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INVERSE SCATTERING PROBLEM FOR THE SCHRÖDINGER

EQUATION WITH AN ADDITIONAL QUADRATIC POTENTIAL ON

THE ENTIRE AXIS

I. M. Guseinov,∗† A. Kh. Khanmamedov,∗† and A. F. Mamedova†

We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use

the transformation operator method to study the direct and inverse problems of the scattering theory. We

obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely

solvable.
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1. Introduction

The problem of a quantum oscillator was an essential problem solved by Heisenberg in the framework
of matrix mechanics and by Schrödinger in the language of wave mechanics. The problem of describing the
oscillatory motions of atoms in molecules and crystals reduces to solving precisely this problem (see [1]). A
“quantized” electromagnetic field is equivalent to a system of oscillators.

The inverse spectral problem consisting in reconstructing one-dimensional Schrödinger operators with
an additional oscillator and the same discrete spectrum was studied in [2], [3]. The most complete solution
of the inverse problem for a perturbed oscillator of the form Ty = −y′′ + x2y + q(x)y, where q(x) is a real
potential and q′(x), xq(x) ∈ L2(−∞, +∞), was given in [4].

Here, we study the direct and inverse scattering problem for the Schrödinger equation with an additional
quadratic potential

− y′′ − x2y + q(x)y = λy, −∞ < x < +∞, (1)

where the real potential q(x) is a smooth function and satisfies the condition

∫ ∞

−∞
(1 + x4)e2x2 |q(x)| dx < ∞. (2)

We note that the inverse scattering problem in the case without an additional quadratic potential, i.e.,
for the equation −y′′ + q(x)y = λy with a rapidly decreasing potential q(x), has been studied in detail by
many authors (see [5]–[7] and the references therein). In the presence of an additional quadratic potential,
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the continuous spectrum of the unperturbed equation is associated with eigenfunctions that in contrast to
an exponential function do not have a multiplicative property, and it was therefore necessary to modify
several classical arguments in [5]–[7].

We note that the scattering problem for Eq. (1) defined on a half-line was considered in [8]. But the
eigenfunctions of the continuous spectrum of the unperturbed equation, which were used in that paper,
are unsuitable for Eq. (1) defined on the entire axis because infinite poles of the transmission coefficients
appear. Here, we express the eigenfunctions of the continuous spectrum of the unperturbed equation in
terms of the parabolic cylinder functions Dν(z).

We note that the inverse scattering problem for the one-dimensional Schrödinger equations with differ-
ent increasing potentials was studied in [9]–[13]. In contrast to [9], [10], [12], we here obtain both Marchenko-
type integral equations, which allow drawing conclusions about the behavior of the reconstructed potential
at both ends.

Several problems of the spectral theory of the one-dimensional Schrödinger equation were studied
in [14]–[16].

The direct scattering problem for a multidimensional Schrödinger operator of the form H = −Δ+x2
1 +

q(x), x = (x1, x2, . . . , xm) ∈ R
m, was considered in [17].

2. Preliminary consideration of the unperturbed equation

We consider the unperturbed equation

− y′′ − x2y = λy, −∞ < x < +∞. (3)

It is known (see [18], [19]) that Eq. (3) has a solution φ0(x, λ) that can be represented as φ0(x, λ) =
Diλ/2−1/2(

√
2 eiπ/4x), where U(a, x) = D−a−1/2(x) is a parabolic cylinder function, which is a solution of

the equation

−y′′ +
x2

4
y = −ay.

The behavior of the function Dν(z) for large values of |z| and a fixed value of ν is determined by the
asymptotic formulas [19] as z → ∞

Dν(z) ∼ zνe−z2/4, | arg z| <
3π

4
,

Dν(z) ∼ e−z2/4zν −
√

2π

Γ(−ν)
eiπνez2/4z−ν−1,

π

4
< arg z <

5π

4
.

