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ENTANGLEMENT OF MULTIPARTITE FERMIONIC COHERENT

STATES FOR PSEUDO-HERMITIAN HAMILTONIANS

S. Mirzaei,∗ G. Najarbashi,† M. A. Fasihi,‡ and F. Mirmasoudi†

We study the entanglement of multiqubit fermionic pseudo-Hermitian coherent states (FPHCSs) described

by anticommutative Grassmann numbers. We introduce pseudo-Hermitian versions of well-known maxi-

mally entangled pure states, such as Bell, GHZ, Werner, and biseparable states, by integrating over the

tensor products of FPHCSs with a suitable choice of Grassmannian weight functions. As an illustration, we

apply the proposed method to the tensor product of two- and three-qubit pseudo-Hermitian systems. For

a quantitative characteristic of entanglement of such states, we use a measure of entanglement determined

by the corresponding concurrence function and average entropy.
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1. Introduction

The theoretical self-consistency of quantum information theory has recently increased as a result of
introducing several outstanding results. The most important result was the entanglement phenomena of
quantum states [1], formulated in robust theoretical schemes and experimentally verified using several
tests [2]–[9]. In fact, entanglement is the most interesting and simultaneously the strangest feature of
quantum physics. The idea of entanglement starts from the apparent conflict between the superposition
principle and the nonseparability of the related quantum states. It happens when a state of two or more
subsystems of a composite quantum system cannot be factored into pure local states of the subsystems. In
other words, an entangled state can be used to steer a distant particle into one state of a set of states with
a certain probability.

Recent research in theoretical physics and quantum optics revealed the importance of coherent states.
They can be used to encode quantum information on continuous variables [10]. While the entanglement
of the bosonic su(2) and su(1, 1) coherent states, as the nonorthogonal states that play an important role
in quantum cryptography and quantum information processing, has been widely investigated [11]–[17], the
entanglement properties of multipartite fermionic coherent states remain a challenging problem in quantum
information theory, even from the theoretical standpoint [18]–[22]. Fermionic coherent states are defined as
eigenstates of the annihilation operator with Grassmannian eigenvalues [23]–[26].
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On the other hand, the interest in non-Hermitian Hamiltonians with real spectra has grown in the
last decade [25], [27]–[34]. Considering the results of various numerical studies, Bender and his collabora-
tors [28], [29] found certain examples of one-dimensional non-Hermitian Hamiltonians with real spectra. Be-
cause these Hamiltonians were invariant under PT transformations, their spectral properties were linked to
their PT symmetry. Mostafazadeh later introduced the notion of pseudo-Hermiticity as an alternative possi-
ble approach for a non-Hermitian operator to admit a real spectrum [33]–[35]. Moreover, pseudo-Hermitian
Hamiltonians were introduced to study some specific effects in condensed matter physics [36], [37].

The entanglement of Grassmannian coherent states for multipartite n-level Hermitian systems were
recently investigated in [20]. For this, the tensor product |θ〉 = |0〉 − θ|1〉 of one-mode fermionic coherent
states (i.e., |θ1〉|θ2〉) was considered as represented in terms of the standard basis (|0〉, |1〉) and anticom-
muting Grassmann numbers θiθj = −θjθi. This rule is justified in the context of quantum field theory,
where, for example, the tensor product of two one-particle states is a two particle state and so on. The
authors of [20] found standard maximally entangled Bell, GHZ, and Werner states by integrating over the
tensor product of two-mode, three-mode, and multimode fermionic coherent states with appropriate weight
functions.

Our goal here is to extend the presented method to pseudo-Hermitian systems. For them instead of
the standard basis, we use two sets {|ψ0〉, |ψ1〉} and {|φ0〉, |φ1〉} of basis states, which are the respective
eigenstates of H and H†. As a result, we have two possible fermionic pseudo-Hermitian coherent states
(FPHCSs) |θ〉 = |ψ0〉 − θ|ψ1〉 and |θ̃〉 = |φ0〉 − θ|φ1〉.

If two pure correlated or uncorrelated quantum systems A and B are given, then the state of the
bipartite composite system |ψ〉AB is the sum of the tensor products |i〉A ⊗ |j〉B:

|ψ〉AB =
∑

i,j=0,1

aij |i〉A ⊗ |j〉B . (1.1)

In this case, we use the fact that, as in standard quantum information theory, a Bloch vector (or qubit)
|ψ〉 = a|0〉 + |1〉 is represented in the standard basis {|0〉, |1〉}. This basis is used to construct entangled
states such as

Bell states
|00〉 ± |11〉√

2
and

|01〉 ± |10〉√
2

,

GHZ states
|000〉 ± |111〉√

2
,

Werner state
|001〉+ |010〉 + |011〉√

3
,

and so on. These states and their extension are useful resources in quantum information processing in the
sense that some tasks including quantum teleportation [38], quantum cryptography [39], remote state prepa-
ration [40], and quantum communication [41] can be accomplished using entangled states. Mathematically,
a closely related extension is to reconstruct the entangled states with

• the sum
∑

( · ) replaced with the integral
∫
( · ) dθ1 dθ2,

• the coefficients aij replaced with the Grassmann weight function w(θ1, θ2), and

• the basis |i〉A|j〉B replaced with the Grassmannian coherent states |θ1〉|θ2〉.

