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AN INTEGRABLE HIERARCHY INCLUDING THE AKNS

HIERARCHY AND ITS STRICT VERSION

G. F. Helminck∗

We present an integrable hierarchy that includes both the AKNS hierarchy and its strict version. We split

the loop space g of gl2 into Lie subalgebras g≥0 and g<0 of all loops with respectively only positive and

only strictly negative powers of the loop parameter. We choose a commutative Lie subalgebra C in the

whole loop space s of sl2 and represent it as C = C≥0⊕C<0. We deform the Lie subalgebras C≥0 and C<0

by the respective groups corresponding to g<0 and g≥0. Further, we require that the evolution equations

of the deformed generators of C≥0 and C<0 have a Lax form determined by the original splitting. We

prove that this system of Lax equations is compatible and that the equations are equivalent to a set of

zero-curvature relations for the projections of certain products of generators. We also define suitable loop

modules and a set of equations in these modules, called the linearization of the system, from which the

Lax equations of the hierarchy can be obtained. We give a useful characterization of special elements

occurring in the linearization, the so-called wave matrices. We propose a way to construct a rather wide

class of solutions of the combined AKNS hierarchy.
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1. Introduction

We recall that integrable hierarchies can often be described as the evolution equations of deformed
generators of a commutative subalgebra of a Lie algebra s, and many of them are named after the simplest
nontrivial equation in the system. For the central hierarchy of this paper, these simplest nontrivial equations
are the Ablowitz–Kaup–Newell–Segur (AKNS) equations, a system for two complex functions whose initial
value problem was solved using the inverse scattering transform (see, e.g., [1]). It was shown in [2] that
the AKNS equations are part of an integrable hierarchy. The AKNS hierarchy and its strict version are
examples of hierarchies admitting a deformation description. We recall [3] that the relevant Lie algebra is
the loop space sl2(R)[z, z−1) with at most a pole at infinity. Namely, it comprises elements of the form

X =
N∑

i=−∞
Xiz

i, Xi ∈ sl2(R), (1)
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where R is a complex commutative algebra. We later specify R as a suitable algebra of complex functions
depending on parameters. Let Q0 be the matrix

( −i 0
0 i

)
. The commutative complex Lie subalgebra of

sl2(R)[z, z−1) that is deformed at the AKNS hierarchy is

C0 =
{ N∑

m≥0

amQ0z
m

∣∣∣ am ∈ C

}
.

Because all powers of z are central, it suffices to look inside sl2(R)[z, z−1) at deformations Q of Q0 of the
form

Q = (Id + Y<0)Q0(Id + Y<0)−1 =
∞∑

j=0

Qjz
−j, Y<0 ∈ gl2(R)[z, z−1)<0, (2)

where gl2(R)[z, z−1)<0 =
{∑

i<0 Yiz
i
∣∣ Yi ∈ gl2(R)

}
. It was shown in [3] that deformations of form (2)

belong to sl2(R)[z, z−1). Further, let the algebra R be endowed with a set {∂m | m ≥ 0} of commuting
C-linear derivation operators ∂m : R → R, where each ∂m is regarded as the derivation corresponding to the
flow generated by Q0z

m. We assume that each derivation ∂m acts coefficient-wise on the matrices in gl2(R),
which defines a derivation of this algebra. The same holds for the extension to gl2(R)[z, z−1) defined by

∂m(X) :=
N∑

j=−∞
∂m(Xj)zj.

We now seek deformations Q of form (2) such that the evolution with respect to {∂m} satisfies the condition
that for all m ≥ 0,

∂m(Q) = [(Qzm)≥0, Q] = −[(Qzm)<0, Q], (3)

where X≥0 denotes the projection
∑N

i=0 Xiz
i for any element X =

∑N
i=−∞ Xiz

i and X<0 is the projection∑−1
i=−∞ Xiz

i. The second identity in (3) follows because all {Qzm} commute. Equations (3) are called
the Lax equations of the AKNS hierarchy, and Q is called a solution of the AKNS hierarchy in the setting
(R, {∂m | m ≥ 0}). The trivial solution is Q = Q0.