These formulas imply that

φ0(x, λ) = Diλ−1/2

(√
2 e−iπ/4x

)
∼ e−ix2/2

(√
2 e−iπ/4x

)iλ−1/2
, x → +∞.

The function in the right-hand side is of the order O(x−(1/2)−Im λ), and φ0(x, λ) hence belongs to L2(0,∞)
for Imλ > 0. Because Eq. (3) does not change under replacing x with −x, the function φ0(−x, λ) is also a
solution of this equation. Obviously, the function φ0(−x, λ) belongs to L2(−∞, 0) for Imλ > 0.

On the other hand, the known expressions [18]

U

(
− iλ

2
, 0

)
=

2(iλ−1)/4√π

Γ(3/4 − iλ/4)
, U ′

x

(
− iλ

2
, 0

)
= − 2(iλ+1)/4√π

Γ(1/4 − iλ/4)
, (4)
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imply that for real λ, the two solutions {φ0(x, λ), φ0(x, λ)} of Eq. (3) are linearly independent, and their
Wronskian is given by the formula

W{φ0(x, λ), φ0(x, λ)} = −i
√

2 eπλ/4.

For real values of λ, the solutions φ0(±x, λ) are bounded, which corresponds to the continuous spectrum of
problem (3). The constraint formula

φ0(−x, λ) = a0(λ)φ0(x, λ) + b0(λ)φ0(x, λ) (5)

holds on the spectrum, and the functions t0(λ) = 1/a0(λ) and r0(λ) = b0(λ)/a0(λ) have the meaning of
transmission and reflection coefficients in scattering theory. It follows from (5) that the coefficients a0(λ)
and b0(λ) satisfy the normalization condition

|a0(λ)|2 − |b0(λ)|2 = 1.

Moreover, formulas (4) and (5) imply the relations

a0(λ) =
W{φ0(x, λ), φ0(−x, λ)}
W{φ0(x, λ), φ0(x, λ)}

= i

√
2π e−iπ/4

eπλ/4Γ(1/2 − iλ/2)
,

b0(λ) =
W{φ0(−x, λ), φ0(x, λ)}
W{φ0(x, λ), φ0(x, λ)}

= ie−πλ/2.

(6)

These formulas show that a0(λ) and b0(λ) can be continued analytically to the upper half-plane Imλ ≥ 0.

Following Titchmarsh [20], we further deduce that the functions ψ1(x, λ) and ψ2(x, λ), defined up to a
factor in the general theory [20], respectively coincide with φ0(x, λ) and φ0(−x, λ). The functions φ0(x, λ)
and φ0(−x, λ) hence serve as eigenfunctions of the continuous spectrum of Eq. (3). For any function
h(x) ∈ L2(−∞,∞), we therefore have

h(x) =
∫ ∞

−∞
h(y)

{
1√
2 π

∫ ∞

−∞

[
φ0(±x, λ) + r0(λ)φ0(±x, λ)

]
φ0(±y, λ)ω0(λ) dλ

}
dy,

where ω0(λ) = e−πλ/4. In particular, if h(x) takes real values, then these relations become

h(x) =
∫ ∞

−∞
h(y)

{
1√
2π

∫ ∞

−∞
Re{[ φ0(±x, λ) + r0(λ)φ0(±x, λ)]φ0(±y, λ)}ω0(λ) dλ

}
dy.

We therefore have the expansion formulas for the eigenfunctions of the continuous spectrum of Eq. (3)

1√
2π

∫ ∞

−∞
Re{[ φ0(±x, λ) + r0(λ)φ0(±x, λ)]φ0(±y, λ)}ω0(λ) dλ = δ(x − y), (7)

where δ is the Dirac delta function.
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3. Direct scattering problem

We now describe the scattering problem for Eq. (1). We consider the eigenvalue problem for Eq. (1) in
the class of functions y = y(x) bounded on the entire axis. The real values of the energy λ are associated
with the continuous spectrum of problem (1). The eigenfunctions of the continuous spectrum are determined
by asymptotic conditions at ±∞ in x,

f±(x, λ) = φ0(±x, λ) + o(1), x → ±∞.

