1)(m))K̃(m, z), (2.25b)

and z ∈ C hence plays the role of the spectral parameter. Here, for brevity, we introduce the new dependent
variable

v(m) = u(m) − m1a1 − m2a2 − m3a3. (2.26)

Equations (2.25) are compatible by construction, and directly verifying this compatibility shows that the
function v(m) satisfies (1.5), i.e., the HDE. With the substitution of (2.26), this equation becomes

u(12)(u(2) − u(1) + a12) + a12u
(3) + cycle = 0, (2.27)

and the original Eq. (2.2) is its linearized version. We note that while the constants ai are absent from (1.5),
by (2.26), they determine the asymptotic behavior of v(m): this function grows linearly with m at infinity.
In [13], we demonstrated that this asymptotic behavior resolves the problem of the ill definedness of the
Cauchy problem for (1.5).

To pass to the standard notation, we introduce the Jost solution

ϕ(m, z) = K̃(m, z)zm1(z + a12)m2(z + a13)m3 . (2.28)

Then (2.25a) and (2.25b) reduce to (1.6a) and (1.6c), i.e., to the Lax pair for the HDE. The Jost solution
also simplifies writing ∂̄-problem (2.19). To show this, we note that because of (2.7) and (2.18), we can
write problem (2.19) in terms of the symbol of the dressing operator as

∂K̃(m, z)
∂z̄

= K̃(m, z̄)
(

z̄

z

)
m1

(
z̄ + a12

z + a12

)
m2

(
z̄ + a13

z + a13

)
m3

f(z), (2.29)

which because of (2.28) gives the standard form of the ∂̄-problem with conjugation:

∂ϕ(m, z)
∂z̄

= ϕ(m, z̄)f(z). (2.30)

Representation (2.29) demonstrates the degeneracy of the dispersion law, a property well known [15] to be
directly related to integrability.
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3. The (1+1)-dimensional reductions of the HDE

In [12]–[14] and [16], we demonstrated that the approach based on commutator relations leads to
integrable equations in (2+1) dimensions. To obtain (1+1)-dimensional integrable systems, we must perform
reductions. Following the idea of our approach, we start by constructing reductions of linear equation (2.2)
for B and then apply the dressing procedure to obtain nonlinear integrable systems. In this case, dimensional
reduction is thus understood as a relation between values of the operator B given by some shifts of the
independent variables mi. Such a relation must be compatible with (2.18) and must preserve the dependence
of B on two independent variables. Because of (2.18), it is easy to see that any such reduction leads to
an equation for the spectral parameter z: it must belong to a some curve on C. This is possible only if
the function f(z) in (2.18) and then B̃(m, z) itself have a support on this curve, which we here regard
as proportionality to a corresponding δ-function for simplicity. But (2.29) then means that the symbol
K̃(m, z) is an analytic function outside this curve, and inverse problem (2.19) must hence be replaced with
the standard Riemann–Hilbert problem. We do not go into these details here because if we have a reduction
in the above sense, then we can derive the reduced Lax pair and the nonlinear integrable system directly
from the (2+1)-dimensional ones.

It is natural to assume that the simplest reduction of the HDE is given by B(i) = B for some i, i.e.,
by the condition that the symbol B̃(m, z) is independent of one of the variables m1, m2, or m3. But
representation (2.18) shows that this is not a reduction in our sense, because it is possible only if z� = 0,
which cancels the dependence of B̃(m, z) on all other independent variables. Therefore, to obtain nontrivial
reductions, we must seek more complicated relations on the independent variables. We note that the trivial
condition z� = 0 appears in all possible reductions, and we hence omit it below.

3.1. The reduction B(2) = B(−1). We start with the condition B(2) = B(−1), where the superscript
(−1) denotes the shift m1 → m1 − 1 in the function argument. In terms of symbols, this reduction gives

B̃(m1, m2, m3, z) = B̃(m1 − m2, 0, m3, z), (3.1)

which by (2.18) is possible only if z� = −a12/2 (we omit the trivial case z� = 0). Setting

a2 = −a1 (3.2)

for simplicity here, we see that the above reduction requires the proportionality of a symbol B to the
δ-function δ(z� + a1), and by (2.18), we hence have

B̃(m1, 0, m3, z) =
(

a1 + iz�
a1 − iz�

)
m1

(
a3 + iz�
a3 − iz�

)
m3

b(z�)δ(z� + a1), (3.3)

where b(z�) is an arbitrary function of its argument (scattering data). The operator B with this symbol
obviously satisfies the equation

a13(B(1,3) − B) + (a1 + a3)(B(1) − B(3)) = 0, (3.4)

and the corresponding reduction of the original Eq. (2.2) gives

a13(B(1,3) − B) + (a1 + a3)(B(1) − B(3)) = [a13(B(1,3) − B) + (a1 + a3)(B(1) − B(3))]−1.