For the strict AKNS hierarchy, we consider deformations of the commutative complex Lie subalgebra

C1 =
{ N∑

m≥1

bmQ0z
m

∣∣∣ bm ∈ C

}

but by a bigger group than G<0 = {Id + Y | Y ∈ gl2(R)[z, z−1)<0}. As above, it suffices to consider
deformations Z of Q0z inside sl2(R)[z, z−1) of the form

Z = (Y0 + Y<0)Q0z(Y0 + Y0)−1 =
∞∑

j=0

Zjz
1−j,

Y<0 ∈ gl2(R)[z, z−1)<0, Y0 ∈ gl2(R)∗,

(4)

where gl2(R)∗ is the group of matrices in gl2(R) with an inverse in gl2(R). It was proved in [3] that
deformations of form (4) also belong to sl2(R)[z, z−1). We again assume that the algebra R is endowed
with a set {∂m | m ≥ 1} of commuting C-linear derivation operators ∂m : R → R, where each ∂m is regarded
as the infinitesimal generator of the flow generated by Q0z

m, m ≥ 1. We also assume that these derivations
act analogously on elements of gl2(R)[z, z−1).
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Among the deformations Z of form (4), we seek Z such that the evolution of Z with respect to the
{∂m} satisfies the condition that for all m ≥ 1,

∂m(Z) = [(Zzm−1)>0, Z] = −[(Zzm−1)≤0, Z], (5)

where the projections X>0 and X≤0 of any X ∈ gl2(R)[z, z−1) are defined analogously to the projections
X≥0 considered above. The second identity in (5) is a direct consequence of the commutativity of all
{Zzm−1}. Because Eqs. (5) correspond to a strict cutoff, they are called the Lax equations of the strict

AKNS hierarchy, and the deformation Z is called a solution of this hierarchy. In this case, there is at least
one solution, Z = Q0z. It is called the trivial solution of the hierarchy.

Our goal here is to discuss a natural merger of these two systems. Section 2 is devoted to describing
it. We show that the combined Lax equations form a compatible set, i.e., the projections of products of
generators that occur in the Lax equations satisfy a set of zero-curvature relations. Further, we prove
there that these zero-curvature relations also suffice for obtaining the Lax equations for both generators.
Section 3 is devoted to describing the linearization of the system and discussing its properties. In Sec. 4,
we present a construction yielding a large collection of solutions of the combined AKNS hierarchy.

2. The combined AKNS hierarchy

The commutative Lie subalgebra C on which the combined hierarchy is based is a complex algebra
with the basis {Q0z

m | m ∈ Z}. It is a Lie subalgebra of both sl2(R)[z, z−1) and sl2(R)[z−1, z), where the
latter Lie algebra comprises loops with at most a pole around zero:

sl2(R)[z−1, z) =
{ ∞∑

i=−N

Xiz
i
∣∣∣ Xi ∈ sl2(R)

}
.

The algebra C can be split as C = C≥0 ⊕ C<0, where C≥0 is spanned by {Q0z
m | m ≥ 0} and C<0, by

{Q0z
m | m < 0}. We deform both C≥0 and C<0, the first inside sl2(R)[z, z−1) and the second inside

sl2(R)[z−1, z). This might lead to the deformations of C≥0 and C<0 no longer commuting. Because the
powers of z are central, it suffices to consider the deformations of the elements Q0 and Q0z

−1. We deform
the element Q0 as in the AKNS case with an element of the group

G<0 = {Id + Y<0 | Y<0 ∈ gl2(R)[z, z−1)<0}

and obtain a deformation Q = Q(z) =
∑∞

j≥0 Qjz
−j as in (2). In contrast, we deform the element Q0z

−1

with an element from the group

G≥0 = {X = X0 + X≥1 | X0 ∈ gl2(R)∗, X≥1 ∈ gl2(R)[z−1, z)>0}

and obtain

S = S(z) := XQ0z
−1X−1 =

∞∑

j=0

Sjz
j−1 ∈ sl2(R)[z−1, z). (6)

If we substitute z → z−1 in S(z), then we obtain a deformation Z(z) = S(1/z) as in (4) for the strict
AKNS hierarchy. Hence, deforming the basis of C, we obtain a basis in two parts {Qzm | m ≥ 0} and
{Szm+1 | m < 0} that are each commutative but do not necessarily commute with each other.

Next, we discuss the Lax equations that the pair (Q, S) should satisfy. For this, we assume that the
algebra R has a collection {∂m | m ∈ Z} of commuting C-linear derivation operators ∂m : R → R, where
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each ∂m can be regarded as an algebraic substitute for the derivation corresponding to the flow generated
by each Q0z

m, m ∈ Z. For X ∈ gl2(R)[z, z−1) or X ∈ gl2(R)[z−1, z), we define the action of each ∂m by

∂m(X) :=
∑

j

∂m(Xj)zj,

where the action on gl2(R) is defined coefficient-wise. This defines a derivation of both algebras. Following
the terminology in [4] and [3], we call the data (R, {∂m | m ∈ Z}) a setting for the combined AKNS

hierarchy.