It follows from [8] that the solutions f±(x, λ) satisfy triangular representations, which demonstrate the
scattering effect,

f±(x, λ) = φ0(±x, λ) ±
∫ ±∞

x

K±(x, t)φ0(±t, λ) dt. (8)

The kernels K±(x, t) are real and satisfy the relations

K±(x, t) = O

( ∫ ±∞

(x+t)/2

|q(s)| ds

)
, x + t → ±∞, K±(x, x) = ±1

2

∫ ±∞

x

q(s) ds. (9)

According to (8) and (9), the solutions f±(x, λ) admit analytic continuations to the half-plane Imλ > 0.
Moreover, because the potential q(x) is real and estimate (9) holds on the continuous spectrum, the pairs
of solutions {f±(x, λ), f±(x, λ)} are linearly independent because their Wronskian W{f±(x, λ), f±(x, λ)} is
equal to ∓i

√
2 eπλ/4. Therefore, for real λ, we have

f−(x, λ) = a(λ)f+(x, λ) + b(λ)f+(x, λ), (10)

f+(x, λ) = a(λ)f−(x, λ) − b(λ)f−(x, λ), (11)

which implies that the transition matrix has the form T (λ) =
(

a(λ)
b(λ)

b(λ)
a(λ)

)
. It follows from (10) and (11)

that
|a(λ)|2 − |b(λ)|2 = 1, (12)

i.e., the transition matrix is unimodular, det T (λ) = 1. The quantities r+(λ) = b(λ)/a(λ) and r−(λ) =
−b(λ)/a(λ) are respectively called the right and left reflection coefficients. Formula (10) implies that

a(λ) =
i√
2
e−πλ/4W{f+(x, λ), f−(x, λ)},

b(λ) = − i√
2
e−πλ/4W{f+(x, λ), f−(x, λ)}.

(13)

Using (8), (9), and (13), we find that the relations

a(λ) = a0(λ)[1 + O(λ−1/2)], b(λ) = b0(λ)[1 + O(λ−1/2)] (14)

hold as λ → ∞. It follows from (13) that a(λ) admits an analytic continuation to the upper half-plane
Im λ > 0 and is continuous on the real axis. Moreover, a(λ) has no zeros. Indeed, a(λ) does not vanish on
the real axis by normalization condition (12). We now assume that a(λ0) = 0, Im λ0 > 0. It then follows
from (13) that the solutions f+(x, λ0) and f−(x, λ0) are linearly dependent and self-adjoint problem (1)
would formally have a complex eigenvalue, which is impossible.
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We note that analogously to formulas (7), we have formulas for the expansion of the continuous
spectrum of Eq. (1) in eigenfunctions:

1√
2π

∫ ∞

−∞
Re{[f±(x, λ) + r±(λ)f±(x, λ)]f±(y, λ)}ω0(λ) dλ = δ(x − y). (15)

The transition matrix T (λ) completely describes the behavior of the eigenfunctions of the continuous
spectrum of problem (1). We stress that all the information about the matrix T (λ) is indeed contained
in one of the reflection coefficients. Indeed, we assume that the coefficient r+(λ), for example, is given.
Taking normalization condition (12) into account, as in [6], [7], we obtain

a(z) = a0(z) exp
{
− 1

2πi

∫ ∞

−∞

log(1 − |r+(λ)|2) − log(1 − |r0(λ)|2)
λ − z

dλ

}
, Im z > 0. (16)

The coefficients b(λ) and r−(λ) can now be constructed using the formulas

b(λ) = a(λ)r+(λ), r−(λ) = −r+(λ)
a(λ)
a(λ)

. (17)

To complete this section, we note that relations (12)–(14) imply the main properties of the reflection
coefficients. We rewrite them as the following condition.

Condition 1. The functions r±(λ) are continuous on the real axis and satisfy the relations

|r±(λ)| < 1, r±(λ) − r0(λ) = O(|λ|−1/2) ·

⎧⎨
⎩

e−πλ/2, λ → +∞,

1, λ → −∞.