Both sides of this equation are independent of m1, and (3.4) hence arises as a result of summing it.
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We emphasize that because of (2.19), the symbol K̃(m, z) of the dressing operator is an analytic
function of z ∈ C in the half-planes z� ≷ −a1 (see the discussion at the beginning of this section).

Because of (2.7), (2.19), and (3.1), we also obtain K(2) = K(−1), i.e.,

K̃(m1, m2, m3, z) = K̃(m1 − m2, 0, m3, z), z ∈ C.

Therefore, Eq. (2.25b) of the Lax pair is unchanged, and for (2.25a), we have

(z + 2a1)K̃(−1)(m, z) = zK̃(1)(m, z) + (v(−1)(m) − v(1)(m))K̃(m, z). (3.5)

Because of (2.22), we also have u(m1, m2, m3, z) = u(m1 − m2, 0, m3, z). Relation (3.2) gives the same
dependence of v(m) on m1 − m2 and m3. Because of this specific dependence on m, we must modify
definition (2.28) of the Jost solution:

ψ(m1 − m2, m3, λ) = K̃(m, z)zm1−m2(z + a13)m3 , (3.6)

where we set
λ = z + a1, (3.7)

which in fact is the symbol of the operator A (see (2.15)). Therefore, now setting m2 = 0, we write

v(m) ≡ v(m1, m3) = v(m1, m3, 0) − a1m1 − a3m3, (3.8)

and Eq. (1.6c) hence remains unchanged, ψ(3) = ψ(1) + (v(3) − v(1))ψ, while (3.5) and the Lax pair itself
become

ψ(1) = (v(1) − v(−1))ψ + (λ − a2
1)ψ

(−1), (3.9)

ψ(3) = (v(3) − v(−1))ψ + (λ − a2
1)ψ

(−1), (3.10)

where ψ(1) in the second equality was replaced with (3.9).
The compatibility equation for this pair can be derived either directly or as a reduction of (1.5) and is

(v(1,3) − v)(v(3) − v(1)) = (v(−1,3) − v)(v(3) − v(−1)), (3.11)

which we can rewrite as

{(v(3) − v(−1))(v(3) − v(1))(−1)}(1) = (v(3) − v(−1))(v(3) − v(1))(−1). (3.12)

The multiplication operator in the right-hand side (or left-hand side) thus has a symbol independent of m1.
Taking (3.8) and the decay of u(m) as m1 → ∞ into account, we obtain

v(3)(m) − v(±1)(m) → ±a13. (3.13)

Therefore, (3.12) gives
(v(1,3) − v)(v(3) − v(1)) = a2

3 − a2
1, (3.14)

where we shift m1 → m1 + 1. Equation (3.14) is known as the discrete potential KdV equation. It was
derived in [17], [18] and was discussed in detail in the literature together with its non-Abelian generalizations
(see [19] and the references therein). We derived this equation here as an example of dimensional reduction
in the framework of our approach.
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3.2. The reduction B(3) = B(1,2). The (1+1)-dimensional reduction B(3) = B(1,2) of the HDE
preserves its specific property: symmetry with respect to the independent variables. Let

a3 = a1 + a2 (3.15)

for simplicity. Then by (2.18), this reduction means that z must satisfy the condition

|z − a2|2 = a1a2. (3.16)

In other words, the symbol B̃(m, z) must be proportional to the δ-function on circle (3.16). Hence, a1a2 > 0
here, and the symbol of the dressing operator is analytic inside and outside circle (3.16). We also note that
because of this reduction, the symbols of B and K satisfy the conditions

B̃(m1, m2, m3, z) = B̃(m1 + m3, m2 + m3, 0, z),

K̃(m1, m2, m3, z) = K̃(m1 + m3, m2 + m3, 0, z).
(3.17)