Example 1. Examples of settings are for the moment the algebras of complex polynomials C[tm] in
the variables {tm | m ∈ Z} or the formal power series C[[tm]] in the same variables; both algebras are
equipped with the derivations ∂m = ∂/∂tm, m ∈ Z. More sophisticated choices for R appear later when we
construct solutions.

We now require that the pair (Q, S) satisfy the evolution equations

∂m(Q) = [(Qzm)≥0, Q], ∂m(S) = [(Qzm)≥0, S], m ≥ 0, (7)

∂m(S) = [(Szm+1)<0, S], ∂m(Q) = [(Szm+1)<0, Q], m < 0. (8)

We note that the first set of equations in (7) means that Q satisfies the Lax equations of the AKNS
hierarchy with respect to {∂m | m ≥ 0} and the first set of equations in (8) means that if S is translated
back to gl2(R)[z, z−1) by Z(z) = S(1/z), then Z is a solution of the strict AKNS hierarchy with respect to
{∂m | m < 0}. We therefore call Eqs. (7) and (8) the Lax equations of the combined AKNS hierarchy and
a pair (Q, S) satisfying these equations a solution of the combined AKNS hierarchy. We note that the pair
(Q0, Q0z

−1) solves this system because all elements of the basis of C in the unperturbed situation commute
and are moreover constants for all the derivations {∂m}. We call it the trivial solution.

System of Lax equations (7), (8) is also compatible because we have the following proposition.

Proposition 1. Let (Q, S) be a solution of the combined AKNS hierarchy. Then the projections

{Bm := (Qzm)≥0 | m ≥ 0} and {Cm := (Szm+1)<0 | m < 0} in the Lax equations of this hierarchy satisfy

the zero-curvature relations

∂m1(Bm2) − ∂m2(Cm1) − [Cm1 , Bm2 ] = 0, m1 < 0, m2 ≥ 0, (9)

∂m1(Bm2) − ∂m2(Bm1) − [Bm1 , Bm2 ] = 0, m1 ≥ 0, m2 ≥ 0, (10)

∂m1(Cm2) − ∂m2(Cm1) − [Cm1 , Cm2 ] = 0, m1 < 0, m2 < 0. (11)

Proof. We prove only mixed relation (9); the proof of the other two relations is similar to the cor-
responding proof presented in [3]. The main idea of the proof is to show that the left-hand side of the
equation in (9) belongs to both sl2(R)[z, z−1)≥0 and sl2(R)[z, z−1)<0 and must therefore be equal to zero.

Because all powers of z are central and the second set of equations in (8) holds for Q, the equality

∂m1(Qzm2) = [(Szm1+1)<0, Qzm2] = [Cm1 , Qzm2]

is satisfied for any m2 ≥ 0 and any m1 < 0, whence using the substitution Bm2 = Qzm2 − (Qzm2)<0, we
obtain

∂m1(Bm2) − [Cm1 , Bm2 ] = −∂m1((Qzm2)<0) + [Cm1 , (Qzm2)<0],
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whose right-hand side obviously belongs to sl2(R)[z, z−1)<0. Because ∂m2(Cm1) also belongs to this Lie
subalgebra, the whole left-hand side of (9) belongs to sl2(R)[z, z−1)<0.

To obtain the other inclusion, we use the second set of Lax equations in (7) for S. For the same reason
as above, we then find that for any m1 < 0 and any m2 ≥ 0, we have

∂m2(Szm1+1) = [(Qzm2)≥0, Szm1+1] = [Bm2 , Szm1+1].

We combine this expression with the substitution Cm1 = Szm1+1 − (Szm1+1)≥0 and obtain

−∂m2(Cm1) − [Cm1 , Bm2 ] = ∂m2((Szm1+1)≥0) + [(Szm1+1)≥0, Bm2 ].

The right-hand side of the equation obviously belongs to the Lie subalgebra sl2(R)[z, z−1)≥0. The same
holds for the term ∂m1(Bm2), which proves the second inclusion. �

The converse statement also holds.

Proposition 2. Let a deformation Q of type (2) and a deformation S of form (6) be given. We assume

that the projections {Bm := (Qzm)≥0 | m ≥ 0} and the projections {Cm := (Szm+1)<0 | m < 0} satisfy

zero-curvature relations (9)–(11). Then the pair (Q, S) is a solution of the combined AKNS hierarchy.

Proof. Following [3], we can prove that the first set of Lax equations in (7) follows from zero-curvature
relations (10). Also, the first set of Lax equations in (8) follows from zero-curvature relations (11). We
suppose that the first of the remaining Lax equations for Q does not hold. Then there exists �1 < 0 such
that

∂�1(Q) − [(Sz�1+1)<0, Q] = ∂�1(Q) − [C�1 , Q] =
∑

k≤k2

Akzk, Ak2 �= 0.