In this case, the extension of Eq. (1.1) contains both the pseudo-Hermiticity and multimode fermionic
coherent states that involve Grassmann (anticommuting) integration variables. Establishing the integral
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approach for pseudo-quantum mechanics, we set the stage for introducing functional field integral methods
for spin systems explored in the context of many-body theories [42].

The paper is divided into two main parts. The first part is devoted to constructing different families
of a pseudo-Hermitian version of well-known maximally entangled pure states such as Bell, GHZ, Werner,
and pseudo-biseparable states by integrating over the tensor product of FPHCSs of two and three one-qubit
pseudo-Hermitian system with a suitable choice of Grassmannian weight functions. In Sec. 2, we briefly
introduce pseudo-Hermitian quantum mechanics. In Sec. 3 for a two-level system, we use the results for the
generalized Grassmannian pseudo-Hermitian coherent state [26] to present the FPHCSs as a special case
of generalized Grassmannian pseudo-Hermitian coherent states. In Sec. 4, we construct pseudo-Hermitian
versions of Bell, Werner, and GHZ states.

In the second part, in Sec. 5, we use the measures of concurrence and average entropy to quantify
the respective entanglement of the pseudo-Bell states and GHZ and Werner states and discuss the results
compared with Hermitian maximally entangled pure states. Concluding remarks are contained in Sec. 6.

2. Pseudo-Hermitian Hamiltonians and a biorthonormal
eigenbasis

The Schrödinger equation with complex potentials but a real spectrum has been studied intensively
by different methods. The pioneering papers [27]–[34] initiated the investigation of PT-symmetric systems,
and Mostafazadeh subsequently introduced a more general class of pseudo-Hermitian models [33], [34].
Following the second approach, we let H : H → H be a linear operator acting in a Hilbert space H and
η : H → H be a linear Hermitian automorphism (invertible transformation). The η-pseudo-Hermitian
adjoint of H is then defined by H� = η−1H†η. We say that H is pseudo-Hermitian with respect to η or
simply η-pseudo-Hermitian if H� = H . The eigenvalues of a pseudo-Hermitian Hamiltonian H are either
real or complex-conjugate pairs, and in the nondegenerate case, we have the relations

H† = ηHη−1. (2.1)

For diagonalizable operators H with a discrete spectrum, there exists a complete biorthonormal eigen-
basis {|ψi〉, |φi〉} such that

H |ψi〉 = Ei|ψi〉, H†|φi〉 = Ēi|φi〉,

〈φi|ψj〉 = δij ,
∑

i

|ψi〉〈φi| =
∑

i

|φi〉〈ψi| = I.
(2.2)

For a given pseudo-Hermitian H , there are infinitely many η satisfying Eq. (2.1). Nevertheless, these can
be expressed in terms of a complete biorthonormal basis of H . In the nondegenerate case, the explicit form
of η and its inverse satisfying Eq. (2.1) are

η =
∑

i

|φi〉〈φi|, η−1 =
∑

i

|ψi〉〈ψi|,

|φi〉 = η|ψi〉, |ψi〉 = η−1|φi〉.
(2.3)

Everywhere in this paper, we assume that the pseudo-Hamiltonian H and consequently the transfor-
mation η act in a two-dimensional Hilbert space.
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3. Fermionic pseudo-Hermitian coherent states

3.1. Grassmannian variables. The basic properties of Grassmann variables were discussed in [43]–
[46]. For our purpose here, we review the properties of this algebra generated by the variables (θ1, . . . , θn)
by definition having the properties

θ2
i = 0, θiθj = −θjθi, j = 1, . . . , n. (3.1)

Analogous rules also apply to the Hermitian conjugate of θ, θ† = θ̄:

θ̄2
i = 0, θ̄iθ̄j = −θ̄j θ̄i, i, j = 1, . . . , n. (3.2)

Similarly, θiθ̄j = −θ̄jθi. Any linear combination of θi with complex coefficients is called a Grassmann
number. In other words, the Taylor expansion of a Grassmann function is

g(θ1, . . . , θn) = c0 +
∑

i=1

ciθi +
∑

i,j

ci,jθiθj + . . . ,

where c0, ci, and ci,j are complex numbers. For instance, eθ1θ2 = 1+θ1θ2. The integration and differentiation
over complex Grassmann variables are given by the Berezin rules:

∫
dθf(θ) =

∂f(θ)
∂θ

,

∫
dθ = 0,

∫
dθ θ = 1,

∫
dθ̄ = 0,

∫
dθ̄ θ̄ = 1,

∂

∂θ
θ = 1,

∂

∂θ
1 = 0,

∂

∂θ̄
θ̄ = 1,

∂

∂θ̄
1 = 0,

∂2

∂θ2
= 0,

∂2

∂θ̄2
= 0.