Consequently, by (2.22), we have the same dependence of u(m) on mi, and by (2.26) and (3.15), this also
holds for the function v,

v(m1, m2, m3) = v(m1 + m3, m2 + m3, 0). (3.18)

We see that Eq. (2.23) is unchanged under this reduction and (2.24) reduces to

(z − a2)K̃(1,2)(m, z) = zK̃(1)(m, z) + (v(1,2)(m) − v(1)(m))K̃(m, z),

where now m3 = 0. We here introduce the Jost solution via the equation (cf. (2.28))

ψ(m1, m2, k) = K̃(m1, m2, 0, z)zm1(z + a12)m2 , (3.19)

where

k =
2

a12

(
a1

z + a12
− a2

z

)
(3.20)

is the spectral parameter. Finally, for the Lax pair, we obtain

ψ(2) − ψ(1) = (v(2) − v(1))ψ, (3.21)

kψ(1,2) = ψ(1) + ψ(2) + (2v(1,2) − v(1) − v(2))ψ, (3.22)

and the corresponding nonlinear integrable equation is

(v(1,2)(v(2) − v) + vv(2))(1) = (v(1,2)(v(1) − v) + vv(1))(2), (3.23)

which is an equation of a (1+1)-dimensional chain with discrete time evolution, symmetric with respect to
both independent variables.

3.3. The reduction B(3) = B(−1,−2). The reduction B(3) = B(−1,−2) is another that leads to a
symmetric chain. Repeating the same arguments as above, we obtain

B̃(m, z) = B̃(m1 − m3, m2 − m3, 0, z), (3.24)

which means B̃(m, z) is proportional to the δ-function on the hyperbola given by the equation 3(z�+a1)2−
z2
� = (a1 + a2)2 − a1a2. Omitting other details, we present only the corresponding nonlinear equation:

v(1,2)(v(1) − v(2)) − v(−1,−2)(v(−1) − v(−2)) = v(1)v(−2) − v(−1)v(2). (3.25)

Analogous reductions are considered below as an example of the higher HDE.
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4. Higher Hirota difference equations

An obvious way to introduce new discrete independent variables into the HDE is to increase the
number of evolution equations of type (2.1), i.e., to the discrete variables {m1, m2, m3}, to add as many
other variables {m4, m5, . . . } as we want such that the dynamics with respect to any of them is given by
B(i) = (A − ai)B(A − ai)−1, where a4, a5, . . . are different (real) parameters. All these evolutions are
mutually compatible and are compatible with the original variables, but their definition shows that for any
i, j, and k, we have an analogue of (2.2) (also see (2.3)):

aij{B(ij) + B(k)} + cycle{i, j, k} = 0.

Mimicking the construction in Sec. 2, we then find that with respect to any three variables mi, mj, and
mk, the function u(m1, . . . ) defined in (2.22) and the function v(m) = u(m) −

∑
i aimi (cf. (2.26)) satisfy

the same HDE. Therefore, this “extension” is trivial and can be interesting only for studying symmetries
of the HDE (see, e.g., [20]).

Therefore, to obtain higher analogues of the HDE, we must consider higher analogues of similarity
transformations (2.1). Let pi = pi(T ), i = 1, 2, 3, be polynomials in the operator T of the orders ni with
constant coefficients, i.e., symbols p̃i(m, z) = pi(z) are polynomials in z ∈ C. We also assume that all these
polynomials have simple and pairwise different zeros and that the coefficients of the highest powers are
equal to I. As before, we consider an operator B with the symbol B̃(m1, m2, m3, z) depending on discrete
variables mi ∈ Z, but the dependence on these variables is now given by

B(i) = piBp−1
i , i = 1, 2, 3, (4.1)

instead of (2.1). We note that because of the condition on the polynomials pi, we can write each of them as

pi(T ) =
ni∏

j=1

(T − xij), (4.2)

and the shift in the ith variable by (4.1) is hence equivalent to the ni shifts in the sense of (2.1). Nevertheless,
deriving evolution equations (4.1) using such multidimensional reductions is very complicated even in the
linear case, and we therefore construct nonlinear equations directly based on (4.1). To be consistent with
the operator approach developed in Sec. 2.2, we choose

p1(T ) = T. (4.3)

