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TETRAD-GAUGE THEORY OF GRAVITY

L. P. Shevchenko ∗

We present a tetrad–gauge theory of gravity based on the local Lorentz group in a four-dimensional

Riemann–Cartan space–time. Using the tetrad formalism allows avoiding problems connected with the

noncompactness of the group and includes the possibility of choosing the local inertial reference frame

arbitrarily at any point in the space–time. The initial quantities of the theory are the tetrad and gauge

fields in terms of which we express the metric, connection, torsion, and curvature tensor. The gauge fields

of the theory are coupled only to the gravitational field described by the tetrad fields. The equations in

the theory can be solved both for a many-body system like the Solar System and in the general case of

a static centrally symmetric field. The metric thus found coincides with the metric obtained in general

relativity using the same approximations, but the interpretation of gravity is quite different. Here, the

space–time torsion is responsible for gravity, and there is no curvature because the curvature tensor is a

linear combination of the gauge field tensors, which are absent in the case of pure gravity. The gauge fields

of the theory, which (together with the tetrad fields) define the structure of space–time, are not directly

coupled to ordinary matter and can be interpreted as the fields describing dark energy and dark matter.
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1. Introduction

We construct a tetrad–gauge theory of gravity (TGTG) as a gauge theory of gravitational and gauge
fields in a four-dimensional Riemann–Cartan space–time U4 [1]. This approach differs radically from general
relativity (GR) in both the mathematical tools used and the physical interpretation. We define the metric
as in [2]: dτ2 = gμν(x) dxμ dxν with the signature (+ , − , − , − ). The indices μ, ν, λ, . . . from the middle of
the Greek alphabet are used as coordinate indices in an arbitrary reference frame where gravity is present
(general coordinate indices) and take the values 0, 1, 2, and 3. The interval dτ becomes invariant under
parallel translation and is therefore a useful concept in the usual space–time physics if the metric gμν(x)
is covariantly constant (this means that the nonmetricity tensor is zero [1]). The tetrad formalism can
include a nonzero nonmetricity tensor in constructing the theory of gravity in a general affine-metric space
(see [3], where there are many references that allow viewing the history of using the tetrad formalism and
its applications in different approaches to developing the modern theory of gravity). The TGTG is based
on the local Lorentz group, whose noncompactness (as shown below) creates no obstacles to constructing
the gauge theory [4]. The nonsymmetric connection in the space U4 is

Γλ
μν = Gλ

μν + S λ
μν + Sλ

μν + Sλ
νμ,
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where Gλ
μν = gλρ(∂νgμρ + ∂μgνρ − ∂ρgμν)/2 is the purely metric term (Christoffel symbols) [2]; the tor-

sion tensor S λ
μν , which is antisymmetric in the first two indices, is the metric-independent part of the

connection [1]; and the third and fourth terms are obtained from the torsion tensor by raising and low-
ering the indices using the metric tensor gμν , which is covariantly constant in this connection. The last
three terms of the connection form the contorsion tensor, which is antisymmetric in the last two indices:
K λ

μν ≡ −(S λ
μν + Sλ

μν + Sλ
νμ) [1].

This paper is structured as follows. In Sec. 2, we introduce the basic conventions and notation related
to the Lorentz group [5], [6], the tetrad formalism in the theory of gravity [7], and gauge fields in the tetrad
formalism. In Sec. 3, we construct the Lagrangian for the system of tetrad and gauge fields, which provides
the lower bound for the energy of small perturbations, and we derive a system of equations for the tetrad
and gauge fields in presence of point particles from the least action principle. In Sec. 4, we consider the
post-Newtonian expansion procedure applied to the TGTG. In Sec. 5, we solve the TGTG equations in
the Newtonian and first post-Newtonian approximation. In Sec. 6, we find the metric of a static isotropic
gravitational field as a result of solving the TGTG equations. In Sec. 7, we give brief conclusions and
present some prospects for the TGTG.

2. Basic conventions and notation

2.1. Basic quantities and relations associated with the Lorentz group. The Lorentz group
transformations in the Minkowski space are defined by the relation ΛTηΛ = η, where Λ = (Λα

β) is the
Lorentz matrix and η = (ηαβ) is the Minkowski metric with the signature ( + , − , − , − ).

We introduce the single notation 4ta for all six group generators, where the index a = (a′, a′′) ranges
six values (the indices a′ and a′′ take the values 1, 2, and 3): (4ta′)α

β = −iδα
i δβ

j εa′ij are the matrix elements
of the generator of the space rotation around the axis labeled a′, εa′ij is a completely antisymmetric unit
rank-3 pseudotensor (ε123 = 1), and (4ta′′)α

β = i(δα
0 δβ

a′′ + δα
a′′ δβ

0 ) are the matrix elements of the boost
generator in the direction of the space axis labeled a′′. The indices α, β, γ, δ, . . . from the beginning of the
Greek alphabet are used for the locally inertial coordinates, where there is no gravity (Lorentz indices), and
take the values 0, 1, 2, and 3. In this notation, the commutation relations for 4ta are [4ta, 4tb] = iCc

ab 4tc,
where the only nonzero group constants are Cc′

a′b′ = εc′a′b′ , Cc′

a′′b′′ = −εc′a′′b′′ , and Cc′′

a′b′′ = εc′′a′b′′ . We
consider real spaces and, instead of complex matrices 4ta, therefore use real matrices τa = −i4ta satisfying
the commutation relations [τa, τb] = Cc

ab τc. Eliminating the upper index in (4ta)α
β via the metric ηαβ ,

we find that (τa)αβ = −(τa)βα. The Lorentz group is related to its Lie algebra by the exponential map
Λ(θ) = exp(τaθa).

The generators 6ta of the adjoint representation [5] for the Lorentz group are purely imaginary, and
their matrix elements are (6ta)b

c = iCb
ac. Below, we use the real quantities χa = −i6ta with the matrix

elements (χa)b
c = Cb

ac satisfying the same commutation relations [χa, χb] = Cc
abχc as τa. The metric

6η = (6ηab) in the space of the adjoint representation for the Lorentz group is expressed in terms of the
group constants:

6ηab = 6η
ab = −1

4
Tr(χaχb) =

1
4
Cc

adC
d
bc,

6ηa′b′ = δa′b′ , 6ηa′′b′′ = −δa′′b′′ , 6ηa′b′′ = 6ηa′′b′ = 0.

The generators χa satisfy the relation χT
a 6η = −6ηχa, which implies the equality 6Λ

T
6η 6Λ = 6η

satisfied by the matrix 6Λ of the adjoint representation. In the adjoint representation, there is a standard
exponential map between the Lorentz group and its Lie algebra: 6Λ(θ) = exp(χaθa). The metric in the
space of the adjoint representation can also be expressed in terms of the Lorentz group generators τa as

6ηab = −Tr(τaτb)/2 = (τa)α
β(τb)β

α/2.
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2.2. Tetrad formalism in the theory of gravity. Using the tetrad formalism in the theory of
gravity is unavoidable because of the requirement to describe the spinor fields in this theory. According to
the principle of the local equivalence of gravity and inertial force at each point of the space–time, we can
introduce a locally inertial reference frame with the basis vectors eα(x) having the components eα

μ(x) in the
reference frame with the coordinates xμ, and we can hence represent the metric as gμν(x) = eα

μ(x)eβ
ν(x)ηαβ .

Equivalently, we can regard eα
μ(x) as components of four basis coordinate vectors eμ(x) with respect to the

basis eα(x). The indices of eα
μ(x) can be raised and lowered using the respective matrices ηαβ and gμν(x),

and each of the two indices can therefore have either the upper or the lower position. It is important that
the left index is the Lorentz index of the locally inertial reference frame while the right index is a general
coordinate index.

The choice of the dynamical variables describing the field is important in constructing a field theory.
Therefore, if the metric is chosen as a dynamical variable describing gravity, then the least action principle
leads to a GR theory that is not a gauge theory. The possibility promised by GR to choose a locally inertial
reference frame arbitrarily at each space–time point essentially means the presence of a symmetry described
by the local Lorentz group, but this symmetry remains beyond the scope of the mathematical setting of
GR, which admits the presence of such a symmetry but cannot describe it, because of the unsuitable choice
of the dynamical variable, which cannot take this symmetry into account. In fact, the metric is invariant
under local Lorentz transformations.

Choosing the tetrad as a dynamical variable describing the gravitational field, we must use the deriva-
tives of the tetrad components to construct the Lagrangian, and this breaks the covariance of the theory. To
restore this covariance, we must introduce the gauge fields. We note that the Lorentz group is noncompact,
but this does not prevent constructing a physically suitable gauge theory, as we show below.

2.3. Tetrad formalism and gauge fields. Together with the fields eα
ν(x), the Lagrangians must

contain their derivatives ∂μeα
ν(x) with respect to the coordinates. Under infinitesimal local Lorentz transfor-

mations, the tetrad eα
ν(x) transforms according to the rule eα

ν(x) → e′αν(x) = eα
ν(x) + (τa)α

β θa(x)eβ
ν(x).