It hence follows that for any � ≥ 0,

∂�1(Qz�) − [C�1 , Qz�] =
∑

k≤k2

Akzk+�. (12)

We let � tend to infinity. Then nonzero terms with arbitrarily high powers of z appear in expression (12).
On the other hand, we can split the expression and substitute identity (9) with m1 = �1 and m2 = �, which
yields

∂�1(Qz�) − [C�1 , Qz�] = ∂�1(B�) − [C�1 , B�] + ∂�1((Qz�)<0) − [C�1 , (Qz�)<0] =

= ∂�(C�1) + ∂�1(Qz�
<0) − [C�1 , Qz�

<0],

and this last expression has only negative powers of z. This contradicts the unlimited growth of these
powers. Therefore, all the Lax equations for Q must be satisfied. We suppose that one of the remaining
Lax equations for S is violated. Let there be an s1 ≥ 0 such that

∂s1(S) − [(Qzs1)≥0, S] = ∂s1(S) − [Bs1 , S] =
∑

k≥k1

Dkzk, Dk1 �= 0.

Similarly, we find that for any s < 0,

∂s1(Szs+1) − [Bs1 , Szs+1] =
∑

k≥k1

Dkzk+s+1, (13)
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and we see that in the limit s → −∞, there is no lower bound for the powers of z in expression (13) with
nonzero coefficients. We split this expression and substitute relation (9) with m1 = s and m2 = s1. We
obtain

∂s1(Szs+1) − [Bs1 , Szs+1] = ∂s1(Cs) − [Bs1 , Cs] + ∂s1((Szs+1)≥0) − [Bs1 , (Szs+1)≥0] =

= ∂s(Bs1) + ∂s1((Szs+1)≥0) − [Bs1 , (Szs+1)≥0],

where the last expression contains only positive powers of z. We thus again obtain a contradiction, and all
the Lax equations for S must therefore be satisfied. �

3. The linearization of the combined AKNS hierarchy

The zero-curvature form of the combined AKNS hierarchy suggest the possible existence of a linear
system for which the zero-curvature equations form the compatibility conditions. In [3], we proposed
linearizations for both the AKNS hierarchy and its strict version. We adapt these linearizations taking the
presence of the additional variables into account.

Let a pair (Q, S) be a potential solution of the combined AKNS hierarchy, i.e., Q be an element of
sl2(R)[z, z−1) of form (2) and S be an element of sl2(R)[z−1, z) of form (6). As in the preceding section,
we associate projections {Bm := (Qzm)≥0 | m ≥ 0} and {Cm := (Szm+1)<0 | m < 0} with each such pair.
Then the linearization of the combined AKNS hierarchy is the system

Qψ = ψQ0,
∂m(ψ) = Bmψ for m ≥ 0,

∂m(ψ) = Cmψ for m < 0,
(14)

Sϕ = ϕQ0z
−1,

∂m(ϕ) = Cmϕ for m < 0,

∂m(ϕ) = Bmϕ for m ≥ 0.
(15)

Without specifying ψ and ϕ, we first show what is needed to pass from (14) and (15) to the Lax equations
for Q and S. We describe all the manipulations only for Q; the procedure is similar for S. We first act with
∂m, m ≥ 0, on the first equation in (14) and use the first two equations:

∂m(Qψ − ψQ0) = ∂m(Q)ψ + Q∂m(ψ) − ∂m(ψ)Q0 = 0 =

= ∂m(Q)ψ + QBmψ − BmψQ0 = {∂m(Q) − [Bm, Q]}ψ = 0. (16)

We do the same with ∂m, m < 0, and using the first and third equations in (14), we obtain

∂m(Qψ − ψQ0) = ∂m(Q)ψ + Q ∂m(ψ) − ∂m(ψ)Q0 = 0 =

= ∂m(Q)ψ + QCmψ − CmψQ0 = {∂m(Q) − [Cm, Q]}ψ = 0. (17)

If we can eliminate ψ both from (16) and from (17), then we obtain the required Lax equations for Q.
Hence, we first need a left action of elements such as Q, Bm, and Cm to be defined. Next, there should
be a right action of Q0 and an appropriate left action of all the ∂m, m ∈ Z, that satisfies the Leibniz rule
with respect to the action of the elements from sl2(R)[z, z−1). Finally, it must be possible to eliminate ψ

from the equations. This can all be realized using a choice of a suitable ψ in an appropriate gl2(R)[z, z−1)-
module. Similarly, we can derive the Lax equations for S from (15) if ϕ is a suitable vector in a certain
gl2(R)[z−1, z)-module.
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To understand how to determine the abovementioned modules, we first consider the linearization for
the trivial solutions Q = Q0 and S = Q0z

−1. In this case, the projections are Bm = Q0z
m, m ≥ 0, and

Cm = Q0z
m, m < 0, and the linearization equations are

Q0ψ0 = ψ0Q0,
∂m(ψ0) = Q0z

mψ0 for m ≥ 0,

∂m(ψ0) = Q0z
mψ0 for m < 0,

(18)

Q0z
−1ϕ0 = ϕ0Q0z

−1,
∂m(ϕ) = Q0z

mϕ for m < 0,

∂m(ϕ) = Q0z
mϕ for m ≥ 0.