The coupling formula r−(λ)/r+(λ) = −a(λ)/a(λ) holds, where a(λ) is determined by formula (14).

4. Inverse scattering problem

The inverse scattering problem for Eq. (1) is to reconstruct the potential q(x) from one of the reflection
coefficients. The basic Gelfand–Levitan–Marchenko integral equations play an important role in solving
the inverse problem.

Theorem 1. For each fixed x, the functions K±(x, y) in representation (8) satisfy the integral equa-

tions

F±(x, y) + K±(x, y) ±
∫ ±∞

x

K±(x, t)F±(t, y) dt = 0, ±y > ±x, (18)

where

F±(x, y) =
1√
2π

Re
∫ ∞

−∞

(
r±(λ) − r0(λ)

)
φ0(±x, λ)φ0(±y, λ)ω0(λ) dλ. (19)

Proof. To derive Eqs. (18), we use expansion formulas (7) and (15). For definiteness, we consider the
case with the plus sign. It follows from the well-known properties of the transformation operators (see,
e.g., [7]) and representations (8) that

φ0(y, λ) = f+(y, λ) +
∫ ∞

y

K(y, t)f+(t, λ) dt,
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where the kernel K(y, t) satisfies a relation similar to (9). For y > x, the last formula with regard to (15)
then implies

1√
2π

∫ ∞

−∞
Re{[ f+(x, λ) + r+(λ)f+(x, λ)]φ0(y, λ)}ω0(λ) dλ =

= δ(x − y) +
∫ y

−∞
K(y, t)

(
1√
2π

∫ ∞

−∞
Re{[ f+(x, λ) + r+(λ)f+(x, λ)]f+(t, λ)}ω0(λ) dλ

)
dt =

= δ(x − y) +
∫ y

−∞
K(y, t)δ(x − t) dt = δ(x − y) + K(y, x) = δ(x − y). (20)

On the other hand, using (7) and (8), we obtain

1√
2π

∫ ∞

−∞
Re{[ f+(x, λ) + r+(λ)f+(x, λ)]φ0(y, λ)}ω0(λ) dλ =

=
1√
2π

∫ ∞

−∞
Re{[ φ0(x, λ) + r+

0 (λ)φ0(x, λ)]φ0(y, λ)}ω0(λ) dλ +

+
∫ ∞

x

K+(x, t)
{

1√
2π

∫ ∞

−∞
Re{[ φ0(t, λ) + r+

0 (λ)φ0(t, λ)]φ0(y, λ)}ω0(λ) dλ

}
dt +

+
1√
2 π

∫ ∞

−∞
Re{[r+(λ) − r+

0 (λ)]φ0(x, λ)φ0(y, λ)}ω0(λ) dλ +

+
∫ ∞

x

K+(x, t)
{

1√
2π

∫ ∞

−∞
Re{[r+(λ) − r+

0 (λ)]φ0(t, λ)φ0(y, λ)}ω0(λ) dλ

}
dt =

= δ(x − y) +
∫ ∞

x

K+(x, t)δ(t − y) dt +

+
1√
2 π

∫ ∞

−∞
Re{[r+(λ) − r+

0 (λ)]φ0(x, λ)φ0(y, λ)}ω0(λ) dλ +

+
∫ ∞

x

K+(x, t)
{

1√
2π

∫ ∞

−∞
Re{[r+(λ) − r+

0 (λ)]φ0(t, λ)φ0(y, λ)}ω0(λ) dλ

}
dt =

= δ(x − y) + K+(x, y) + F+(x, y) +
∫ ∞

x

K+(x, t)F+(t, y) dt.

Comparing this relation with (20), we obtain (17). The theorem is proved.

The basic equations permit solving the inverse problem as follows. Using basic equation (18) as
in [10], [21], we establish the following property of the scattering functions F±(x, y).