The dressing operator K is defined by the same ∂̄-problem (2.19), and its dependence on mi is given
by (4.1). As before, under the assumption that (2.19) is uniquely solvable, there then exist polynomials
Pi(T ) such that

K(i)pi = PiK, i = 1, 2, 3. (4.4)

We write

pi(T ) =
ni∑

j=0

yijT
j, Pi(T ) =

ni∑

j=0

YijT
j, (4.5)

where yi,ni = Yi,ni ≡ 1, all yij are constants, and Yij are multiplication operators, Ỹij(m, z) = Ỹij(m).
Then (4.4) becomes

K(i)
ni∑

j=0

yijT
j =

ni∑

j=0

YijK
(1×j)T j, i = 1, 2, 3. (4.6)
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Here, we introduce the notation (cf. (2.11))

K̃(1×j)(m1, m2, . . . , z) = K̃(m1 + j, m2, . . . , z). (4.7)

Equation (4.6) can be simplified by writing it in terms of the Jost solution (cf. (2.28))

ϕ(m, z) = K̃(m, z)p1(z)m1p2(z)m2p3(z)m3 , (4.8)

which by (2.8), (4.6), and (4.7) gives

ϕ(i)(m1, m2, m3, z) =
mi∑

j=0

Yi,j(m)ϕ(m1 + j, m2, m3, z). (4.9)

The representation of the symbol of B follows from (4.1) by analogy to (2.17):

B̃(m, z) =
∮

|ζ|=1

dζ

2πiζ
ζm1

(
p2(ζz)
p2(z)

)
m2

(
p3(ζz)
p3(z)

)
m3

b(ζ, z),

where b(ζ, z) is some function. To prevent increase of the symbol with m2 or m3, we impose the condition
|pi(ζz)| = |pi(z)|. Moreover, for simplicity, we assume that the polynomials pi(z) have real coefficients and
b(ζ, z) = δc(ζz/z̄)f(z), where δc(ζ) is the δ-function on the unit contour and f(z) is an arbitrary function
of z ∈ C. By analogy to (2.18), we then obtain the representation

B̃(m, z) =
(

z̄

z

)
m1

(
p2(z̄)
p2(z)

)
m2

(
p3(z̄)
p3(z)

)
m3

f(z). (4.10)

Repeating the arguments in Sec. 2.2, from the assumption that problem (2.19) is uniquely solvable, we
find that evolution equations (4.4) (or (4.6)) are compatible:

K(i,j) = K(j,i) (4.11)

for any i and j. This compatibility allows deriving a discrete version of the Zakharov–Shabat system [21].
Indeed, because of (2.16) and (4.4), we have

K(i,j)pipj = P
(j)
i K(j)pj = P

(j)
i PjK, i, j = 1, 2, 3. (4.12)

Taking into account that the polynomials pi and pj with constant coefficients commute (see (2.10)), we find
that the left-hand side of (4.12) is symmetric with respect to i and j by (4.11). The right-hand side the
gives

P
(j)
i Pj = P

(i)
j Pi, i, j = 1, 2, 3. (4.13)

Conversely, (4.11) follows from (4.13).
Discrete version (4.13) of the Zakharov–Shabat system allows deriving evolution equations for the

coefficient functions of the polynomials Pi. First, if i or j equals unity in (4.13), then this equality becomes
an identity because of (2.11) and (4.3) (cf. (2.21)). We now let i, j �= 1. Then substituting Pi(T ) from (4.5),
we move all operators T to the right using (2.11). It is then clear that both sides of (4.13) are polynomials
in T of the order n2 + n3 with unit leading coefficients. Equating coefficients of equal powers of T , we
obtain exactly n2+n3 equations:

min{l,ni}∑

k=max{l−nj ,0}
(Y (j)

ik Y
(1×k)
ik − Y

(i)
j,m−kY

(1×(l−k))
ik ) = 0, l = 0, 1, . . . , n2 + n3 − 1, (4.14)
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where we use notation (4.7) and the value l = n2 +n3 is omitted because it is trivial. On the other hand, we
must note that the functions Yij are not independent, because by (4.6), these n2+n3 coefficient functions
are given in terms of n=max{n2, n3} coefficient functions of the asymptotic decomposition of the dressing
operator,

K = I +
n∑

j=1

kjT
−j + o(T−n), (4.15)

where the symbols of kj are independent of z, k̃j(m, z) = kj(m), and o(T−n) is understood in the sense of
symbols, i.e., as o(z−n). By construction, system (4.14) remains compatible after such a substitution and
gives a nonlinear integrable system.