(19)

Assuming that each derivation ∂m is equal to ∂/∂tm and using t as a brief notation for all parameters
{tm | m ∈ Z}, we obtain the solution (ψ0, ϕ0) for (18) and (19)

ψ0 = ψ0(t, z) = exp
( ∑

m∈Z

tmQ0z
m

)
= ϕ0(t, z) = ϕ0.

In the general case, the functions ψ should be gl2(R)[z, z−1)-perturbations of ψ0, i.e., they should belong
to

M≥0 =
{
{g(z)}ψ0 =

{ N∑

i=−∞
giz

i

}
ψ0

∣∣∣ g(z) =
N∑

i=−∞
giz

i ∈ gl2(R)[z, z−1)
}

, (20)

and ϕ should be gl2(R)[z−1, z)-perturbations of ϕ0, i.e., they should belong to

M<0 =
{
{h(z)}ϕ0 =

{ ∞∑

i=−N

hiz
i

}
ϕ0

∣∣∣ h(z) =
∞∑

i=−N

hiz
i ∈ gl2(R)[z−1, z)

}
, (21)

where the products {g(z)}ψ0 and {h(z)}ϕ0 are understood formally and both factors must be separated
to avoid convergence issues. We can define the required actions on both M≥0 and M<0: for k1(z) ∈
gl2(R)[z, z−1) and k2(z) ∈ gl2(R)[z−1, z), we respectively set

k1(z) · {g(z)}ψ0 := {k1(z)g(z)}ψ0 and k2(z) · {h(z)}ϕ0 := {k2(z)h(z)}ϕ0.

We define the right action of Q0 on M≥0 and of Q0z
−1 on M<0 as

{g(z)}ψ0Q0 := {g(z)Q0}ψ0 and {h(z)}ϕ0Q0z
−1 := {h(z)Q0z

−1}ϕ0,

and the action of each ∂m as

∂m({g(z)}ψ0) =
{ N∑

i=−∞
∂m(gi)zi +

{ N∑

i=−∞
giQ0z

i+m

}}
ψ0,

∂m({h(z)}ϕ0) =
{ ∞∑

i=−N

∂m(hi)zi +
{ ∞∑

i=−N

hiQ0z
i+m

}}
ϕ0.

Following the terminology used in the scalar case (see [5]), we call the elements of M≥0 oscillating matrices

at infinity and those of M<0 oscillating matrices at zero. We note that M≥0 is a free gl2(R)[z, z−1)-
module and M<0 is a free gl2(R)[z−1, z)-module with the respective generators ψ0 and ϕ0 because for each
k1(z) ∈ gl2(R)[z, z−1) and k1(z) ∈ gl2(R)[z−1, z), we have

k1(z).ψ0 = k1(z) · {1}ψ0 = {k1(z)}ψ0 and k2(z) · ϕ0 = k2(z).{1}ψ0 = {k2(z)}ϕ0.
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Hence, to legitimately eliminate both ψ = {k1(z)}ψ0 and ϕ = {k2(z)}ϕ0, it suffices to find oscillating
matrices such that k1(z) is invertible in gl2(R)[z, z−1) and k2(z) is invertible in gl2(R)[z−1, z). We define
a set of such elements, which we need for constructing solutions of the hierarchy.

Let a matrix δ(m) ∈ gl2(R)[z, z−1) ∩ gl2(R)[z−1, z) for m = (m1, m2) ∈ Z2 have the form

δ(m) =

(
zm1 0

0 zm2

)
.