(3.3)

To compute the integral of any function over the Grassmann algebra, we need the relations

θ dθ̄ = −dθ̄ θ, θ̄ dθ = −dθ θ̄, θ dθ = −dθ θ, θ̄ dθ̄ = −dθ̄ θ̄,

dθdθ̄ = −dθ̄ dθ, θθ̄ = −θ̄θ.
(3.4)

3.2. Coherent states. Following [25], [26], we can construct the pseudo-fermionic coherent states for
the two-level pseudo-Hermitian Hamiltonian. Here, we outline the main results. Considering the biorthonor-
mality of pseudo-Hermitian systems, we can define two pairs of annihilation and creation operators corre-
sponding to the respective biorthonormal eigenstates (|ψi〉 and |φi〉) as

b := |ψ0〉〈φ1|, b̃ = ηbη−1 = |φ1〉〈ψ0|,

b� := η−1b†η = |ψ1〉〈φ0|, b̃�′ = η′−1b†η = |φ0〉〈ψ1|,
(3.5)

where η′−1 = η and bb� + b�b = I. We can then construct two families of coherent states for the two-level
pseudo-Hermitian Grassmannian system in terms of |ψk〉 and |φk〉. The FPHCSs corresponding to |ψk〉
and |φk〉 respectively denoted by |θ〉 and |θ̃〉 by definition are the eigenstates of the annihilation operators
b and b̃,

b|θ〉 = θ|θ〉, b̃|θ̃〉 = θ|θ̃〉, (3.6)
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and up to normalization factors are

|θ〉 = |ψ0〉 − θ|ψ1〉, |θ̃〉 = |φ0〉 − θ|φ1〉. (3.7)

We can use the explicit forms of the two families of FPHCS and the characteristic biorthonormality
of pseudo-Hermitian systems to identify the possible integrals of |θ〉 and |θ̃〉, i.e., |θ〉〈θ̃| and |θ̃〉〈θ|, over the
measure dθ̄ dθ w(θ, θ̄), which leads to the resolution of the identity

∫
dθ̄ dθ w(θ, θ̄)|θ〉〈θ̃| =

∫
dθ̄ dθ w(θ, θ̄)|θ̃〉〈θ| = I, (3.8)

where w(θ, θ̄) = 1 + θθ̄. Equation (3.8) is called a bi-over-completeness relation. To compute the weight
function, we require satisfaction of the quantization relations between the biorthonormal eigenstates |ψk〉
and |φk〉 (k = 0, 1) and the Grassmannian variables θ and θ̄

θ|ψk〉 = (−1)k−1|ψk〉θ, θ̄〈ψk| = (−1)k−1〈ψk|θ̄,

θ〈ψk| = (−1)k−1〈ψk|θ, θ̄|ψk〉 = (−1)k−1|ψk〉θ̄,

θ|φk〉 = (−1)k−1|φk〉θ, θ̄〈φk| = (−1)k−1〈φk|θ̄,

θ〈φk| = (−1)k−1〈φk|θ, θ̄|φk〉 = (−1)k−1|φk〉θ̄.

(3.9)

The above discussion makes it clear that neither the integral of |θ〉〈θ| nor the integral of |θ̃〉〈θ̃| over the
measure dθ̄ dθ w(θ, θ̄) is normalized:

∫
dθ̄ dθ w(θ, θ̄)|θ〉〈θ| �= I,

∫
dθ̄ dθ w(θ, θ̄)|θ̃〉〈θ̃| �= I. (3.10)

We can show that fermionic coherent states (3.7) remain coherent at all times if the time evolution of the
initial states governed by the Hamiltonian is also an eigenstate of the lowering operators.

4. Maximally pseudo-entangled states

We consider a fermionic system in which the particles can go to n-mode channels. For this, we consider
the tensor product of n one-mode FPHCSs, each of which governed by a pseudo-Hermitian Hamiltonians.
For simplicity, we consider n = 2, 3. The case of arbitrary n is straightforward. We now introduce a
pseudo-Hermitian version of the well-known maximally entangled pure two- and three-qubit states, such as
the Bell, GHZ, and Werner states [47] by integrating over the tensor product of FPHCSs with a suitable
choice of Grassmannian weight functions.

4.1. Pseudo-Bell-like states. We start with a non-normalized pseudo-Hermitian version of standard
Bell states,

|Ψ±〉 =
|01〉 ± |10〉√

2
, |Φ±〉 =

|00〉 ± |11〉√
2

, (4.1)

i.e.,
|B−

1 〉 = |ψ0〉|ψ1〉 − |ψ1〉|ψ0〉. (4.2)

To obtain this state, we consider the tensor product of two one-mode FPHCSs with the same Grassmann
numbers:

|θ〉|θ〉 = |ψ0〉|ψ0〉 + θ(|ψ0〉|ψ1〉 − |ψ1〉|ψ0〉). (4.3)
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As mentioned above, this method becomes understandable in the context of quantum field theory. To
obtain Eq. (4.3), we use the explicit form of |θ〉 given by Eq. (3.7).

For the next step, our task is to find the appropriate weight function w(θ) such that the integration
over Grassmann numbers θ leads to the Eq. (4.2). For this, we let

∫
dθ w(θ)|θ〉|θ〉 = |B−

1 〉. (4.4)

Setting w(θ) = c0 +c1θ in (4.4) yields c0 = 1 and c1 = 0, and the appropriate weight function then becomes
w(θ) = 1.