The simplest example of this construction is given by the choice n2 = n3 = 1, whence P2 = T + Y2,0

and P3 = T + Y3,0. Then (4.14) reduces to the system

Y
(1)
2,0 + Y

(2)
3,0 = Y

(1)
3,0 + Y

(3)
2,0 , Y

(2)
3,0 Y2,0 = Y

(3)
2,0 Y3,0. (4.16)

If we introduce Y2,0 = v(2) −v(1) and Y3,0 = v(3) −v(1) (cf. (2.23), (2.24), and (2.26)), then the first equality
in (4.16) becomes an identity, and the second equality gives exactly HDE (1.5).

Remark. In the above construction, the order of the coefficients yij and Yij never changed, which
means that relation (4.13) also holds in the non-Abelian case, where these coefficients are not mutually
commuting [14].

5. An example of the higher Hirota difference equation

In this section, we consider an example of a higher equation closest to the HDE. Let the dynamics of
the operator B in (4.1) be given via the polynomials

p1(T ) = T, p2(T ) = T + a12, p3(T ) = (T + a1)2 − a2
3, (5.1)

where (4.3) is taken into account and a1, a2, and a2
3 are real constants, a12 = a1 − a2 �= 0, a3 �= 0,±a2. Let

ΔiB = B(i) − B denote the first difference of the operators. Then B satisfies the difference equation

[(Δ1a1 − Δ2a2)2 − a2
3(Δ1 − Δ2)2]Δ3B = a12Δ1Δ2(a12Δ1Δ2 + 2Δ1a1 − 2Δ2a2)B, (5.2)

which follows from the corresponding commutator identity. It can also be verified directly because (4.10)
here becomes

B̃(m, z) =
(

z̄

z

)
m1

(
z̄ + a12

z + a12

)
m2

(
(z̄ + a1)2 − a2

3

(z + a1)2 − a2
3

)
m3

f(z). (5.3)

The dressing operator K is defined as always by (2.19), and by (4.5), we hence have

P2(T ) = T + Y20, (5.4)

P3(T ) = T 2 + Y31T + Y30, (5.5)

where the symbols of Yij are independent of z. By (4.6), the Lax pair is then given in the form

K(2)(T + a12) = K(1)T + Y20K, (5.6)

K(3)[(T + a1)2 − a2
3] = K(1,1)T 2 + Y31K

(1)T + Y30K, (5.7)
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where the coefficients by (4.13), (5.4), and (5.5) satisfy

Y
(1)
31 + Y

(3)
20 = Y

(1,1)
20 + Y

(2)
31 ,

Y
(1)
30 + Y

(3)
20 Y31 = Y

(2)
30 + Y

(2)
31 Y

(1)
20 ,

Y
(3)
20 Y30 = Y

(2)
30 Y20.

(5.8)

Taking the symmetry of this reduction with respect to m1 and m2 into account, we can justifiably
rewrite (5.7) in the explicitly symmetric form using (5.6). We thus obtain

K(2)(A − a2) = K(1)(A − a1) + Y20K, (5.9)

K(3)[A2 − a2
3] = K(1,2)(A − a1)(A − a2) +

+ X31(K(1)(A − a1) + K(2)(A − a2)) + X30K, (5.10)

where we again use (2.14) for symmetry and where the new coefficients are

X31 =
1
2
(Y31 − Y

(1)
20 ), X30 = Y30 + X31Y20. (5.11)

In these terms, relations (5.8) also take a symmetric form:

Y
(3)
20 = Y

(1,2)
20 + 2X

(2)
31 − 2X

(1)
31 , (5.12)

2Y
(3)
20 X31 = X

(2)
20 − X

(1)
30 + X

(2)
31 Y

(2)
20 + X

(1)
31 Y

(1)
20 , (5.13)

2Y
(3)
20 X30 = [X(2)

30 + X
(1)
30 + X

(2)
31 Y

(2)
20 − X

(1)
31 Y

(1)
20 ]Y20. (5.14)