In this case, the derivative transformation rule ∂μeα
ν(x) contains terms with the derivatives ∂μθa(x), which

prevent constructing invariant Lagrangians. To eliminate these derivatives, we use the well-known method
of introducing gauge fields [6] by replacing ∂μeα

ν(x) with the gauge-covariant derivative of the tetrad

[Dμ(B)eν(x)]α ≡ [Dμ(B)]αβ eβ
ν(x) ≡ [δα

β ∂μ + (τa)α
β Ba

μ(x)]eβ
ν(x), (1)

where Ba
μ(x) are six coordinate covariant vector fields (gauge fields) that transform under local Lorentz

transformations according to the rule

Ba
μ(x) → B′a

μ(x) = Ba
μ(x) + Ca

cb Bb
μ(x) θc(x) − ∂μθa(x). (2)

The transformation rule for the gauge-covariant derivative of the tetrad under infinitesimal local Lorentz
transformations,

[Dμ(B)eν(x)]α → [Dμ(B′)e′ν(x)]α = [Dμ(B)eν(x)]α + (τa)α
β θa(x)[Dμ(B)eν(x)]β , (3)

has the same form as for the tetrad itself, as it should for a Lorentz vector.
We introduce the contraction of the derivative [Dμ(B)eν(x)]α and e λ

α (x) over the Lorentz index α:

Γλ
μν(x) ≡ e λ

α (x)[Dμ(B)eν(x)]α = e λ
α (x) ∂μeα

ν(x) + (τa)α
β e λ

α (x) eβ
ν(x)Ba

μ(x). (4)

Because of the derivative, the first term in the right-hand side is not a tensor, Γλ
μν(x) therefore behaves as

a space–time connection under a coordinate change, and we identify it with the connection. The covariant
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derivative of the tetrad in this connection (we omit the explicit indication of the coordinate dependence for
quantities below) is linear in the gauge fields:

eα
μ;λ = ∂λeα

μ − Γν
λμ eα

ν = −(τa)α
β eβ

μ Ba
λ. (5)

It hence follows that gμν;λ = 0, and the metric therefore agrees with connection (4). The four-dimensional
Riemann–Cartan space–time U4, which is completely defined by the connection Γλ

μν and the metric gμν ,
can hence be described in terms of the tetrad field eα

μ and the gauge fields Ba
μ. In this case, we must

impose six independent conditions in the form of tensor equalities on the field components to eliminate the
six-parameter redundancy of the number of independent field components eα

μ and Ba
μ compared with the

number of independent components of the metric gμν and the connection Γλ
μν (there are 74 components of

the metric gμν and the connection Γλ
μν that satisfy the 40 conditions gμν;λ=0, and there are 40 components

of eα
μ and Ba

μ).
Connection (4) can be represented as a sum Γλ

μν = Γλ
(μν) +S λ

μν , where the term Γλ
(μν) ≡ (Γλ

μν +Γλ
νμ)/2

symmetric in the lower indices is not a tensor and the antisymmetric term

S λ
μν ≡ 1

2
(Γλ

μν − Γλ
νμ) =

1
2
e λ

α [(∂μeα
ν − ∂νeα

μ) + (τa)α
β(eβ

ν Ba
μ − eβ

μ Ba
ν)] (6)

is a torsion tensor that is nonzero even at Ba
μ = 0.

The curvature tensor, defined as usual [1], [7] via connection (4), in terms of the variables eα
μ and Ba

μ

is
Rμ

νλρ ≡ ∂λ Γμ
ρν − ∂ρ Γμ

λν + Γμ
λσ Γσ

ρν − Γμ
ρσΓσ

λν = (τa)αβ eαμeβ
ν F a

λρ, (7)

where we use the notation for the six gauge field tensors

F a
λρ ≡ ∂λBa

ρ − ∂ρB
a
λ + Ca

bc Bb
λ Bc

ρ. (8)

Unlike the gauge fields Ba
μ, the coordinate tensor F a

λρ is a vector (with respect to the index a) in the
adjoint representation space of the Lorentz group, which we can easily verify in the case of infinitesimal
transformations. The tensor Rμνλρ is asymmetric with respect to the indices of the first and the second
pairs, but these two pairs of indices are completely different: the first is related only to the tetrad fields,
and the second is related only to the gauge field tensor. Therefore, the space U4 can have a curvature
only in the presence of gauge fields, while the torsion exists even without them. As a consequence of the
different nature of the first and second pairs of the torsion tensor indices, the Ricci tensor Rμν ≡ Rλ

μλν is
antisymmetric.

3. System of equations for tetrad and gauge fields in the presence
of classical particles

3.1. Invariants. We construct the Lagrangian for the system of tetrad and gauge fields using all the
invariants that can be formed from the torsion, curvature, and metric tensors. Using the components S λ

μν

and gμν , we can construct three linearly independent scalars

S1 = gμνS λ
μρ S ρ

ν λ, S2 = gμνS λ
μρ S ρ

νλ , S3 = Sν
λ

λS ρ
νρ

and two linearly independent antisymmetric rank-2 tensors

1Sσπ = S λ
σπ S ρ

λρ , 2Sσπ = (S λ
σ π − S λ

π σ)S ρ
λρ .
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Using the components Rμνλρ and gμν , we can construct three linearly independent scalars expressed by
virtue of (7) in terms of F a

λρ and eα
μ:

R1 =
1
2
RμνλρR

μνλρ = 6ηab gλσgρπF a
λρF

b
σπ ,

R2 = RμνλρRλρμν = (τa)αβ eασeβπ(τb)γδ eγλeδρF a
λρF

b
σπ ,

R3 = RμνλρRμλνρ = −(τa)βα(τb)
α
δ eδλgρπeβσF a

λρF b
σπ .

Using the Ricci tensor Rμν = R(μν)+R[μν], where R(μν) is the symmetric part and R[μν] is the antisymmetric
part of the tensor Rμν , we construct three more scalars:

R4 = R(μν)R
(μν) =

1
2
(τa)γ

δ(τb)α
β e σ

α e λ
γ (ηβδgπρ + eδπeβρ)F a

λρF b
σπ ,

R5 = R[μν]R
[μν] =

1
2
(τa)γ

δ(τb)α
β e σ

α e λ
γ (ηβδgπρ − eδπeβρ)F a

λρF b
σπ ,

R6 = Rμ
μ = R(μν)g

μν = (τa)αβ eαλeβνF a
λν .

Calculating the square of the invariant R6, we obtain the last invariant, R7 = R2
6. These seven invariants

Rk exhaust all the invariants not exceeding the fourth order in the gauge fields.
In the case of a compact symmetry group, there is a single invariant analogous to R1 [4] for constructing

the Lagrangian of the gauge fields, but the metric of the adjoint representation space is positive-definite in
this case, which does not lead to any problems. In the case of the noncompact symmetry group considered
here, the metric 6ηab included in R1 of the adjoint group-representation space is not a sign-definite metric,
which eventually results in the energy of small perturbations of the gauge fields being unbounded from
below. Essentially, this means that the Lagrangian constructed using just one invariant R1 is inconsistent
with the least action principle.

Therefore, we must construct a linear combination of the reduced invariants and find coefficients of
these invariants such that the least action principle is satisfied, i.e., such that small perturbations of the
energy of the gauge fields are bounded from below.

3.2. Preliminary form of the Lagrangian. We first note that the tetrad and gauge fields are
massless. It is impossible to form a mass term (i.e., a term including the field components without deriva-
tives) from eα

μ because the only contraction that can be constructed using only the components eα
μ is the

number eα
μ e μ

α = 4. The gauge fields Ba
μ are not vectors of the adjoint representation space with respect

to the group index a. Therefore, a quadratic term playing the role of a mass term cannot be constructed
using only the components Ba

μ.
As the TGTG Lagrangian, we choose a linear combination of the above invariants including constraints

in it:

LGCλ(e, ∂e, B, ∂B, λ) ≡ LG(e, ∂e, B) + LC(e, B, ∂B) +
c3

2πG
λσπΦσπ(e, ∂e, B, ∂B), (9)

where

LG(e, ∂e, B) ≡ c3

2πG

3∑

k=1

BkSk,

LC(e, B, ∂B) ≡ −�

4

( 5∑

k=1

AkRk + A7R7

)
+ A6

c3

2πG
R6.
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In the first of these definitions, Bk are unknown numerical coefficients, and the dimensional factor is
formed by the speed of light c and gravitational constant G. In the second expression, Ak are unknown
numerical coefficients, the Plank constant � is taken as the dimensional factor, and the dimensional factor
before R6 is the same as in LG because R6 and Sk have the same dimensionality (the tetrad fields are
dimensionless, while the gauge fields have the dimension of inverse length). The third term in Lagrangian (9)
is a linear combination of the left-hand sides of the constraint equations Φσπ = 0, where we take Φσπ ≡
α1 1Sσπ + α2 2Sσπ + α3R[σπ], i.e., a linear combination of the available antisymmetric tensors kSσπ and
R[σπ]. Here, αk are the numerical factors. The Lagrange factors λσπ in the third term of (9) are the
components of the antisymmetric tensor. The factor 2π is included in the denominators for consistency
with the Newton theory.