Considering the tensor product of |θ〉|θ̃〉, |θ̃〉|θ〉, and |θ̃〉|θ̃〉 with w(θ) = 1, we can also construct the
other forms of pseudo-Bell states as

|B−
2 〉 =

∫
dθ |θ〉|θ̃〉 = |ψ0〉|ϕ1〉 − |ψ1〉|ϕ0〉. (4.5)

So far, we have been concerned with the tensor product of two one-mode FPHCSs with the same Grassman-
nian numbers θ and obtained the pseudo-Hermitian versions of |Ψ−〉. To establish the other pseudo-Bell
states, we must consider the tensor product of FPHCSs with different Grassmann numbers, i.e.,

|θ1〉|θ2〉 = |ψ0〉|ψ0〉 + θ2|ψ0〉|ψ1〉 − θ1|ψ1〉|ψ0〉 + θ1θ2|ψ1〉|ψ1〉. (4.6)

In this case the general form of the weight function is w(θ1, θ2) = c0 + c1θ1 + c2θ2 + c3θ1θ2. The task is to
find w(θ1, θ2) such that in addition to |B−

i 〉 given above, we obtain the other three families of pseudo-Bell
states. We let |B+

i 〉 and |B′ ±
i 〉 denote these three families. We summarize the results in Table 1. For

example, the pseudo-Bell state |φ0〉|ψ1〉+ |φ1〉|ψ0〉 can be obtained by taking the tensor product of |θ̃1〉|θ2〉
with w(θ1, θ2) = −θ1 − θ2.

Table 1
State FPHCS Weight function Pseudo-Bell state

|B±
1 〉 |θ1〉|θ2〉 −(θ1 ± θ2) |ψ0〉|ψ1〉 ± |ψ1〉|ψ0〉

|B±
2 〉 |θ1〉|θ̃2〉 −(θ1 ± θ2) |ψ0〉|φ1〉 ± |ψ1〉|φ0〉

|B±
3 〉 |θ̃1〉|θ2〉 −(θ1 ± θ2) |φ0〉|ψ1〉 ± |φ1〉|ψ0〉

|B±
4 〉 |θ̃1〉|θ̃2〉 −(θ1 ± θ2) |φ0〉|φ1〉 ± |φ1〉|φ0〉

|B′ ±
1 〉 |θ1〉|θ2〉 −(θ1θ2 ± 1) |ψ0〉|ψ0〉 ± |ψ1〉|ψ1〉

|B′ ±
2 〉 |θ1〉|θ̃2〉 −(θ1θ2 ± 1) |ψ0〉|φ0〉 ± |ψ1〉|φ1〉

|B′ ±
3 〉 |θ̃1〉|θ2〉 −(θ1θ2 ± 1) |φ0〉|ψ0〉 ± |φ1〉|ψ1〉

|B′ ±
4 〉 |θ̃1〉|θ̃2〉 −(θ1θ2 ± 1) |φ0〉|φ0〉 ± |φ1〉|φ1〉

|B−
1 〉 |θ〉|θ〉 1 |ψ0〉|ψ1〉 − |ψ1〉|ψ0〉

|B−
2 〉 |θ〉|θ̃〉 1 |ψ0〉|φ1〉 − |ψ1〉|φ0〉

|B−
3 〉 |θ̃〉|θ〉 1 |φ0〉|ψ1〉 − |φ1〉|ψ0〉

|B−
4 〉 |θ̃〉|θ̃〉 1 |φ0〉|φ1〉 − |φ1〉|φ0〉

Non-normalized pseudo-Bell states and the corresponding
weight functions.

4.2. Pseudo-GHZ and pseudo-Werner states. We construct a pseudo version of the GHZ and
Werner states,

|GHZ±〉 =
|000〉 ± |111〉√

2
, |W 〉 =

|100〉 + |010〉+ |001〉√
3

, (4.7)

1033



which are widely used in quantum information theory. To construct a three-qubit pseudo-GHZ state, we
must consider the tensor product of three one-mode FPHCSs with different Grassmann numbers. They can
take one of the eight forms

|θ1〉|θ2〉|θ3〉, |θ̃1〉|θ2〉|θ3〉, |θ1〉|θ̃2〉|θ3〉, |θ1〉|θ2〉|θ̃3〉,

|θ̃1〉|θ̃2〉|θ3〉, |θ̃1〉|θ2〉|θ̃3〉, |θ1〉|θ̃2〉|θ̃3〉, |θ̃1〉|θ̃2〉|θ̃3〉.
(4.8)

As an example, we consider the state

|G±
1 〉 =

∫
dθ1 dθ2 dθ3 w±(θ1, θ2, θ3)|θ1〉|θ2〉|θ3〉 = |ψ0〉|ψ0〉|ψ0〉 ± |ψ1〉|ψ1〉|ψ1〉, (4.9)

where the weight functions are
w±(θ1, θ2, θ3) = θ3θ2θ1 ± 1. (4.10)

It is easy to verify that this function is suitable for each of the states |G±
i 〉, i = 1, . . . , 8. We summarize the

results for non-normalized pseudo-GHZ states in Table 2.