Then δ(m) has δ(−m) ∈ gl2(R)[z, z−1) ∩ gl2(R)[z−1, z) as its inverse, and the collection Δ = {δ(m) | m ∈
Z2} forms a group. An element ψ ∈ M≥0 is called an oscillating matrix at infinity of type δ(m) if it has
the form

ψ = {k1(z)δ(m)}ψ0, k1(z) ∈ G<0, (22)

and is an example of a generator of M≥0. Similarly, an element ϕ ∈ M<0 is called an oscillating matrix at

zero of type δ(m) if it has the form

ϕ = {k2(z)δ(m)}ϕ0, k2(z) ∈ G≥0, (23)

and such a ϕ generates M<0. Hence, eliminating ψ and ϕ is possible for any pair (ψ, ϕ) ∈ M≥0 ×M<0

with ψ of form (22) and ϕ of form (23).
We now assume that (Q, S) is a potential solution of the combined AKNS hierarchy and that (ψ, ϕ)

is a pair in M≥0 × M<0 with ψ of form (22) and ϕ of form (23) for which the linearization equations
are (14) and (15). Then all actions needed for obtaining Lax equations (7) and (8) are meaningful. Hence,
(Q, S) is a solution of the combined AKNS hierarchy, and we call the pair (ψ, ϕ) a set of wave matrices of

the combined AKNS hierarchy of type δ(m). In particular, the pair (ψ, ϕ) totally determines the solution
(Q, S) because the first equations in (14) and (15) respectively imply

Qk1(z)δ(m) = k1(z)Q0δ(m) ⇒ Q = k1(z)Q0k1(z)−1,

Sk2(z)δ(m) = k2(z)Q0z
−1δ(m) ⇒ S = k2(z)Q0z

−1k2(z)−1.

A weaker condition for pairs of oscillating matrices of a certain type to be a set of wave matrices of the
combined AKNS hierarchy is expressed in the following proposition.

Proposition 3. Let ψ = {k1(z)δ(m)}ψ0 be an oscillating matrix of type δ(m) in M≥0 and ϕ =
{k2(z)δ(m)}ϕ0 be such a matrix in M<0. Let

(Q, S) := (k1(z)Q0k1(z)−1, k2(z)Q0z
−1k2(z)−1)

denote the corresponding potential solution of the combined AKNS hierarchy. If an element Mm ∈
gl2(R)[z, z−1)≥0 exists for each m ≥ 0 such that

∂m(ψ) = Mmψ and ∂m(ϕ) = Mmϕ

and if an element Nm ∈ gl2(R)[z−1, z)<0 exists for each m < 0 such that

∂m(ψ) = Nmψ and ∂m(ϕ) = Nmϕ,

then each Mm is equal to (Qzm)≥0, each Nm is equal to (Szm+1)<0, and the pair (ψ, ϕ) is a set of wave

matrices for the combined AKNS hierarchy of type δ(m).
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Proof. For m ≥ 0, we use the fact that M≥0 is a free module with the generator ψ0. This property
allows translating the equation ∂m(ψ) = Mmψ into an equation in gl2(R)[z, z−1),

∂m(k1(z)) + k1(z)Q0z
m = Mmk1(z) ⇒ ∂m(k(z))k1(z)−1 + Qzm = Mm,

and projecting this onto gl2(R)[z, z−1)≥0, we obtain the formula Mm = (Qzm)≥0. For m < 0, we use the
fact that M<0 is a free module with the generator ϕ0. We translate the equation ∂m(ϕ) = Nmϕ into an
equation in gl2(R)[z−1, z):

∂m(k2(z)) + k2(z)Q0z
m = Nmk2(z) ⇒ ∂m(k2(z))k2(z)−1 + Szm+1 = Nm.

Projecting the right-hand side on gl2(R)[z−1, z)<0, we obtain the sought identity (Szm+1)<0 = Nm. �

It can happen that different pairs of wave matrices of type δ(m) yield the same solution of the combined
AKNS hierarchy. To see how this can occur, we consider a solution (Q, S) that corresponds to both sets of
wave matrices of type δm, (ψ1, ϕ1) and (ψ2, ϕ2), i.e.,

ψi = uiδ(m)ψ0 and φi = piδ(m)ϕ0, i = 1, 2,

Q = uiQ0u
−1
i , S = piQ0z

−1p−1
i , i = 1, 2,

∂j(ψi) = Bjψi and ∂j(φi) = Bjφi for j ≥ 0, and ∂j(ψi) = Cjψi and ∂j(φi) = Cjφi for j < 0, where
Bj = (Qzj)≥0 and Cj = (Szj+1)<0. First, we can see that the element ψ−1

1 ψ2 = (ψ0)−1δ(−m)u−1
1 u2δ(m)ψ0

commutes with Q0 and the same then holds for u−1
1 u2. Therefore, we obtain

u−1
1 u2 = Id +

∑

i<0

diz
i = ψ−1

1 ψ2, di =

(
a(i) 0

0 d(i)

)
.

Similarly, the element ϕ−1
1 ϕ2 = (ϕ0)−1δ(−m)p−1

1 p2δ(m)ϕ0 commutes with Q0z
−1 and hence also with Q0.