It can be seen that if there are no gauge fields, then only the first and third terms remain in (9), which
include both tetrad fields and their derivatives with respect to the space–time coordinates. As a result,
the Lagrangian describes only the tetrad fields (by tetrad fields, we mean the differences eα

μ − δα
μ), which

must be identified with pure gravity. Hence, the torsion, not the curvature, which is absent if there are no
gauge fields (see relations (7) and (8)), is responsible for the gravitational interaction in the TGTG. The
gauge fields of the TGTG are coupled only to the tetrad fields, i.e., only to gravity. Only gravity is directly
coupled to ordinary matter (classical particles and electromagnetic and spinor-type fields). This follows
because in the presence of gravity, all the coordinate fields must transform into scalars via the contraction
with the tetrad components and the derivatives of the coordinate scalar fields are expressed in terms of the
tetrad fields and their derivatives [7].

The gravitational source is the energy–momentum tensor for a material body [7]. As the simplest such
material body, we take a system of N free classical point particles with the masses mn (n = 1, N) moving
along trajectories xμ

n(x0). The energy–momentum tensor for this system is symmetric and has the form

T μν(x) = g−1/2(x)
N∑

n=1

mnc2 dxμ
n(x0)
dx0

dxν
n(x0)
dx0

(
dτn

dx0

)−1

δ4(x − xn(x0)). (10)

3.3. Constructing the numerical coefficients in the Lagrangian. To avoid an unacceptably
large size of this paper, we explain the method for finding the numerical coefficients of Lagrangian extremely
briefly.

By the least action principle, we obtain a system of TGTG equations consisting of the tetrad field
equations, gauge field equations, constraint equations, and equations of motion for particles. To find the
numerical coefficients in the expression for LG, we consider the case of free weak gravitational field generated
by a point mass m at rest. It is natural to assume that the tetrad eα

μ in this case is eα
μ = δα

μ + fα
μ, where

|fα
μ| � 1. Writing the system of equations, we restrict ourself to first-order terms in the small quantities

|fα
μ|. The constraint equations become identities 0 ≡ 0, which means that there are no Lagrange multipliers

in this approximation. The requirement for obtaining the Newtonian result leads to the constraints f i
j =

−δi
jf

0
0, 2B1 + B2 + B3 = 0, B3 = −1, |f0

i| � |f0
0|, and |f i

0| � |f0
0| in accordance with the tetrad field

equations. The absence of gauge fields does not mean that the other gauge field equations automatically
become identities. These equations disappear if the conditions A6 = −1/4 and α3 = 0 are satisfied. As a
result, we have the only nonidentity equation, according to which f0

0(r) = −r0/r, where r0 = Gm/c2, and
g00(r) = 1 + 2f0

0(r) is hence the sought Newtonian approximation of the metric.
Of course, this result can be obtained using the post-Newtonian approximation [7], which allows finding

the corrections in the next order of smallness to the Newtonian result. It turns out that r0/r ∼ v̄2/c2,
where v̄ is the mean particle velocity in the gravitational field generated by the point source at rest.
Hence, the Newtonian contribution to the metric is a quantity of the second order of smallness in the
parameter v̄/c. The next corrections to the metric are quantities of the third and fourth orders of smallness
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in v̄/c. In particular, the equations for the quantities of the third order of smallness yield |f i
0| ∼ v̄3/c3

and |f0
i| ∼ v̄3/c3, which agree with the results of solving the pure gravity equations in the Newtonian

approximation given above. In addition, the equation of the third order of smallness implies that B1 = 1/4
and B2 = 1/2.

Considering the problem of finding the static isotropic metric [7] in the framework of the tetrad for-
malism in the pure gravity case allows finding the numerical coefficients α1 and α2. In framework of this
problem, the constraint equations become identities 0 ≡ 0 only if α1 = α2, which means that there are no
Lagrange multipliers. We choose these coefficients to be unity, which is allowed because they, being equal
to each other, play the role of a scale factor of the Lagrange multipliers. In addition, the remaining pure
gravity equations lead to a solution corresponding to the Schwarzschild solution for the metric in GR. Using
the well-known experimental status of pure gravity in these problems thus allows finding not only all the
numerical coefficients directly related to the tetrad fields but also the coefficients A6 and α3 directly related
to the gauge fields.

The experimental status of the gauge fields of the TGTG is unclear, which does not allow finding all
the numerical coefficients related to the gauge fields, but the fundamental requirement that the “kinetic
energy” of the gauge fields be positive, i.e., the condition that squares of linear combinations of the time
derivatives of all gauge field components are included with positive signs, imposes five conditions on the
six coefficients, and these conditions allow finding some of those numerical coefficients. To simplify seeking
the coefficients A1, . . . , A5, and A7, we consider the case of free gauge fields where eα

μ = δα
μ and the metric

tensor coincides with the Minkowski metric.
The only quantity including the derivatives of gauge fields is gauge field tensor (8). Therefore, in the

first term LC(e, B, ∂B), it suffices to restrict ourself to only the terms of gauge field tensors that include
derivatives, i.e., we consider only F a

λρ ≈ ∂λBa
ρ − ∂ρB

a
λ (see (8)) in LC(e, B, ∂B). In LC(e, B, ∂B), we keep

only the set LC00 of terms considerable in this case that are quadratic in time derivatives of the gauge
fields. We obtain LC00 ≥ 0 if the conditions A4 + A5 = 0, 2A1 + A3 = 0, 4A2 + A3 + A4 = 0, A3 ≤ 0, and
A4 + 4A7 ≤ 0 are satisfied.

The unclear experimental status of the gauge fields thus does not allow uniquely defining all the
numerical coefficients. We choose A1 = 1. Then A3 = −2, which ensures that the numerical coefficient of
the highest-order time derivative ∂0∂0B

′k
k is unity in the gauge field equations. Here, we assume summation

over repeating indices and also take into account that the indices a′ and a′′ take the same three values 1,
2, and 3, as the indices k and n. It is therefore convenient to replace them with k and n and transfer the
signs ′ and ′′ to the field components. For instance, for a′ = 1, we change Ba′

n ≡ B′1
n. This convention

cannot lead to misunderstandings.
Considering the structure of the gauge field Lagrangian, we see that the choice A4 = −2 and A7 = −1

provides an equal status for all those terms in LC(e, B, ∂B) that are quadratic in the gauge field tensor (see
below). In this case, A5 = 2, A2 = 1, and LC00 becomes

LC00 =
�

2
(∂0B

′k
k ∂0B

′n
n + 3∂0B

′′k
k ∂0B

′′n
n).

The additional arguments in favor of this choice for A4 and A7 are that the gauge fields of the TGTG are
coupled only to gravity and we can therefore relate them to the only currently known physical objects of
this kind, which are dark matter and dark energy, whose densities are related in the ratio one to three [8].

3.4. Final form of the Lagrangian. Using the definitions of invariants and taking the indicated
values for the numerical coefficients into account, we obtain

LG(e, ∂e, B) =
c3

2πG
gμν

(
1
4
S λ

μρ S ρ
ν λ +

1
2
S λ

μρ S ρ
νλ − S λ

μλ S ρ
νρ

)
, (11)
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LC(e, B, ∂B) = −�

4
M λρσπ

ab (e)F a
λρF b

σπ − 1
4

c3

2πG
(τa)αβe λ

α e ρ
β F a

λρ. (12)

Here, the quantities depending only on the tetrad,

M λρσπ
ab (e) ≡ 1

2
{

6ηab(g
ρπgλσ − gλπgρσ) + 2(τa)αβ eαπeβσ(τb)γδ eγρeδλ +

+ (τa)β
γ(τb)

γ
δ[e

δρ(e π
β gλσ − e σ

β gλπ) − eδλ(e π
β gρσ − e σ

β gρπ)] −

− (τa)α
β(τb)

γ
δ(e

π
γ eβσ − e σ

γ eβπ)(e ρ
α eδλ − e λ

α eδρ) − 2(τa)αβ eαρeβλ(τb)γδ eγπeδσ
}
, (13)

have the symmetry M λρσπ
ab = M σπλρ

ba , which provides the symmetry of the considered Lagrangian
term with respect to the two multipliers F a

λρ and F b
σπ , and also provides the antisymmetry M λρσπ

ab =
−M ρλσπ

ab = −M λρπσ
ab = M ρλπσ

ab under independent permutations of the coordinate indices of the first
pair and of the coordinate indices of the second pair, which is agrees with the antisymmetry of each multi-
plier F a