Table 2
State FPHCS Weight function Pseudo-GHZ state

|G±
1 〉 |θ1〉|θ2〉|θ3〉 θ3θ2θ1 ± 1 |ψ0〉|ψ0〉|ψ0〉 ± |ψ1〉|ψ1〉|ψ1〉

|G±
2 〉 |θ̃1〉|θ2〉|θ3〉 θ3θ2θ1 ± 1 |ϕ0〉|ψ0〉|ψ0〉 ± |ϕ1〉|ψ1〉|ψ1〉

|G±
3 〉 |θ1〉|θ̃2〉|θ3〉 θ3θ2θ1 ± 1 |ψ0〉|ϕ0〉|ψ0〉 ± |ψ1〉|ϕ1〉|ψ1〉

|G±
4 〉 |θ1〉|θ2〉|θ̃3〉 θ3θ2θ1 ± 1 |ψ0〉|ψ0〉|ϕ0〉 ± |ψ1〉|ψ1〉|ϕ1〉

|G±
5 〉 |θ̃1〉|θ̃2〉|θ3〉 θ3θ2θ1 ± 1 |ϕ0〉|ϕ0〉|ψ0〉 ± |ϕ1〉|ϕ1〉|ψ1〉

|G±
6 〉 |θ̃1〉|θ2〉|θ̃3〉 θ3θ2θ1 ± 1 |ϕ0〉|ψ0〉|ϕ0〉 ± |ϕ1〉|ψ1〉|ϕ1〉

|G±
7 〉 |θ1〉|θ̃2〉|θ̃3〉 θ3θ2θ1 ± 1 |ψ0〉|ϕ0〉|ϕ0〉 ± |ψ0〉|ϕ1〉|ϕ0〉

|G±
8 〉 |θ̃1〉|θ̃2〉|θ̃3〉 θ3θ2θ1 ± 1 |ϕ0〉|ϕ0〉|ϕ0〉 ± |ϕ1〉|ϕ1〉|ϕ1〉

Non-normalized pseudo-GHZ states and the corresponding weight
functions.

To construct pseudo-Werner states, we can use the tensor product of FPHCSs with three either different
or the same Grassmann numbers. Below, we give one example W and W ′ for each of the two categories.

For the tensor product of the FPHCSs with different Grassmann numbers, we have

|W1〉 =
∫

dθ1 dθ2 dθ3 w1(θ1, θ2, θ3)|θ1〉|θ2〉|θ3〉 =

= |ψ0〉|ψ0〉|ψ1〉 + |ψ0〉|ψ1〉|ψ0〉 + |ψ1〉|ψ0〉|ψ0〉, (4.11)

where
w(θ1, θ2, θ3) = θ1θ2 + θ1θ3 + θ2θ3. (4.12)

Similarly, for the same Grassmann numbers, we have

|W ′
1〉 =

∫
dθ w(θ) |θ〉|θ〉|θ〉 = −|ψ0〉|ψ0〉|ψ1〉 + |ψ0〉|ψ1〉|ψ0〉 − |ψ1〉|ψ0〉|ψ0〉, (4.13)

where the appropriate weight function is w′(θ) = 1.
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As can be seen from Table 3, for a given tensor product of three different one-mode FPHCSs, for
example, |θ1〉|θ2〉|θ3〉, depending on the selection of the weight function, there are eight pseudo-Werner
states. We emphasize that although we constructed the category W ′ in terms of FPHCSs with the same
Grassmann numbers, we could also obtain the same result with the different Grassmann numbers, which
would in turn yield the weight function w = −θ1θ2 + θ1θ3 − θ2θ3.

Table 3
State FPHCS Weight function Pseudo-Werner state

|W (i)
1 〉 |θ1〉|θ2〉|θ3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ψ0〉|ψ0〉|ψ1〉 ± |ψ0〉|ψ1〉|ψ0〉 ± |ψ1〉|ψ0〉|ψ0〉

|W (i)
2 〉 |θ̃1〉|θ2〉|θ3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ϕ0〉|ψ0〉|ψ1〉 ± |ϕ0〉|ψ1〉|ψ0〉 ± |ϕ1〉|ψ0〉|ψ0〉

|W (i)
3 〉 |θ1〉|θ̃2〉|θ3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ψ0〉|ϕ0〉|ψ1〉 ± |ψ0〉|ϕ1〉|ψ0〉 ± |ψ1〉|ϕ0〉|ψ0〉

|W (i)
4 〉 |θ1〉|θ2〉|θ̃3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ψ0〉|ψ0〉|ϕ1〉 ± |ψ0〉|ψ1〉|ϕ0〉 ± |ψ1〉|ψ0〉|ϕ0〉

|W (i)
5 〉 |θ̃1〉|θ̃2〉|θ3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ϕ0〉|ϕ0〉|ψ1〉 ± |ϕ0〉|ϕ1〉|ψ0〉 ± |ϕ1〉|ϕ0〉|ψ0〉

|W (i)
6 〉 |θ̃1〉|θ2〉|θ̃3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ϕ0〉|ψ0〉|ϕ1〉 ± |ϕ0〉|ψ1〉|ϕ0〉 ± |ϕ1〉|ψ0〉|ϕ0〉

|W (i)
7 〉 |θ1〉|θ̃2〉|θ̃3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ψ0〉|ϕ0〉|ϕ1〉 ± |ψ0〉|ϕ1〉|ϕ0〉 ± |ψ1〉|ϕ0〉|ϕ0〉

|W (i)
8 〉 |θ̃1〉|θ̃2〉|θ̃3〉 ±θ1θ2 ± θ1θ3 ± θ2θ3 ±|ϕ0〉|ϕ0〉|ϕ1〉 ± |ϕ0〉|ϕ1〉|ϕ0〉 ± |ϕ1〉|ϕ0〉|ϕ0〉