Consequently, the same holds for the element p−1
1 p2, and we therefore obtain

p−1
1 p2 =

∑

i≥0

diz
i = ϕ−1

1 ϕ2, di =

(
a(i) 0

0 d(i)

)
, a(0)d(0) ∈ R∗.

Hence, the oscillating matrices are related by

ψ2 = ψ1

(
Id +

∑

i<0

diz
i

)
and ϕ2 = ϕ1

(∑

i≥0

diz
i

)
. (24)

Regarding the t-dependence of the factors Id +
∑

i<0 diz
i and

∑
i≥0 diz

i, we apply ∂j for each j ≥ 0 to
both equations in (24) and obtain

∂j(ψ2) = ∂j

(
ψ1

(
Id +

∑

i<0

diz
i

))
= Bjψ1

(
Id +

∑

i<0

diz
i

)
+ ψ1

(∑

i<0

∂j(di)zi

)
= Bjψ2,

∂j(ϕ2) = ∂j

(
ϕ1

(∑

i≥0

diz
i

))
= Bjϕ1

(∑

i≥0

diz
i

)
+ ϕ1

(∑

i≥0

∂j(di)zi

)
= Bjϕ2,
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whence it follows that

ψ1

(∑

i<0

∂j(di)zi

)
= u1

(∑

i<0

∂j(di)zi

)
δ(m)γ = 0,

ϕ1

(∑

i≥0

∂j(di)zi

)
= p1

(∑

i≥0

∂j(di)zi

)
δ(m)γ = 0,

i.e., all d(i) are constant for {∂j | j ≥ 0}. The same can also be obtained for {∂j | j < 0}: we replace Bj

with Cj in the equations obtained above. Taking the above into account, we obtain the following statement.

Corollary 1. If (ψ1, ϕ1) and (ψ2, ϕ2) are two pairs of wave matrices of type δ(m) for the combined

AKNS hierarchy that lead to the same solution (Q, S) of this hierarchy, then we have

ψ2 = ψ1

(
Id +

∑

i<0

diz
i

)
and ϕ2 = ϕ1

(∑

i≥0

diz
i

)
,

where all d(i) are diagonal matrices in sl2(R) that are constant for all {∂j | j ∈ Z}, i.e., ∂j(di) = 0.

This statement concludes the presentation of the algebraic framework of the linearization of the com-
bined AKNS hierarchy. In the next section, we present an analytic context from which we can construct
sets of wave matrices of this hierarchy in which the products are not formal but real.

4. A construction of solutions of the hierarchy

In this section, we show how to construct a wide class of solutions of the combined AKNS hierarchy.
For this, we follow the technique in [6]. We first define the loop group in which we work. For each 0 < r < 1,
let Ar be the annulus {

z
∣∣∣ z ∈ C, r ≤ |z| ≤ 1

r

}
.

Following [7], we let LanGL2(C) denote the collection of holomorphic maps from some annulus Ar into
GL2(C). It is a group under pointwise multiplication and naturally contains the subgroup GL2(C) as the
collection of constant maps into GL2(C). Other examples of elements in LanGL2(C) are the elements of Δ.
But LanGL2(C) is more than just a group: it is an infinite-dimensional Lie group. Its manifold structure is
determined by its Lie algebra Langl2(C), comprising all holomorphic maps γ : U → gl2(C), where U is an
open neighborhood of some annulus Ar, 0 < r < 1. Because gl2(C) is a Lie algebra, the space Langl2(C)
becomes a Lie algebra under the pointwise commutator. Topologically, the space Langl2(C) is the direct
limit of all the spaces Lan,rgl2(C), where this last space consists of all γ corresponding to the fixed annulus
Ar. We endow each Lan,rgl2(C) with the topology of uniform convergence, and with that topology, it
becomes a Banach space. Thus, Langl2(C) becomes a Fréchet space. The point-wise exponential map
defines a local diffeomorphism around zero in Langl2(C) (see, e.g., [8]).

Each γ ∈ Langl2(C) can be expanded in a Fourier series

γ =
∞∑

k=−∞
γkzk, γk ∈ gl2(C), (25)

which converges absolutely on the annulus where it is defined,

∞∑

k=−∞
‖γk‖r−|k| < ∞.
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We use the Fourier expansion to obtain the corresponding decomposition of the Lie algebra Langl2(C).
Namely, we consider the subspaces

Langl2(C)≥0 :=
{

γ
∣∣∣ γ ∈ Langl2(C), γ =

∞∑

k=0

γkzk

}
,

Langl2(C)<0 :=
{

γ
∣∣∣ γ ∈ Langl2(C), γ =

−1∑

k=−∞
γkzk

}
.