λρ and F b
σπ . The constraint equations have the form

Φσπ ≡ (S λ
σπ + S λ

σ π − S λ
π σ)S ρ

λρ = 0. (14)

3.5. The TGTG equations for the point-particle system. According to (9)–(14), the variation
of the action of the considered system is

δImGCλ[xn, e, B, λ] =
N∑

n=1

mnc

∫ Qn

Pn

dτn gλσ(xn)
[
d2xλ

n

dτ2
n

+ Gλ
μν(xn)

dxμ
n

dτn

dxν
n

dτn

]
δxσ

n −

− 1
c

∫

Ω

d4x
√

g(x) 2T μν(x)eαν(x) δeα
μ(x) +

+ δ

∫

Ω

d4x
√

g(x)LGCλ(e, ∂e, B, ∂B, λ). (15)

Equating action variation (15) to zero and taking the independence of the variations δxν
n, δeα

μ(x), δBa
μ(x),

and δλσπ(x) into account, in accordance with the least action principle, we obtain the equations of motion
for particles in the gravitational field

d2xλ
n

dτ2
n

+ Gλ
μν(xn)

dxμ
n

dτn

dxν
n

dτn
= 0, (16)

constraint equations (14), and also the equations

∂νQ μν
α + Gρ

ρνQ μν
α − Q μν

γ (τa)γ
α Ba

ν +
1
2
E μρ

a e λ
α F a

λρ − Zμ
ρ e ρ

α −

− ∂νV μν
α − Gρ

ρν V μν
α + V μν

γ (τa)γ
α Ba

ν + Wμ
ρ e ρ

α +

+
2πG

c3
�M ρλπμ

ab e σ
α F a

λρF b
σπ +

2πG

c3
(LG + LC)e μ

α − 4πG

c4
T μνeαν = 0 (17)

for the tetrad fields and

�[∂ν(M μνσπ
ab F b

σπ) + Gλ
λν M μνσπ

ab F b
σπ + Cd

ac Bc
ν M μνσπ

db F b
σπ ] −

− c3

2πG

{
1
2
(∂νE νμ

a + Gλ
λνE νμ

a + Cd
ac Bc

ν E νμ
d ) +

(
E μρ

a S λ
ρλ +

1
2
E λρ

a S μ
λρ

)
+

+ λσπ

(
EaσπSμ

ρ
ρ − 1

2
E μ

a ν(S ν
σπ + 2S ν

σ π)
)}

= 0 (18)
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for the gauge fields. Here, to understand the equations better, we introduce notation for the antisymmetric
rank-2 coordinate tensors dependent on local transformations of the tetrad

Q μν
α (e, ∂e, B) ≡ 1

2
(Sμν

ρ + Sμ
ρ

ν − Sν
ρ

μ)e ρ
α + (Sν

ρ
ρ e μ

α − Sμ
ρ

ρ e ν
α ), (19)

V μν
α (e, ∂e, B, λ) ≡ (λνμSρ

σ
σ + λνρSμ

σ
σ − λμρSν

σ
σ)eαρ +

+
1
2
λσρ[e μ

α (S ν
σρ + 2S ν

σ ρ) − e ν
α (S μ

σρ + 2S μ
σ ρ)], (20)

E μν
a ≡ (τa)αβe μ

α e ν
β (21)

and also for the coordinate tensors independent of local transformations of the tetrad

Zμ
ρ(e, ∂e, B) ≡ (Sμσ

π + Sμ
π

σ − Sσ
π

μ)S π
ρσ − 2Sμ

σ
σS π

ρπ − 2Sσ
π
πS μ

σρ , (22)

Wμ
ρ(e, ∂e, B, λ) ≡ 2λσμS ν

πν S π
σ ρ +

+ λσπ [2Sμ
ν

νSρσπ + (S ν
σπ + 2S ν

σ π)S μ
ρν − (S μ

σπ + 2S μ
σ π)S ν

ρν ]. (23)

From (19) and (20), we can immediately see that Q μν
α (e, ∂e, B) and V μν

α (e, ∂e, B, λ) are Lorentz vectors
with respect to the index α. Using the matrix 6Λ(θ) and the commutation relations for the generators χa of
the adjoint representation of the Lorentz group, we verify that E μν

a is a vector in the adjoint representation
space with respect to the index a. Taking the definition of the covariant derivative and connection (4) into
account, we find that the left-hand sides of (17) and (18) are both coordinate and Lorentz vectors and the
equations themselves are tensor equalities, i.e., they preserve their form under both arbitrary coordinate
transformations and local Lorentz transformations (double covariance).

4. Post-Newtonian expansion of the TGTG equations

4.1. Problem setting. We consider the solution of Eqs. (14) and (16)–(23) for a system of particles
that are coupled like the Sun and planets by mutual gravitational attraction. For solving such a problem
in the framework of GR, the method of post-Newtonian expansion was developed; it is described in detail
in [7]. We use this method to solve the equations after adapting it to the TGTG.

Let m̄ and v̄ be the mean particle mass and velocity and r̄ be the mean distance between the particles.
According to the virial theorem in Newtonian mechanics, the mean kinetic energy, which is of the order of
m̄v̄2/2, equals the characteristic potential energy Gm̄2/r̄, i.e., v̄2 ∼ Gm̄/r̄ up to an order of magnitude.
Therefore, for instance, a particle moving in a circular orbit of radius r around a central body of mass m has
a velocity v defined by the exact expression v2 = Gm/r in the Newtonian mechanics. The post-Newtonian
approximation can be regarded as a method describing the motion of a system of gravitationally interacting
bodies that is one order of the small parameters Gm̄/r̄c2 and v̄2/c2 more precise than the Newtonian
mechanics.

We first formulate the problem confronting us. Using equations of motion (16) for particles in the
theory of gravity, we find the components of the particle acceleration in the gravitational field, whose
detailed form is [7]

d2xk

dt2
= − c2Gk

00 − 2c Gk
0i

dxi

dt
− Gk

ij

dxi

dt

dxj

dt
+

+
(

c2G0
00 + 2c G0

0i

dxi

dt
+ G0

ij

dxi

dt

dxj

dt

)
1
c

dxk

dt
. (24)

458



All the velocities are assumed to vanish in the Newtonian approximation, and in constructing the component
g00(x) of the metric tensor, we keep only terms of the first order in the parameter v2/c2 ∼ Gm/rc2 ≡ r0/r,
where r0 ≡ Gm/c2 [7]. In this case, according to (24),

d2xk

dt2
= −c2Gk

00(x) = −c2

2
∂kg00(x). (25)

It follows from relation (25) that to find the acceleration in the Newtonian approximation, i.e., acceleration
of the order of v2/r, we must know the Christoffel symbols up to the order of Gm/rc2 or, in other words,
up to the order of v2/c2. Therefore, the goal of the first post-Newtonian approximation is to calculate the
derivative d2xk/dt2 up to v̄4/c2r̄. For this, according to (24), we must know the Christoffel symbols with
the accuracy G0

ij ∼ v̄/cr̄, G0
0i ∼ v̄2/c2r̄, G0

00 ∼ v̄3/c3r̄, Gk
ij ∼ v̄2/c2r̄, Gk

0i ∼ v̄3/c3r̄, and Gk
00 ∼ v̄4/c4r̄.

4.2. Tetrad and metric expansion in powers of the small parameter. We assume that there
is a reference frame where the tetrad components can be written as

eα
μ ≡ δα

μ + fα
μ, (26)

where the corrections fα
μ can be expanded in powers of (Gm/rc2)1/2 ∼ v̄/c. In particular, we assume that

f0
0 =

2

f0
0 +

4

f0
0 + . . . , f i

j =
2

f i
j +

4

f i
j + . . . ,

f0
i =

3

f0
i +

5

f0
i + . . . , f i

0 =
3

f i
0 +

5

f i
0 + . . . ,

(27)

where
N

fα
μ means the term of the order of (v̄/c)N in fα

μ. In this case, the metric tensor

gμν = ηαβ eα
μ eβ

ν = ημν + ημμfμ
ν + ηννfν

μ + ηαβfα
μ fβ

ν (28)

admits the expansions

g00 = 1 + 2
g00 + 4

g00 + . . . , gij = −δij + 2
gij + 4

gij + . . . , g0i = 3
g0i + 5

g0i + . . . , (29)

where

2
g00 = 2

2

f0
0,

2
gij = −

2

f i
j −

2

f j
i,

3
g0i = 3

gi0 =
3

f0
i −

3

f i
0, (30a)

4
g00 = (

2

f0
0)

2 + 2
4

f0
0,

4
gij = −

2

fk
i

2

fk
j −

4

f i
j −

4

f j
i. (30b)

Just as in expansions (27), N
gμν here means the term of the order of (v̄/c)N in gμν . The dependence on odd

powers of v̄ in f0
i and f i

0 and therefore in g0i arises because the components g0i must change sign under
time reversal, i.e., under replacing t with −t. The verification of this expansion is given below. We show
that it leads to a self-consistent solution of the gravitational field equations.