|W ′
1〉 |θ〉|θ〉|θ〉 1 −|ψ0〉|ψ0〉|ψ1〉 + |ψ0〉|ψ1〉|ψ0〉 − |ψ1〉|ψ0〉|ψ0〉

|W ′
2〉 |θ̃〉|θ〉|θ〉 1 −|ϕ0〉|ψ0〉|ψ1〉 + |ϕ0〉|ψ1〉|ψ0〉 − |ϕ1〉|ψ0〉|ψ0〉

|W ′
3〉 |θ〉|θ̃〉|θ〉 1 −|ψ0〉|ϕ0〉|ψ1〉 + |ψ0〉|ϕ1〉|ψ0〉 − |ψ1〉|ϕ0〉|ψ0〉

|W ′
4〉 |θ〉|θ〉|θ̃〉 1 −|ψ0〉|ψ0〉|ϕ1〉 + |ψ0〉|ψ1〉|ϕ0〉 − |ψ1〉|ψ0〉|ϕ0〉

|W ′
5〉 |θ̃〉|θ̃〉|θ〉 1 −|ϕ0〉|ϕ0〉|ψ1〉 + |ϕ0〉|ϕ1〉|ψ0〉 − |ϕ1〉|ϕ0〉|ψ0〉

|W ′
6〉 |θ̃〉|θ〉|θ̃〉 1 −|ϕ0〉|ψ0〉|ϕ1〉 + |ϕ0〉|ψ1〉|ϕ0〉 − |ϕ1〉|ψ0〉|ϕ0〉

|W ′
7〉 |θ〉|θ̃〉|θ̃〉 1 −|ψ0〉|ϕ0〉|ϕ1〉 + |ψ0〉|ϕ1〉|ϕ0〉 − |ψ1〉|ϕ0〉|ϕ0〉

|W ′
8〉 |θ̃〉|θ̃〉|θ̃〉 1 −|ϕ0〉|ϕ0〉|ϕ1〉 + |ϕ0〉|ϕ1〉|ϕ0〉 − |ϕ1〉|ϕ0〉|ϕ0〉

Non-normalized pseudo-Werner states and the corresponding weight functions: the super-
script (i) refers to combinations of symbols (+, +, +), (+, +,−), . . . , (−,−,−), denoting the
respective weight functions θ1θ2 + θ1θ3 + θ2θ3, θ1θ2 + θ1θ3 − θ2θ3, . . . , −θ1θ2 − θ1θ3 − θ2θ3.

4.3. Pseudo-biseparable states. Here, we use FPHCSs to construct pseudo-biseparabile states.
Depending on how a given state is divided into two parts, there exists a partial entanglement of their
subsystems. If a pure state |ABC〉 involves three subsystems A, B, and C, then one part, A for example,
can be separable while the other two parts, B and C, are entangled.

As an illustration, we consider the examples

∫
dθ1 dθ2 dθ3 (θ1θ2 ± θ1θ3)|θ1〉|θ2〉|θ3〉 = |ψ0〉(1) ⊗ |B±

1 〉(2,3),

∫
dθ1 dθ2 dθ3 (θ3θ2θ1 ∓ θ1)|θ1〉|θ2〉|θ3〉 = |ψ0〉(1) ⊗ |B′ ±

1 〉(2,3),

∫
dθ1 dθ2 dθ3 (θ1θ2 ∓ θ3θ2)|θ1〉|θ2〉|θ3〉 = |ψ0〉(2) ⊗ |B±

1 〉(1,3).

(4.14)

The first two examples show that the partition (2, 3) is a pseudo-Bell state and is separable with respect
to partition 1. The same holds for the partitions (1, 3) and 2 in the last example. These examples make it
clear that we can find different pseudo-biseparable states just by considering the integration over the tensor
product |θ1〉|θ2〉|θ3〉 using different weight functions. But we note that the family W ′ does not lead to any
pseudo-biseparable states.
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5. Entanglement of multipartite pseudo-Hermitian states

In this section, we study the entanglement of pseudo-Bell states using the concurrence function and
pseudo-GHZ and pseudo-Werner states using the average entropy. For this, we consider the two-level
pseudo-Hermitian Hamiltonians

Hi =

(
rie

iβi si

ti rie
−iβi

)
, i = 1, 2, 3, (5.1)

where i denotes the ith system and ri, si, ti, and βi are real numbers. This Hamiltonian is non-Hermitian
but has real eigenvalues if siti > r2

i sin2 βi [48]. We assume that the systems are in four- and eight-
dimensional Hilbert spaces and are governed by H1⊗H2 and H1⊗H2⊗H3. The biorthonormal eigenstates
of Hi and H†

i are

|ψ0〉(i) =
1√

2 cosαi

(
eiαi/2

e−iαi/2

)
, |ϕ0〉(i) =

1√
2 cosαi

(
e−iαi/2

eiαi/2

)
,

|ψ1〉(i) =
1√

2 cosαi

(
e−iαi/2

−eiαi/2

)
, |ϕ1〉(i) =

1√
2 cosαi

(
eiαi/2

−e−iαi/2

)
,

(5.2)

where sin αi = (ri/
√

siti ) sin βi. The matrix η =
∑

i |ϕi〉〈ϕi| of the (pseudo-)metric operator for the
Hamiltonian Hi has the form

η =
1

cos2 αi

(
1 −i sinαi

i sinαi 1

)
. (5.3)

We next consider the pseudo-Bell states.