The coefficients Yij (or Xij) must be defined by substituting asymptotic expansion (4.15) in (5.6)
and (5.7) (or (5.9) and (5.10)). To preserve the abovementioned symmetry, we here use the last two
equations, and instead of (4.15), we write the expansion in the form

K = I + uA−1 + wA−2 + . . . (5.15)

(see (2.14)), where the symbols of u and w depend only on the variables m. We omit the computation
details here, and to present the results, we introduce the functions

v(m) = u(m) − m1a1 − m2a2, (5.16)

f(m) = w(m) − (m1a1 + m2a2)u(m) +

+
1
2
(m1a1 + m2a2)2 −

m1a
2
1

2
− m2a

2
2

2
− m3a

2
3. (5.17)

Substituting (5.15) in (5.9) and (5.10), we then obtain

Y20 = v(2) − v(1), (5.18a)

f (2) − f (1) = Y20v, (5.18b)

X31 =
1
2
(v(3) − v(1,2)), (5.18c)

X30 = f (3) − f (1,2) − X31(v(1) + v(2)). (5.18d)
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The three functions Y20, X30, and X31 are thus given in terms of the two functions v and f and must satisfy
the three Eqs. (5.12)–(5.14). As noted above, this system is compatible. In particular, it is easy to verify
that (5.12) and (5.13) become identities because of (5.18a)–(5.18c) and that (5.18d) reduces to

2v(2,3)[f (3) − f (1,2) − v(3)v(2) + v(2)v(1,2)] − 2v(1,3)[f (3) − f (1,2) − v(3)v(1) + v(1)v(1,2)] =

= (v(2) − v(1))[(f (2) − v(2)v)(3) + (f (1) − v(1)v)(3) − (f (2) − v(2)v)(1,2) − (f (1) − v(1)v)(1,2)], (5.19)

which gives one equation for two functions. These functions are not independent, because by (5.18a)
and (5.18b), we have

f (2) − v(2)v = f (1) − v(1)v. (5.20)

Equations (5.19) and (5.20) are equations of an integrable system, which gives an example of a higher HDE.
This system follows as the compatibility condition for Lax pair (5.9), (5.10), which in terms of the Jost
solution (cf. (4.8))

ϕ(m, z) = K̃(m, z)zm1(z + a12)m2 [(z + a1)2 − a2
3]

m3 (5.21)

is

ϕ(2) = ϕ(1) + (v(2) − v(1))ϕ, (5.22)

ϕ(3) = ϕ(1,2) + (v(3) − v(1,2))
ϕ(1) + ϕ(2)

2
+ f (3) − f (1,2) − 1

2
(v(1) + v(2))(v(3) − v(1,2))]ϕ, (5.23)

where we use (5.18). Omitting details, we note that because of (5.22), we can write (5.23) as

ϕ(3) = ϕ(1,1) + (v(3) − v(1,1))ϕ(1) + [f (3) − f (1,2) − v(1)(v(3) − v(1,2))]ϕ, (5.24)

which together with (5.22) gives an equivalent Lax pair.

6. Reductions of system (5.19), (5.20)

6.1. The reduction B(3) = B. System (5.19), (5.20) also admits (1+1)-dimensional reductions,
and the discussion at the beginning of Sec. 3 is applicable here with the only difference that the curve on
C is now determined by (5.3) instead of (2.18). Therefore, although system (5.19), (5.20) differs from the
HDE only by the dependence on the variable m3, the reduction B(3) = B is here nontrivial. Indeed, because
of (5.3), this reduction means that the symbol B̃(m, z) is nonzero if (z̄ + a1)2 = (z + a1)2, i.e., z� = −a1,
and the function f(z) in (5.3) must therefore be proportional to δ(z� + a1):

B̃(m, z) =
(

a1 + iz�
a1 − iz�

)
m1

(
a1 + iz�
a1 − iz�

)
m2

δ(z� + a1)r(z�). (6.1)

Inverse problem (2.19) then not only shows that the dressing operator is independent of m3 but also shows
that its symbol K̃(m1, m2, z) is an analytic function of z if z� �= −a1.