The inverse tetrad e μ
α is defined by either of the two equations eα

μ e ν
α = δν

μ or eα
μ eβ

μ = δα
β . Similarly,

we assume that e μ
α = δμ

α +f μ
α by analogy with (26). Then, taking (26) into account, from the first equation

defining the inverse tetrad, we obtain the relations

eα
μ e ν

α − δν
μ = (δα

μ + fα
μ)(δν

α + f ν
α ) − δν

μ = fν
μ + f ν

μ + fα
μ f ν

α = 0 (31)
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and represent them in a form convenient for the further transformations,

f0
0 + f 0

0 + fα
0 f 0

α = 0, f0
i + f 0

i + fα
i f 0

α = 0,

f i
0 + f i

0 + fα
0 f i

α = 0, f i
j + f i

j + fα
j f i

α = 0.
(32)

We assume that the inverse tetrads admit expansions similar to (27),

f 0
0 =

2

f 0
0 +

4

f 0
0 + . . . , f j

i =
2

f j
i +

4

f j
i + . . . ,

f 0
i =

3

f 0
i +

5

f 0
i + . . . , f i

0 =
3

f i
0 +

5

f i
0 + . . . .

(33)

Substituting expansions (27) and (33) in (32) and restricting ourself to terms of the order of smallness not
exceeding (v̄/c)4, we obtain

2

f0
0 +

2

f 0
0 +

2

f0
0

2

f 0
0 +

4

f0
0 +

4

f 0
0 = 0,

3

f0
i +

3

f 0
i = 0,

3

f i
0 +

3

f i
0 = 0,

2

f i
j +

2

f i
j +

2

fk
j

2

fk
i +

4

f i
j +

4

f i
j = 0.

(34)

Equations (34) allow expressing the inverse tetrad through the original tetrad:

2

f 0
0 = −

2

f0
0,

2

f i
j = −

2

f i
j ,

3

f 0
i = −

3

f0
i,

3

f i
0 = −

3

f i
0,

4

f 0
0 = −

4

f0
0 + (

2

f0
0)

2,
4

f i
j = −

4

f i
j +

2

f i
k

2

fk
j .

(35)

We find the expansion of the inverse metric tensor using the equation gμν = ηαβ e μ
α e ν

β = ημν + ημμf ν
μ +

ηννfν
μ + ηαβf μ

α f ν
β analogous to (28), where we must use expansions (35) for the inverse tetrad. As a

result, we obtain

g00 = 1 + 2
g00 + 4

g00 + . . . , gij = −δij + 2
gij + 4

gij + . . . , g0i = 3
g0i + 5

g0i + . . . , (36)

where

2
g00 = −2

2

f0
0,

2
gij =

2

f i
j +

2

f j
i,

3
g0i = 3

gi0 =
3

f0
i −

3

f i
0, (37a)

4
g00 = −2

4

f0
0 + 3(

2

f0
0)

2,
4
gij =

4

f i
j +

4

f j
i −

2

f i
k

2

f j
k −

2

f i
k

2

fk
j −

2

f j
k

2

fk
i. (37b)

4.3. Expansion of the Christoffel symbols. In calculating the Christoffel symbols, we must take
into account that r̄ and r̄/v̄ are selected as the respective distance and time scales in the considered system.
We therefore assume that the space and time derivatives have the orders ∂i ∼ 1/r̄, ∂t ∼ v̄/r̄, and ∂0 ∼ v̄/cr̄.
Using expansions (29) and (36), we find the Christoffel symbols Gk

00, Gk
ij , and G0

0i in Eq. (24) with the
required accuracy. At even powers of the velocity components, we have

Gk
00 =

2

Gk
00 +

4

Gk
00,

2

Gk
00 =

1
2

∂k
2
g00,

4

Gk
00 =

1
2

∂k
4
g00 − ∂0

3
g0k +

1
2

2
gkn ∂n

2
g00, (38a)

Gk
ij =

2

Gk
ij = −1

2
(∂j

2
gik + ∂i

2
gjk − ∂k

2
gij); G0

0i =
2

G0
0i =

1
2

∂i
2
g00. (38b)

At odd powers of the velocity components, we have

G0
00 =

3

G0
00 =

1
2

∂0
2
g00, Gk

0i =
3

Gk
0i = −1

2
(∂i

3
g0k + ∂0

2
gik − ∂k

3
g0i),

1

G0
ij = 0. (39)
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It follows from these formulas that to calculate the required Christoffel symbols, we must know gij up to
terms of the order of (v̄/c)2, g0i up to terms of the order of (v̄/c)3, and g00 up to terms of the order of
(v̄/c)4. According to (29) and (30), this means that we must write the expansions for the metric tensor

g00 = 1 + 2
g00 + 4

g00 = 1 + 2
2

f0
0 + (

2

f0
0)

2 + 2
4

f0
0, (40a)

gij = −δij + 2
gij = −δij −

2

f i
j −

2

f j
i, g0i = 3

g0i =
3

f0
i −

3

f i
0. (40b)

For comparison, we note that regarding the Newtonian approximation, we need g00 up to terms of the
order of (v̄/c)2 (see (25)) and only the zeroth approximation for g0i and gij . This means that we remove

(i.e., equate to zero) the quantities (
2

f0
0)2,

4

f0
0,

2

f i
j ,

3

f0
i, and

3

f i
0 in formulas (40). Everything outlined above

clarifies the meaning of the Newtonian approximation and verifies it consistently.

4.4. Expansion of gauge fields and Lagrange factors. According to the above, the gauge fields
do not affect the motion of the considered system of particles. Nevertheless, these fields are included in
not only the gauge field equations but also the tetrad field equations, which requires also extending the
post-Newtonian expansion method to these fields. For the internal consistency of the expansion, we require
that the gauge fields and Lagrange factors λμν can be expanded in the series

B′m
0 =

3

B′m
0 +

5

B′m
0 + . . . , B′m

j =
2

B′m
j +

4

B′m
j + . . . ,

B′′m
0 =

2

B′′m
0 +

4

B′′m
0 + . . . , B′′m

j =
3

B′′m
j +

5

B′′m
j + . . . ,

(41)

λ0i =
1

λ0i +
3

λ0i + . . . , λij =
2

λij +
4

λij + . . . . (42)

4.5. Expansions of gauge field tensors and the torsion tensor. Using gauge field expan-
sions (41) and the explicit forms for the group constants, we find the expansions of the gauge field tensors (8)
keeping terms not exceeding the fourth order of smallness:

F ′i
0j =

3

F ′i
0j = −

3

F ′i
j0 = ∂0

2

B′i
j − ∂j

3

B′i
0, (43a)

F ′i
mj =

2

F ′i
mj +

4

F ′i
mj , (43b)

2

F ′i
mj = ∂m

2

B′i
j − ∂j

2

B′i
m,

4

F ′i
mj = ∂m

4

B′i
j − ∂j

4

B′i
m + εikn

2

B′k
m

2

B′n
j , (43c)

F ′′i
0j =

2

F ′′i
0j +

4

F ′′i
0j , (43d)

2

F ′′i
0j = −

2

F ′′i
j0 = −∂j

2

B′′i
0,

4

F ′′i
0j = −

4

F ′′i
j0 = ∂0

3

B′′i
j − ∂j

4

B′′i
0 − εikn

2

B′k
j

2

B′′n
0, (43e)

F ′′i
mj =

3

F ′′i
mj = ∂m

3

B′′i
j − ∂j

3

B′′i
m. (43f)

Using tetrad component expansions (27), gauge field expansions (41), and the explicit forms of the
Lorentz group generators, we find the expansions of torsion tensors (6), keeping terms not exceeding the
fourth order of smallness:

S 0
0i =

2

S 0
0i +

4

S 0
0i , (44a)

where
2

S 0
0i = −

2

S 0
i0 =

1
2
(− ∂i

2

f0
0 +

2

B′′i
0), (44b)

4

S 0
0i = −

4

S 0
i0 =

1
2
(

2

f0
0 ∂i

2

f0
0 + ∂0

3

f0
i − ∂i

4

f0
0 −

2

f0
0

2

B′′i
0 +

2

f j
i

2

B′′j
0 +

4

B′′i
0), (44c)
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and

S j
0i = −S j

i0 =
3

S j
0i =

1
2
(∂0

2

f j
i − ∂i

3

f j
0 −

3

B′′j
i + εijk

3

B′k
0), (44d)

S 0
ij =

3

S 0
ij =

1
2
(∂i

3

f0
j − ∂j

3

f0
i +

3

B′′j
i −

3

B′′i
j), (44e)

S k
ij =

2

S k
ij +

4

S k
ij , (44f)

where

2

S k
ij =

1
2
(∂i

2

fk
j − ∂j

2

fk
i + εnjk

2

B′n
i − εnik

2

B′n
j), (44g)

4

S k
ij =

1
2
[
−

2

fk
n(∂i

2

fn
j − ∂j

2

fn
i) + (∂i

4

fk
j − ∂j

4

fk
i) +

2

fk
n(εmin

2

B′m
j − εmjn

2

B′m
i) +

+ (εnmk

2

fm
j

2

B′n
i − εnmk

2

fm
i

2

B′n
j + εnjk

4

B′n
i − εnik

4

B′n
j)

]
. (44h)

According to the presented expansions, the torsion tensor components with an even number of zero
indices have even orders of smallness (2, 4, . . . ), and the torsion tensor components with an odd number of
zero indices have odd orders of smallness (3, 5, . . . ). It follows from formulas (44) that the chosen gauge
field expansions (41) are consistent with the tetrad field expansions. According to (43) and (44), the higher
terms in the expansions of the gauge field tensors and torsion tensors have the second order of smallness.