5.1. Entanglement of pseudo-Bell states. It is well known that the entanglement of a two-qubit
state |ψ〉 can be expressed as a concurrence function [49], [50]

C(|ψ〉) ≡ |〈ψ|σy ⊗ σy |ψ∗〉|, (5.4)

where σy is the Pauli y matrix
(

0 −i
i 0

)
and |ψ∗〉 is the complex conjugate of |ψ〉. We use the concurrence

function to describe the entanglement of the pseudo-Bell state quantitatively.
After the pseudo-Bell states in Table 1 are normalized and the explicit forms of |ψk〉(i) and |ϕk〉(i)

(k = 0, 1) given by (5.2) are substituted, the corresponding concurrences become

C(|B−
1 〉) = C(|B−

4 〉) =
∣∣∣∣

cosα1 cosα2

1 − sin α1 sin α2

∣∣∣∣,

C(|B−
2 〉) = C(|B−

3 〉) =
∣∣∣∣

cosα1 cosα2

1 + sin α1 sin α2

∣∣∣∣.
(5.5)

We focused on the lower third of Table 1. Similar reasoning applies to the other pseudo-Bell states. Hence,
the concurrence of |B−

j 〉s is a periodic function in the parameters α1 and α2 with the period π, i.e.,
C(α1, α2) = C(α1 + mπ, α2 + mπ), where m ∈ Z. Equations (5.5) show that in both the cases Cmax = 1 and
Cmin = 0, the maximum and minimum values of (5.5) become α1 = α2 = mπ and α1 = α1 = (2m + 1)π/2.
In the special case α1 = α2 = α, Eq. (5.5) is

C(|B−
1 〉) = C(|B−

4 〉) = 1, C(|B−
2 〉) = C(|B−

3 〉) =
cos2 α

1 + sin2 α
. (5.6)
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Fig. 1. Concurrence of |B−
2 〉 and |B−

3 〉 as function of the parameter α.

It should be no surprise that we obtain C for |B−
1 〉 and |B−

4 〉 independent of the parameter α because these
states for α1 = α2 = α reduce to the standard Bell state |Ψ−〉 up to the total phase e−iπ,

|B1〉− =
|ψ0〉|ψ1〉 − |ψ1〉|ψ0〉

‖ |B−
1 〉 ‖

= −|01〉 − |10〉√
2

,

|B4〉− =
|ϕ0〉|ϕ1〉 − |ϕ1〉|ϕ0〉

‖ |B−
4 〉 ‖

= −|01〉 − |10〉√
2

.

(5.7)

In contrast, the concurrence of the states |B−
2 〉 and |B−

3 〉 depends on α (see Fig. 1).
A simple calculation shows that for α1 = α2 = α, the pseudo-Bell states

|B′ −
2 〉 = |B′ −

3 〉 = |Ψ+〉, |B′+
1 〉 = |B′+

4 〉 = |Φ+〉, |B+
2 〉 = |B+

3 〉 = |Φ−〉 (5.8)

reduce to standard Bell states.
We consider two special cases that are interesting from the standpoint of dipole interaction.
1. If st = r2 sin2 β, then C(|B−

2 〉) = C(|B−
3 〉) = 0.

2. If r = δ/2, β = −π/2, and t = s, then the Hamiltonian reduces to

H1,2 =
1
2

(
−iδ 2s

2s iδ

)
. (5.9)

This Hamiltonian arises in the interaction of a two-level atom with an electromagnetic field where the real
constant δ is the decay rate for the upper and lower levels and the quantity s characterizes the radiation–
atom interaction matrix element between the levels described in the interaction picture with the rotating
weight approximation [25], [51], [52]. In this case, the concurrence in terms of s and δ is

C(|B−
2 〉) = C(|B−

3 〉) =
4s2 − δ2

4s2 + δ2
. (5.10)

Because sin α = −δ/2s, we have 4s2 − δ2 ≥ 0, which ensures that the concurrence is nonnegative. Concur-
rence (5.10) for the intervals 1 ≤ s ≤ 2 and −2 ≤ δ ≤ 2 is shown in Fig. 2.
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Fig. 2. Concurrence of |B−
2 〉 and |B−

3 〉 in terms of the parameters δ and s: it can be seen that the

concurrences of the states for the points (δ, s) with δ = 0 are equal to one and they are maximally

entangled.

5.2. Entanglement of pseudo-GHZ and pseudo-Werner states. For the next step, we quan-
titatively describe the entanglement of pseudo-GHZ and pseudo-Werner states. We consider the average
entropy 〈SL〉, which is a good measure of entanglement,

〈SL〉 =
(

N

n

)−1 ∑

An

S
(An;BN−n)
L . (5.11)

We define it in terms of the linear entropy [53]

S
(An;BN−n)
L =

d

d − 1
(1 − TrAn [ ρAn ]2), ρAn = TrBN−n [ρ], (5.12)

where d = min{2n, 2N−n} is the dimension of the reduced density matrix ρAn . We note that although the
linear entropy and von Neumann entropy [54] are similar measures of state mixing, the linear entropy is
easier to calculate because it does not require diagonalizing the density matrix. The linear entropy can
range from zero (a completely pure state) to one (a completely mixed state).