To obtain the reduced Lax pair and a nonlinear equation, we note that the coefficients of asymptotic
expansion (5.15) are independent of m3, i.e., u(m) = u(m1, m2) and w(m) = w(m1, m2). Correspondingly,
by (5.16) and (5.17), we have v(m) = v(m1, m2) and f(m) = g(m1, m2) − a3

3m3, where g(m1, m2) =
f(m1, m2, 0). Substituting these relations in (5.19) and (5.20), we obtain the nonlinear integrable system

(g(2) − v(2)v)(1,2) + (g(1) − v(1)v)(1,2) − (g(2) − v(2)v)(1) − (g(1) − v(1)v)(2) −

− (g(2) − v(2)v) − (g(1) − v(1)v) + 2g − 2v(v(1) + v(2)) = 0, (6.2)

g(2) − v(2)v = g(1) − v(1)v. (6.3)
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Taking into account that the symbol K̃(m, z) is now independent of m3, we define the Jost solution by the
equality (see (5.21))

ψ(m1, m2, z + a1) = K̃(m, z)zm1(z + a12)m2 ≡ ϕ(m, z)
[(z + a1)2 − a2

3]m3
. (6.4)

From (5.23) and (5.21), we thus obtain the reduced Lax pair

ψ(1,1) + (v − v(1,1))ψ(1) + [g − g(1,2) − v(1)(v − v(1,2))]ψ = λ2ψ, (6.5)

ψ(2) = ψ(1) + (v(2) − v(1))ψ, (6.6)

where we use the spectral parameter λ = z + a1 (see (3.7)).

6.2. The reduction B(2) = B(−1). The reduction B(2) = B(−1) is completely analogous to the
reduction considered in Sec. 3.1. We again have (3.1), which by (5.3) means that here B̃(m, z) ∼ δ(z� +
a12/2), where a12 = a1 − a2, i.e.,

B̃(m, z) =
(

a12/2 + iz�
a12/2 − iz�

)
m1−m2

(
((a1 + a2)/2 − iz�)2 − a2

3

((a1 + a2)/2 + iz�)2 − a2
3

)
m3

δ(z� + a12/2)r(z�).

The symbol of the dressing operator is analytic if z� �= −a12/2. Moreover, we have K̃(m, z) = K̃(m1 −
m2, 0, m3, z), u(m) = u(m1 − m2, 0, m3), and w(m) = w(m1 − m2, 0, m3), but we here do not use condi-
tion (3.2) to preserve the dependence on m3. Correspondingly, we must use the functions u(m) and w(m)
but not v(m) and f(m) in (5.16) and (5.17). The Jost solution is here defined as

ψ(m1 − m2, m3, z + a1) = K̃(m, z)zm1 [(z + a1)2 − a2
3]

m3 ≡ ϕ(m, z)
[z(z + a12)]m2

,

and the first equation of the Lax pair derived from (5.23) and (5.16) is hence

ψ(1,1) − (u(1,1) − u + a12)ψ(1) = (λ − a1)(λ − a2)ψ. (6.7)

We skip the further construction because it is obvious, very cumbersome, and not instructive.

6.3. The reduction B(3) = B(1,2). Here, as in Sec. 3.2, we have relations (3.17), which because
of (5.3) means that to satisfy the reduction B(3) = B(1,2) and to preserve the dependence on m1 and m2,
the symbol B̃(m, z) must have support on the circle (a1 +a2)|z +a1|2−2(a2

3 +a1a2)(z +a1)� = (a1 +a2)a2
3

(cf. (3.16)). We assume that a1 + a2 �= 0, and to simplify the presentation, we set

a2
3 = −a1a2 < 0, (6.8)

and for the symbol of B, we hence obtain the representation

B̃(m, z) =
(

z̄

z

)m1+m3
(

z̄ + a12

z + a12

)m2+m3

δ(|z + a1|2 − a1a2)r(z). (6.9)

The functions u(m) and w(m), being coefficients of expansion (5.15) of the symbol K̃, also satisfy
the equations u(3)(m) = u(1,2)(m) and w(3)(m) = w(1,2)(m). Hence, because of (5.17), w(m) disappears
from (5.18d), evolution equation (5.19), and Lax pair (5.24), (5.22). Subject to the dependence of the

1793



dressing operator on m, K̃(m, z) = K̃(m1 + m3, m2 + m3, 0, z), the Jost solution must be defined as
(cf. (5.21) and (6.4))