4.6. Expansion of the energy–momentum tensor in the presence of gravity. Energy–mo-
mentum tensor (10) for particles in a gravitational field (this tensor is the source of the gravitational field)
must also be represented as an expansion in the small parameter. As a result of simple but cumbersome
calculations, we find the expansions

T 00(x) =
0

T 00(x) +
2

T 00(x), (45a)

where

0

T 00(x) =
N∑

n=1

mnc2 δ3(x − xn(x0)), (45b)

2

T 00(x) =
N∑

n=1

mnc2

[
−2

2

f0
0(x) −

2

f i
i(x) +

1
2
v2

n

c2

]
δ3(x − xn(x0)), (45c)

and
T 0k(x) =

1

T 0k(x) +
3

T 0k(x), (45d)

where

1

T 0k(x) =
N∑

n=1

mnc2 dxk
n(x0)
dx0

δ3(x − xn(x0)), (45e)

3

T 0k(x) =
N∑

n=1

mnc2 dxk
n(x0)
dx0

[
−2

2

f0
0(x) −

2

f i
i(x) +

1
2
v2

n

c2

]
δ3(x − xn(x0)), (45f)
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and
T kj(x) =

2

T kj(x) +
4

T kj(x), (45g)

where

2

T kj(x) =
N∑

n=1

mnc2 dxk
n(x0)
dx0

dxj
n(x0)
dx0

δ3(x − xn(x0)), (45h)

4

T kj(x) =
N∑

n=1

mnc2 dxk
n(x0)
dx0

dxj
n(x0)
dx0

[
−2

2

f0
0(x) −

2

f i
i(x) +

1
2
v2

n

c2

]
δ3(x − xn(x0)). (45i)

It follows from the TGTG equations and the energy–momentum tensor expansions that in the first post-
Newtonian approximation, we need the energy–momentum tensor only up to the quantities of the second
order of smallness, in other words, two order of smallness more precise than in the Newtonian approximation,
i.e., in addition to

0

T 00(x), we need only
1

T 0k(x),
2

T 00(x), and
2

T kj(x). Hence, to find the gravitational field
source (the energy–momentum tensor) in this approximation, we need the tetrad field components only in
the approximations preceding the considered approximation. Therefore, the post-Newtonian expansion is
self-consistent.

5. Solving the TGTG equations in the Newtonian and first
post-Newtonian approximations

5.1. Newtonian approximation. If we restrict ourself to the Newtonian and first post-Newtonian
approximations in solving the TGTG equations, then we can simplify the equations significantly by omitting
terms with obvious orders of smallness exceeding the fourth order. Such terms in Eqs. (17) are Wμ

ρ e ρ
α ,

Gρ
ρνV μν

α , V μν
γ (τa)γ

α Ba
ν , and the term with �, which is small even disregarding the smallness of �. The

term with � in Eqs. (18) is small compared with the second term and can be omitted. A further analysis
of the equations is possible only after choosing values of the indices α and μ corresponding to the time and
space coordinates, while the group indices a must be assigned values corresponding to rotations or boosts.

Using the above expansions, we find a system of equations in the Newtonian approximation consisting
of just the tetrad field equations of the second order of smallness. These equations for μ = 0 and α = 0 are

1
2
(−∂i∂i

2

f j
j + ∂i∂j

2

f j
i) =

4πG

c4

0

T 00. (46)

For μ = k and α = n, they are

∂i∂i(
2

fk
n +

2

fn
k) − ∂n∂i(

2

fk
i +

2

f i
k) − ∂k∂i(

2

f i
n +

2

fn
i) +

+ 2∂n∂k(
2

f0
0 +

2

f i
i) + 2δk

n(−∂i∂i

2

f0
0 − ∂i∂i

2

f j
j + ∂i∂j

2

f j
i) = 0. (47)

There are no gauge fields and Lagrange factors in these equations, which follows directly from the used
expansions (41) and (42). For

2

f i
j = −δi

j

2

f0
0, (48)

Eq. (47) becomes an identity 0 ≡ 0, and Eq. (46) becomes

∂i∂i

2

f0
0 =

4πG

c4

0

T 00. (49)
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The solution of this equation for the tetrad field
2

f0
0(x

0,x) can be written as an integral over the whole
three-dimensional space:

2

f0
0(x

0,x) = −G

c4

∫∫∫
d3x′

0

T 00(x0,x′)
|x− x′| ≡ φ(x0,x)

c2
, (50)

where φ(x0,x) is the Newtonian potential. We note that φ(x0,x) is defined by formula (50) for any source
of the gravitational field. Using (45b) in the case of a point-mass system, we obtain

2

f0
0(x

0,x) = −
N∑

n=1

Gmn

c2

1
|x− xn(x0)| . (51)

In the particular case where the source of the gravitational field is a point particle of rest mass m, Eq. (51)
implies that

2

f0
0(r) = −Gm

c2

1
r

= −r0

r
, (52)

where r ≡ |x| is the absolute value of the vector x from the source of the gravitational field (a point particle
of mass m) to the observation point. According to (29) and (30a) in the Newtonian approximation, we
have

g00(x
0,x) = 1 + 2

2

f0
0(x

0,x) (53)

(the sign of g00(x
0,x) differs from the sign in [7] because we use a different signature).

Therefore, solving the equations of the second order of smallness obtained in the standard post-
Newtonian expansion of the system of TGTG equations allows not only establishing the Newtonian result,
i.e., finding

2

f0
0(x

0,x) given by (50) but also obtaining
2

f i
j(x

0,x) given by (48), which necessary in the first
post-Newtonian approximation. As a result, we have (see (29) and (30a))

gij(x
0,x) = −δij + 2

2

f0
0(x

0,x)δij . (54)

5.2. Solving equations of the third order of smallness. Similarly, we find a system of equations
of the third order of smallness related to the first post-Newtonian approximation. This system consists of
the tetrad field equations of the third order of smallness with the form at μ = 0 and α = k

1
4

∂i∂i(
3

f0
k −

3

fk
0) −

1
4

∂k∂i(
3

f0
i −

3

f i
0) + ∂k∂0

2

f0
0 −

− 1
2
∂i

[1

λ0i(∂k

2

f0
0 +

2

B′′k
0 − εkjn

2

B′j
n) +

1

λ0k(∂i

2

f0
0 +

2

B′′i
0 − εijn

2

B′j
n)

]
−

− ∂k

[1

λ0i(∂i

2

f0
0 −

2

B′′i
0)

]
= −4πG

c4

1

T 0k, (55)

the equations with the form at μ = k and α = 0

1
4

∂i∂i(
3

f0
k −

3

fk
0) −

1
4

∂k∂i(
3

f0
i −

3

f i
0) + ∂k∂0

2

f0
0 −

− 1
2
∂i[

1

λ0i(∂k

2

f0
0 +

2

B′′k
0 − εkjn

2

B′j
n) −

1

λ0k(∂i

2

f0
0 +

2

B′′i
0 − εijn

2

B′j
n)] = −4πG

c4

1

T 0k, (56)

and the gauge field equations of the third order of smallness at μ = n and a′′ = k

δn
k

1

λ0i(∂i

2

f0
0 −

2

B′′i
0) +

1

λ0k(∂n

2

f0
0 +

2

B′′n
0 − εnij

2

B′i
j) = 0. (57)
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Equation (57) implies the equality
1

λ0k = 0, by virtue of which Eq. (55) coincides with (56) and is

1
4

∂i∂i(
3

f0
k −

3

fk
0) −

1
4

∂k∂i(
3

f0
i −

3

f i
0) + ∂k∂0

2

f0
0 = −4πG

c4

1

T 0k. (58)

Applying the operation ∂k to Eqs. (58), taking (49) into account, and omitting the numerical factor
4πG/c4, we derive the relation

∂0

0

T 00 + ∂k

1

T 0k = 0, (59)

which follows directly from (45b) and (45e) for a system of N point particles. We introduce the notation
∂μT 0μ for the left-hand side of Eq. (59) and regard ∂μT 0μ = 0 as an equality up to quantities of the first
order of smallness. Integrating over the region of the space–time going to infinity along spacelike directions
and bounded by two hypersurfaces orthogonal to the time axis, we obtain the conservation law for the
quantity

P 0 =
1
c

∫∫∫
d3x

0

T 00 = c

N∑

n=1

mn, (60)

i.e., up to the first order of smallness with respect to the parameter v̄/c, the mass conservation law for a
system of N point particles moving along trajectories xn(x0) with small velocities vn(x0) compared with
the speed of light.