Based on the entanglement measure defined as average entropy, as examples, we investigate the entan-
glement of the normalized states |G+

1 〉, |W
(+,+,+)
7 〉, and |W(−,+,−)

6 〉 (the latter are denoted by W7 and W6

for simplicity). We have

|G+
1 〉 =

|ϕ0〉|ϕ0〉|ϕ0〉 ± |ϕ1〉|ϕ1〉|ϕ1〉
‖ |G+

1 〉 ‖
,

|W7〉 =
|ψ0〉|ϕ0〉|ϕ1〉 + |ψ0〉|ϕ1〉|ϕ0〉 + |ψ1〉|ϕ0〉|ϕ0〉

‖ |W7〉 ‖
,

|W6〉 =
−|ϕ0〉|ψ0〉|ϕ1〉 + |ϕ0〉|ψ1〉|ϕ0〉 − |ϕ1〉|ψ0〉|ϕ0〉

‖ |W6〉 ‖
.

(5.13)

In accordance with Eq. (5.11), the average entropy of the normalized |G+
1 〉 is

〈SL〉
(G+

1 )
=

5 + cos 2α2 − 2 sin2 α1(1 + cos2 α3 sin2 α2) + (cos 2α1 cos 2α2 − 3) sin2 α3

6
.
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Fig. 3. The average entropy of all pseudo-GHZ states as a function of the parameter α.

Direct calculations show that the average entropy of all the pseudo-GHZ states are the same.
As before, we consider the quantum states with α1 = α2 = α3 = α, which yields

〈SL〉(G+
1 ) =

1
2

cos4 α(3 − cos 2α). (5.14)

The average entropy of the state |G+
1 〉 as a function of the parameter α is shown in Fig. 3. The maximum and

minimum values of the average entropy for pseudo-GHZ states are attained for α = kπ and α = (2k+1)π/2.
As another example, we consider the normalized |W7〉. In this case, the average entropies in the cases

of different and identical αi are

〈SL〉(W7) =
1

3(2 sinα2 sin α3 − 2 sin α1(sin α2 + sin α3) + 3)2
×

×
(
2(cos 2α1 + cos 2α2 + 2) cos 2α3 + cos 2(α1 − α2) +

+ cos 2(α1 + α2) + 4 cos 2α1 + 4 cos 2α2 + 6
)
, (5.15)

〈SL〉(W7) =
8 cos4 α

(cos 2α + 2)2
. (5.16)

The average entropy of |W7〉 in the case of identical αi is shown in Fig. 4. It is in the interval 0 ≤
〈SL(α)〉(W7) ≤ 8/9, and the upper and lower bounds are attained for α = kπ and αk = (2k + 1)π/2.

Finally, as the last example, we study the average entropy of the normalized state |W6〉. Taking
Eq. (5.11) into account, we derive the expression

〈SL〉(W6) =
1

3(2 sinα2 sin α3 + 2 sin α1(sin α2 + sin α3) + 3)2
×

×
(
2(cos 2α1 + cos 2α2 + 2) cos 2α3 + cos 2(α1 − α2) +

+ cos 2(α1 + α2) + 4 cos 2α1 + 4 cos 2α2 + 6
)
. (5.17)

It is easy to verify that in the case of α1 = α2 = α3 = α, this equation reduces to

〈SL〉(W6) =
8 cos4 α

9(cos 2α − 2)2
. (5.18)
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Fig. 4. The average entropy of |W7〉 as a function of α: the lower bound 0 and upper bound 8/9

correspond to separable and maximally entangled pseudo-Werner states |W7〉.

Fig. 5. The average entropy of |W6〉 as a function of α.

The average entropy of |W6〉 in terms of the parameter α is shown in Fig. 5. As in the preceding case, the
maximum average entropy is exactly equal to the average entropy of the entangled states described by the
standard Hermitian Hamiltonian.

The method presented above can be extended to multipartite n-level systems.

6. Conclusion

We have constructed a pseudo-Hermitian version of the well-known maximally entangled pure states
such as Bell, GHZ, Werner, and biseparable states by integrating over the tensor product of one-mode
FPHCSs and using a suitable Grassmannian weight function. As clarifying examples, we considered the
biorthonormal eigenstates of the pseudo-Hermitian Hamiltonian that appears in the interaction of a two-
level atom with an electromagnetic field.

To quantify the entanglement of these pseudo-states, we used the concurrence function for two-qubit
(pseudo-Bell) states and the average linear entropy for three-qubit (pseudo-GHZ and pseudo-Werner) states.
We found that for α1 = α2 = α, the pseudo-Bell states |B−

1 〉 and |B−
4 〉 are the same as the standard Bell

state |Ψ−〉 up to the phase factor e−iπ. Similarly, |B′ −
2 〉 and |B′ −

3 〉 are the same as |Ψ−〉, |B′+
1 〉 and |B′+

4 〉
are the same as |Φ+〉, and |B+

2 〉 and |B+
3 〉 are the same as |Φ−〉.
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