Condition 2. The functions F±(x, y) defined by formulas (19) are continuously differentiable and

satisfy the relations

|F±(x, y)| ≤ C±(a), ±x ≥ a, ±y ≥ a,

∣∣∣∣
∫ ±∞

a

sup
±x>a

|F±(x, t)| dt

∣∣∣∣ < ∞,

lim
N→±∞

∣∣∣∣
∫ ±∞

N

sup
±(x−a)≥0

|F±(x, y)| dy

∣∣∣∣ = 0,
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(1 + |x1|) sup
±t≥0

∣∣∣∣
∫ ∞

x1

|F±
xi

(x1 + t, x2)| dx2

∣∣∣∣ ≤ C±
i (a), ±(x1 − a) ≥ 0,

∣∣∣∣
∫ ±∞

a

(1 + x4)
∣∣∣∣ d

dx
F±(x, x)

∣∣∣∣ dx

∣∣∣∣ < C±
0 (a),

lim
h→0

sup
±(z−x)≥0

∣∣∣∣
∫ ±∞

x

|F±(z, y + h) − F±(z, y)| dy

∣∣∣∣ = 0.

Theorem 2. If Conditions 1 and 2 are satisfied, then for each fixed x, Eqs. (18) have unique solutions

K±(x, · ) ∈ Lp(x,±∞), p = 1, 2.

Proof. Condition 2 implies that Eqs. (18) are generated by completely continuous operators. There-
fore, by the Fredholm alternative, the sought solution of (18) exists and is unique in the space Lp(x,∞),
p = 1, 2, if the homogeneous equation has no nontrivial solutions in Lp(x,∞), p = 1, 2.

Without loss of generality, we consider the case with the plus sign. We assume that for some x, the
homogeneous equation

h(y) +
∫ ∞

x

F+(y, t)h(t) dt = 0, ±y > ±x, (21)

has a nontrivial solution in L2(x,∞). Because the kernel F+(x, y) is real, we can assume that h(y) takes
real values. Then ∫ ∞

x

|h(y)|2 dy +
∫ ∞

x

∫ ∞

x

F+(y, t)h(t)h(y) dt dy = 0.

Substituting the functions F+(x, y) given by (19) in the last relation, we obtain

∫ ∞

x

|h(y)|2 dy +
1

2
√

2π

∫ ∞

−∞

(
r+(λ) − r+

0 (λ)
)[∫ ∞

x

φ0(t, λ)h(t) dt

][ ∫ ∞

x

φ0(y, λ)h(y) dy

]
ω0(λ) dλ +

+
1

2
√

2 π

∫ ∞

−∞

(
r+(λ) − r+

0 (λ)
)[ ∫ ∞

x

φ0(t, λ)h(t) dt

](∫ ∞

x

φ0(y, λ)h(y) dy

]
ω0(λ) dλ = 0.

We rewrite this relation as

∫ ∞

x

|h(y)|2 dy +
1

2
√

2 π

∫ ∞

−∞
r+(λ)

[ ∫ ∞

x

φ0(t, λ)h(t) dt

][ ∫ ∞

x

φ0(y, λ)h(y) dy

]
ω0(λ) dλ +

+
1

2
√

2 π

∫ ∞

−∞
r+(λ)

[∫ ∞

x

φ0(t, λ)h(t) dt

][ ∫ ∞

x

φ0(y, λ)h(y) dy

]
ω0(λ) dλ −

− 1
2
√

2 π

∫ ∞

−∞
r+
0 (λ)

[ ∫ ∞

x

φ0(t, λ)h(t) dt

][ ∫ ∞

x

φ0(y, λ)h(y) dy

]
ω0(λ) dλ −

− 1
2
√

2π

∫ ∞

−∞
r+
0 (λ)

[ ∫ ∞

x

φ0(t, λ)h(t) dt

][∫ ∞

x

φ0(y, λ)h(y) dy

]
ω0(λ) dλ = 0. (22)
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On the other hand, by virtue of expansion formula (7), we have