Further assuming that
3

fk
0 = −

3

f0
k, (61)

we represent Eqs. (58) as

1
2

∂i∂i

3

f0
k − ∂k

(
∂0

2

f0
0 −

1
2

∂i

3

f0
i

)
= −4πG

c4

1

T 0k. (62)

If the condition

∂0

2

f0
0 −

1
2

∂i

3

f0
i = 0 (63)

is satisfied, then (62) is simplified and becomes

∂i∂i

3

f0
k = −4πG

c4
2

1

T 0k. (64)

We can write the solution of (64) vanishing at infinity as

3

f0
k(x0,x) = 2

G

c4

∫∫∫
d3x′

1

T 0k(x0,x′)
|x − x′| . (65)

Using relations (50), (65), (45b), and (45e), we verify condition (63). According to formulas (40b), (61),
and (65), the metric components of the third order of smallness can be written as (see [7])

3
g0k(x0,x) = 2

3

f0
k(x0,x) = 4

G

c4

∫∫∫
d3x′

1

T 0k(x0,x′)
|x − x′| . (66)
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5.3. Solving equations of the fourth order of smallness. In the system of the fourth order of
smallness, we have the constraint equations (see (14))

4

Φij ≡ (
2

S m
ij +

2

S j
im −

2

S i
jm )

2

S ρ
mρ = 0,

which become identities for zero gauge fields of the second order of smallness, i.e., for
2

B′i
j ≡

2

B′′k
0 ≡ 0. The

rest of the gauge field equations of the fourth order of smallness by virtue of the equality
1

λ0i ≡ 0 become

2

λij(
2

S k
ij +

2

S j
ik −

2

S i
jk ) = 0

for μ = 0 and a′′ = k and

εmnk

2

λij(
2

S k
ij +

2

S j
ik −

2

S i
jk ) − 2εmij

2

λij
2

S ρ
nρ = 0

for μ = n and a′ = m. Hence, taking
2

S ρ
nρ = −(1/2)∂n

2

f0
0 	= 0 into account, we obtain

2

λij=0. Using these
results and the solutions of the equations of the second and third smallness orders, we represent the tetrad
field equations of the fourth smallness order in the form

1
2

∂i(∂i

4

f j
j − ∂j

4

f i
j) −

2

f0
0 ∂i∂i

2

f0
0 −

1
2

∂i

2

f0
0 ∂i

2

f0
0 = −4πG

c4

2

T 00 (67)

for μ = 0 and α = 0 and in the form

1
4

[
∂i∂i(

4

fn
k +

4

fk
n) − ∂k∂i(

4

fn
i +

4

f i
n) − ∂n∂i(

4

fk
i +

4

f i
k)

]
+

1
2

∂n∂k

4

f i
i +

1
2

∂n∂k

4

f0
0 +

+ δk
n

[
∂0∂0

2

f0
0 +

2

f0
0 ∂i∂i

2

f0
0 +

1
2

∂i

2

f0
0 ∂i

2

f0
0 −

1
2

∂i∂i

4

f0
0 −

1
2

∂i(∂i

4

f j
j − ∂j

4

f j
i)

]
−

−
2

f0
0 ∂n∂k

2

f0
0 −

1
2

∂0∂k

3

f0
n − 1

2
∂0∂n

3

f0
k = −4πG

c4

2

T kn (68)

for μ = k and α = n. The seven Eqs. (67) and (68) have seven unknowns:
4

f0
0 and the symmetric components

4

f i
j . Calculating the contraction of Eqs. (68) over the indices k and n and taking (63) into account, we

obtain the equation

1
2

∂i(∂i

4

f j
j − ∂j

4

f i
j) + ∂i∂i

4

f0
0 − ∂0∂0

2

f0
0 − 2

2

f0
0 ∂i∂i

2

f0
0 −

3
2
∂i

2

f0
0 ∂i

2

f0
0 =

4πG

c4

2

T ii,

which after (67) is subtracted yields the equations for determining
4

f0
0:

∂i∂i

4

f0
0 −

2

f0
0 ∂i∂i

2

f0
0 − ∂i

2

f0
0 ∂i

2

f0
0 =

4πG

c4
(

2

T 00 +
2

T ii) + ∂0∂0

2

f0
0. (69)

We now consider the identity
2

f0
0 ∂i∂i

2

f0
0 + ∂i

2

f0
0 ∂i

2

f0
0 ≡ (1/2)∂i∂i(

2

f0
0)

2 and set

ψ ≡
4

f0
0 −

1
2
(

2

f0
0)

2. (70)

We can finally write (69) as

∂i∂iψ =
4πG

c4
(

2

T 00 +
2

T ii) + ∂0∂0

2

f0
0. (71)
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The solution of Eq. (71) is (see (49) and (50))

ψ(x0,x) = −
∫∫∫

d3x′ 1
|x − x′|

{
1
4π

∂0∂0

2

f0
0(x

0,x′) +
G

c4
[
2

T 00(x0,x′) +
2

T ii(x0,x′)]
}

. (72)

The quantity
4

f0
0 is determined using (70), (72), and (50).

According to (45c) and (45h), in the case of a single particle of mass mp, the combination of energy–
momentum tensor components in (72) has the meaning of the kinetic energy density of the gravitational
field source:

2

T 00 +
2

T ii =
mpv

2
p

2
δ3(x − xp(x0)).

Using relations (30b), (70), and (72), we obtain

4
g00 = (

2

f0
0)

2 + 2
4

f0
0 = 2(

2

f0
0)

2 + 2ψ. (73)

We note that for solving the equations of motion in the first post-Newtonian approximation, we do not
need the quantities

4

f i
j (see (40)). The TGTG metric found in the Newtonian and first post-Newtonian

approximations coincides with the metric found using the same approximations for GR (see [7], where
the signature differs from the signature used here). From relations (50), (54), (66), (72), and (73) we find
Christoffel symbols (38) and (39), which are identified with the affine connection in GR. In view of coinciding
metrics in the two theories, the Christoffel symbols also coincide, and the trajectories of particle motions
consequently coincide. The TGTG used to describe systems like the Solar System agrees with observations,
but the interpretations of gravity differ essentially in these theories. The gauge fields in the Newtonian
and first post-Newtonian approximations are absent, and the space–time is flat in these approximations.
In the TGTG, the space–time torsion is responsible for gravity. Torsion tensor (44) in the Newtonian
approximation is

2

S 0
0i = −

2

S 0
i0 =

1
2

∂i

2

f0
0,

2

S k
ij =

1
2
(δk

i ∂j

2

f0
0 − δk

j ∂i

2

f0
0). (74)

Finding the other components of the torsion tensor requires considering the second post-Newtonian
approximation. In particular, we must determine the gauge field components of the third and fourth orders
of smallness because the post-Newtonian expansion procedure is associated with expanding the equations
of motion and they do not include gauge fields, which are coupled only to gravity.

5.4. Tensor equality describing the variation of the energy–momentum vector. In the
framework of the TGTG, we consider the variation of the energy–momentum tensor for the gravity sources
due to their coupling to the gravitational field. Using relation (4), which expresses the connection Γλ

μν in
terms of the Christoffel symbol Gλ

μν and the torsion tensor Sμν
λ, we find the covariant derivative of an

arbitrary symmetric rank-2 tensor in the Riemann–Cartan space,

T μν
;μ = ∂μT μν + Gμ

μρT
ρν + Gν

μρT
μρ − 2S μ

ρμ T ρν + 2Sν
μρT

μρ, (75)

which implies the tensor equality

T μν
;μ + 2S μ

ρμ T ρν − 2Sν
μρT

μρ = ∂μT μν + Gμ
μρT

ρν + Gν
μρT

μρ, (76)

whose left-hand side is obviously a tensor, and the right-hand side is therefore also a tensor. We note that
the right-hand side of (76) has the form of a covariant derivative, where the Christoffel symbols play the
role of the connection. Essentially, the second and third terms in the left-hand side of this equality remove

467



everything related to the torsion from the covariant divergence of the tensor T μν , and only the metric part
hence remains. This corresponds to the fact that not only the gauge fields but also the tetrad fields in
explicit form do not appear in the equations of motion for the gravity sources. Only the combination of the
tetrad fields in the form of the metric are included in the equations. Using definition (10) of the symmetric
energy–momentum tensor T μν for a system of particles and equations of motion (16) for particles, we derive
the equality

∂μT μν + Gμ
μρT

ρν + Gν
μρT

μρ = 0, (77)

which is a tensor equality in both TGTG and GR according to (76). If there is no gravity, then (77) reduces
to ∂μT μν = 0, whence the conservation of the energy–momentum vector for the system of particles follows
according to the Noether theorem [9]. According to Eq. (77), the energy–momentum vector for the gravity
sources is not conserved in presence of gravity, and its variation due to the coupling to gravity is described
by this equation.