ψ(m1 + m3, m2 + m3, z + a1) = K̃(m, z)zm1+m3(z + a12)m2+m3 ≡

≡
(

z(z + a12)
(z + a1)2 − a2

3

)m3

ϕ(m, z), (6.10)

and the Lax pair hence becomes

kψ(1,1) = (1 − k(q(2) − q(1))(1))ψ(1) + (q(2) − q)(1)ψ, (6.11)

ψ(2) = ψ(1) + (q(2) − q(1))ψ, (6.12)

where the spectral parameter k is now defined as

k =
z + a1

z(z + a12)
. (6.13)

In (6.11) and (6.12), we also introduce a new dependent variable (cf. (5.16))

q(m1, m2) = u(m1, m2) + m1a2 + m2a1. (6.14)

Because of this notation, Eq. (5.19) under this reduction gives

(q(2) − q)(1,2)(q(1) − q)(2) = (q(1) − q)(1,2)(q(2) − q)(1), (6.15)

and it is easy to verify that this nonlinear equation is the compatibility condition for Lax pair (6.11), (6.12).
Similarly to (3.23), this equation is symmetric with respect to both independent variables.

7. Conclusion

We have considered a method for deriving nonlinear (difference) integrable equations and their Lax
pairs. Our construction is not free of assumptions: first, we assumed that ∂̄-problem (2.19) is uniquely
solvable and that asymptotic expansions (2.22) and (4.15) exist. These assumptions are extremely essential
for our derivation. On the other hand, verifying the compatibility of the equations for the derived Lax pairs
is a purely algebraic operation, which needs no assumptions and leads to an integrable nonlinear equation.
For example, the higher HDE, i.e., system (5.19), (5.20), is the compatibility condition for (5.22) and (5.23),
which can be verified directly.

In [12]–[14] and [16], we noted that integrability of the nonlinear equations is ultimately related to
the existence of commutator identities of type (2.4) for the HDE and of type (5.2) for its higher analogue
(considered in Sec. 5). These identities lead to the existence of linear equations for the operator B generated
by similarity transformations of type (2.15), (4.1), or (5.1) in our case or by commutator relations in the
case of differential equations. In all considered cases, these transformations are given using functions of
the shift operator T (the differentiation operator D for differential equations), but a specific property of
the derived linear equations is that they do not contain T (see (2.2) and (5.4)). This ensures the existence
of linearized versions of the derived integrable equations. Indeed, inverse problem (2.19) linearized with
respect to B because of (2.22) gives

u(m) = − 1
π2

∫
d2z B̃(m, z) + . . . , (7.1)
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which proves the above statement.
In the general situation considered in (4.1), the existence of the corresponding commutator identity is

equivalent to existence of a polynomial Q(x1, x2, x3) such that

Q(Ad1, Ad2, Ad3) = 0, (7.2)

where
Adi B = pi(T )Bpi(T )−1, i = 1, 2, 3, (7.3)

denotes the adjoint action of T on the associative algebra discussed in the introduction. Here, B is an
arbitrary element of this algebra, but if we switch on its dependence on the variables mi using (4.1),
B(i) = Adi B, then by (7.2), we obtain a closed linear equation for B(m1, m2, m3) (cf. (5.2)). This argu-
ment and the construction presented in this paper show that it is natural to suppose that the only linear
difference equations in (2+1) dimensions that can be lifted to nonlinear integrable ones are those that can
be represented in the form of commutator identities. We note that relation (4.3) was not used in this
discussion.

In the case where three polynomials pi are chosen, the problem of the existence of a corresponding
commutator identity reduces to the problem of the existence of a polynomial Q in three variables such that
the equality

Q

(
p1(x)
p1(y)

,
p2(x)
p2(y)

,
p3(x)
p3(y)

)
≡ 0 (7.4)

holds for any x and y in C. While the solution of this problem is unknown to us, the fact that our
construction in Sec. 4 had no obstructions shows that such a polynomial can exist. This argument is not a
proof, of course, because our approach here was not free of assumptions that can be quite essential for it.
On the other hand, the commutator identities should exist in a more general situation where we deal with
meromorphic functions instead of polynomials pi and where their coefficients do not commute with B (the
non-Abelian case; see, e.g., [15]).
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