∫ ∞

x

|h(y)|2 dy =
∫ ∞

−∞

[
1√
2π

∫ ∞

x

h(t)φ0(t, λ) dt

]
×

×
[ ∫ ∞

x

h(y)
(
φ0(y, λ) + r+

0 (λ)φ0(y, λ)
)
dy

]
ω0(λ) dλ,

∫ ∞

x

|h(y)|2 dy =
∫ ∞

−∞

[
1√
2π

∫ ∞

x

h(t)φ0(t, λ) dt

]
×

×
[ ∫ ∞

x

h(y)
(
φ0(y, λ) + r+

0 (λ) φ0(y, λ)
)
dy

]
ω0(λ) dλ,

whence it follows that

∫ ∞

x

|h(y)|2 dy − 1
2
√

2π

∫ ∞

−∞
r+
0 (λ)

[ ∫ ∞

x

h(y)φ0(y, λ) dy

]2

ω0(λ) dλ −

− 1
2
√

2 π

∫ ∞

−∞
r+
0 (λ)

[ ∫ ∞

x

h(y)φ0(y, λ) dy

]2

ω0(λ) dλ =
1√
2 π

∫ ∞

−∞

∣∣∣∣
∫ ∞

x

h(y)φ0(y, λ) dy

∣∣∣∣
2

dλ.

Taking these formulas into account in (22) and setting

H(λ) =
∫ ∞

x

h(y)φ0(y, λ) dy,

we obtain
∫ ∞

−∞
|H(λ)|2ω0(λ) dλ +

1
2

∫ ∞

−∞
r+(λ)H2(λ)ω0(λ) dλ +

1
2

∫ ∞

−∞
r+(λ) H2(λ)ω0(λ) dλ = 0.

Taking this relation into account, we conclude that

∫ ∞

−∞

(
1 − |r+(λ)|

)
|H(λ)|2ω0(λ) dλ ≤ 0,

whence it follows that
H(λ) =

∫ ∞

x

h(y)φ0(y, λ) dy ≡ 0

because 1 − |r+(λ)| > 0 and ω0(λ) = e−πλ/4 > 0 for all real values of λ. It follows from the last identity
that h(y) ≡ 0.

Therefore, homogeneous equation (21) has only a trivial solution in L2(x,∞). The uniqueness of the
solution in L1(x,∞) follows because any solution h(y) of Eq. (21) in L1(x,∞) belongs to L2(x,∞). The
proof of the last assertion is precisely the same as in [21]. The theorem is proved.

In conclusion, we note that Conditions 1 and 2 obtained above are sufficient for uniquely reconstructing
the potential q(x) in the class ∫ ∞

−∞

(
1 + |x|4

)
|p(x)| dx < ∞

from the right reflection coefficient. Indeed, let the right reflection coefficient r+(λ) be given. Using
formulas (15) and (16), we obtain the functions a(λ) and r−(λ). By formulas (19), we determine the
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functions F±(x, y). Under Conditions 1 and 2, basic equations (18) have unique solutions K±(x, y). As
in [6], [7], [9], [10], we can then prove that the functions f±(x, λ) defined by (8) are solutions of the equations

−f ′′
±(x, λ) + [−x2 + q±(x)]f±(x, λ) = λf±(x, λ),

where the potentials q±(x) are given by

q±(x) = ∓2
dK±(x, x)

dx

and satisfy the inequalities ∣∣∣∣
∫ ±∞

a

(1 + |x|4)|q±(x)| dx

∣∣∣∣ < ∞

for each a. Further, as in [6], [7], [21], we prove that, for real λ, the functions f±(x, λ) are related by

1
a(λ)

f−(x, λ) = f+(x, λ) + r+(λ)f+(x, λ),

1
a(λ)

f+(x, λ) = f−(x, λ) + r−(λ)f−(x, λ),

which implies that q+(x) = q−(x).

Acknowledgments. The authors thank the referee for the useful remarks, which helped improve the
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