According to the Noether theorem, the energy–momentum tensor is generated by the translation sym-
metries of the Minkowski space. In the presence of gravity, there are no space–time translation symmetries
and therefore no energy–momentum tensor for gravity and consequently no energy–momentum tensor for
the whole system with gravity. But this does not prevent finding the variation of the energy–momentum
vector for the gravitational sources due to their coupling to the gravitational field. We recall that the
energy–momentum tensor for the gravitational sources in presence of a gravitational field can be found
from the energy–momentum tensor without gravity, i.e., from the energy–momentum tensor in a locally
inertial reference frame, via its contraction with the tetrad components, as for any other tensor. If the
energy–momentum tensor existed, then it would also be nonzero in the locally inertial reference frame.
This would contradict the meaning of this system and is impossible for a formal reason: the tensor trans-
formation rule is linear and homogeneous in the tensor components; therefore, a nonzero tensor cannot be
obtained from a zero tensor using such a transformation. The absence of the energy–momentum tensor
of the gravitational field follows because the gravitational field (unlike all other material objects) can be
removed (at least locally) by passing to a locally inertial frame of reference.

We once more emphasize that Eq.(77) is a tensor equality in the Riemann–Cartan space–time (see (76)),
but it does not “know” anything about torsion, although torsion defines gravity in the TGTG.

To avoid an enormous extension of this paper, we only briefly mention the results of using Eq. (77).
In the first order with respect to the small parameter v/c, we obtain the mass conservation (see (60)); in
the second order, we find the momentum variation for the system of particles under the action of forces
generated by the gravitational field; in the third order, we find the variation of the energy for the system of
particles due to the variation of the gravity field energy; after similar transformations in the fourth order,
we obtain an equality that has no such simple physical interpretation.

6. Schwarzschild metric

6.1. Standard form of the static isotropic metric. In the TGTG, we consider the problem
of constructing a metric tensor representing a static isotropic gravitational field and determined by the
expression for the interval [7]

dτ2 = B(r)(dx0)2 − A(r) dr2 − r2(dθ2 + sin2 θ dϕ2), (78)

where the conditions B(r) > 0 and A(r) > 0 are satisfied. A particular case of (78) is the metric of an
empty space, which implies that B(r) = 1 and A(r) = 1. Expressed in terms of the tetrad coefficients,
interval (78) is

dτ2 = ηαβ eα
0 eβ

0(dx0)2 + ηαβ eα
1 eβ

1 dr2 + ηαβ eα
2 eβ

2 dθ2 + ηαβ eα
3 eβ

3 dϕ2. (79)
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Among the four Lorentz vectors e0(r) and ek(r, θ, ϕ), the vector e0(r) is timelike, and others are spacelike.
According to (78) and (79), these vectors can be taken in the forms

e0(r) = (e0
0, 0, 0, 0) ≡ (B1/2(r), 0, 0, 0),

ek(r, θ, ϕ) = (0, e1
k(r, θ, ϕ), e2

k(r, θ, ϕ), e3
k(r, θ, ϕ)).

(80)

The explicit dependence of the vector components ek(r, θ, ϕ) on the coordinates r, θ, and ϕ is obvious and
is not presented here to save room. In the considered case, if there are no gauge fields, then the nonzero
components of the torsion tensor are (hereafter, the prime on B denotes the derivative with respect to r)

S 0
10 = −S 0

01 = −1
4
B−1B′, S 2

12 = −S 2
21 = S 3

13 = −S 3
31 =

1
2
r−1(1 − A1/2). (81)

It hence follows that there is a unique nonzero contraction of the torsion tensor S ρ
1ρ = B−1B′/4 + r−1(1−

A1/2). There are also two nonzero Christoffel symbols:

Gλ
λ1 =

1
2
(B−1B′ + A−1A′ + 4r−1), Gλ

λ2 = sin−1 θ cos θ. (82)

6.2. Solving equations describing the static isotropic metric. According to the above argu-
ments, we find that the constraint equations have the forms of identities 0 ≡ 0 in the framework of the
considered problem, i.e., they impose no constraint on the considered quantities. Therefore, there are also
no Lagrange multipliers. It is easy to verify that if there are no gauge fields, then the gauge field equations
also become identities. Hence, only the tetrad field equations remain with all terms containing gauge fields
or Lagrange multipliers omitted. In this case, the equations for the tetrad fields outside the gravitational
source become (see (17))

∂νQ μν
α + Gρ

ρνQ μν
α − Zμ

ρ e ρ
α +

2πG

c3
LGe μ

α = 0. (83)

Contracting Eqs. (83) with e λ
α and selecting the total derivative, we obtain

∂ν(Q μν
α e λ

α ) − Q μν
α ∂νe λ

α + Gρ
ρνQ μν

α e λ
α − Zμ

λ +
2πG

c3
LGδμ

λ = 0. (84)

To analyze these equations further, we must choose particular values for the indices μ and λ. It
turns out that only four equations with coinciding μ and λ differ from the identities 0 ≡ 0. Using re-
lations (11), (19), (22), (81), and (82), taking the derivatives, and collecting like terms, we obtain the
respective equations at μ = λ = 0 and μ = λ = 1

A−1A′ − r−1(1 − A) = 0, B−1B′ + r−1(1 − A) = 0. (85)

Equations corresponding to μ = λ = 2 and μ = λ = 3 coincide with each other and become identities on
solutions of Eqs. (85). The solutions of Eqs. (85) are

A =
(

1 − rg

r

)−1

, B = A−1 = 1 − rg

r
, (86)

where rg is a constant. We thus obtain the final form of the sought metric:

dτ2 =
(

1 − rg

r

)
(dx0)2 −

(
1 − rg

r

)−1

dr2 − r2(dθ2 + sin2 θ dϕ2). (87)

It follows from comparing (87) with (52) and (53) that rg = 2r0.
The considered problem of finding the metric tensor representing a static isotropic gravitational field

has the same solution (Schwarzschild metric [2], [7]) both in GR and the TGTG. Considering a book where
the classic experiments verifying GR were considered [7], we conclude that the experimental status of the
tetrad (purely gravitational) sector in the TGTG is the same as the experimental status of GR.
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7. Conclusion

We have shown that using the tetrad formalism allows constructing a physically acceptable gauge theory
based on the noncompact symmetry group (local Lorentz group). The tetrad sector of the constructed
theory describes pure gravity, and the gauge sector describes the fields coupled only to gravity. This allows
preliminarily interpreting these fields as the fields corresponding to the only presently known physical
objects coupled only to gravity: dark energy and dark matter. Despite the principal difference in the
mathematical formalisms of the TGTG and GR, applying them to systems of gravitational bodies like
the Solar System yields the same results. The two theories also yield the same solution for the metric of
a static isotropic gravitational field (Schwarzschild metric). But the geometric interpretation of gravity
is completely different in these theories. Space–time curvature provides gravity in GR, while space–time
torsion provides gravity in the TGTG. As a result, the space–times differ essentially in these theories.

All locally inertial reference frames related to a given point in space–time are equivalent in GR, but
because the metric used is invariant under choosing the reference frame as a dynamical variable, the conse-
quences of this invariance are beyond the scope of GR, which therefore “knows” nothing about the gauge
fields. The mathematical formalism of the TGTG is much more complicated than the GR formalism, but
it takes the equivalence of all locally inertial reference frames naturally into account, which automatically
leads to the gauge theory describing the gauge fields coupled only to gravity. In this case, pure gravity (the
tetrad sector in the TGTG) is a nongauge phenomenon.

The gauge fields in the TGTG not only contribute to the space–time torsion but also define its curvature
and in addition affect the motion of ordinary matter only through gravity rather than directly. The space–
time in the TGTG is thus a more complicated object than the space–time in GR not only mathematically
but also physically.

In view of proposed TGTG, several questions arise that cannot be answered in a single paper. The
gauge fields coupled only to gravity are particularly interesting in the TGTG. To clarify their physical
nature, we must solve equations describing these fields and their coupling to the tetrad fields. These are
subjects for forthcoming papers.

Acknowledgments. The author thanks the referee. In answering his remarks, the case of a static
isotropic gravitational field was considered, and the preliminary interpretation of the gauge fields was
proposed.
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