Both are Lie subalgebras of Langl2(C), and their direct sum coincides with the whole Lie algebra. The
first Lie algebra comprises the elements in Langl2(C) that extend to holomorphic maps defined on a disk
{z ∈ C | |z| ≤ 1/r}, 0 < r < 1. The second Lie algebra corresponds to the maps in Langl2(C) that have a
holomorphic extension to a disk around infinity {z ∈ P1(C) | |z| ≥ r}, 0 < r < 1, and are zero at infinity.
A subgroup of LanGL2(C) belongs to each of these two Lie subalgebras. The pointwise exponential map
applied to elements of Langl2(C)<0 yields elements of

U− =
{

γ
∣∣∣ γ ∈ Langl2(C), γ = Id +

−1∑

k=−∞
γkzk

}
,

and the exponential map applied to elements of Langl2(C)≥0 maps them into

P+ =
{

γ
∣∣∣ γ ∈ Langl2(C), γ = γ0 +

∞∑

k=1

γkzk, where γ0 ∈ GL2(C)
}

.

It is easy to verify that U− and P+ are subgroups of LanGL2(C), and because the direct sum of their Lie
algebras is Langl2(C), their product

Ω = U−P+ (26)

is open in LanGL2(C) and, as in the finite-dimensional case, is called the big cell with respect to U− and
P+.

The next subgroup of LanSL2(C) corresponds to the exponential factor in the linearization of the
combined AKNS hierarchy. The commuting group relevant for this hierarchy is

Γ =
{

γ(t) = exp
(∑

i∈Z

tiQ0z
i

) ∣∣∣ γ ∈ LanSL2(C)
}

.

The group Δ commutes with Γ and contains two subgroups of interest: the subgroup

Δc = {δk | δ = δ((1, 1)), k ∈ Z},

which is central in LanGL2(C), and the subgroup

Δ1 = Δ ∩ LanSL2(C) = {δk
1 | δ1 = δ((1,−1)), k ∈ Z}.

According to the Birkhoff theorem (see [7]), the product Δ1Γ forms the centralizer of Γ in LanSL2(C).
We now have all ingredients for describing the construction of solutions of the combined AKNS hier-

archy. In the product LanGL2(C)×Δ, we take a collection S of pairs (g, δ(m)) such that there exists γ(t),
γ ∈ Γ, satisfying

δ(m)γ(t)gγ(t)−1δ(−m) ∈ Ω = U−P+. (27)
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For each pair (g, δ(m)) in S, we find the set Γ(g, δ(m)) of all γ(t) satisfying condition (27). It is a nonempty
open subset of Γ. Let R(g, δ(m)) be the algebra of analytic functions Γ(g, δ(m)) → C. This is the algebra
of functions R that we associate with the point (g, δ(m)) ∈ S. As the commuting derivations of R(g, δ(m)),
we choose

∂i :=
∂

∂ti
, i ∈ Z.

By property (27), we find that for all γ(t) ∈ Γ(g, δ(m)),

δ(m)γ(t)gγ(t)−1δ(−m) = u−(g, δ(m))(t)−1p+(g, δ(m))(t), (28)

where u−(g, δ(m))(t) ∈ U− and p+(g, δ(m))(t) ∈ P+. All the matrix coefficients in the Fourier expansions
of the elements u−(g, δ(m)) and p+(g, δ(m)) then belong to the algebra R(g, δ(m)). From (28), we can
obtain two oscillating matrices of type δ(m), one Ψg,δ(m) ∈ M≥0 and the other Φg,δ(m) ∈ M<0. Namely,
we set

Ψg,δ(m)(t) := u−(g, δ(m))(t)δ(m)γ(t), (29)

Φg,δ(m)(t) := p+(g, δ(m))(t)δ(m)γ(t). (30)

We note that all the products between the different factors are well defined. By virtue of relation (28),
these two oscillating matrices of type δ(m) are related by

Ψg,δ(m)(t) = Φg,δ(m)(t)g−1. (31)

It follows directly from relation (28) that if (g, δ(m)) ∈ S, then also (g, δ(m)δk) ∈ S for any k ∈ Z, and the
sets of oscillating matrices are related by

Ψg,δ(m)δk = Ψg,δ(m)δ
k, Φg,δ(m)δk = Φg,δ(m)δ

k.

Further, using Proposition 3, we show that each pair (Ψg,δ(m), Φg,δ(m)) is a set of wave matrices of the
combined AKNS hierarchy. For this, we compute ∂j(Ψg,δ(m)), j ≥ 0, in two different ways, using first (29)
and then (30) and (31). On one hand, we obtain

∂j(Ψg,δ(m)) = {∂j(u−(g, δ(m))) + u−(g, δ(m))Q0z
j}δ(m)γ =

= {∂j(u−(g, δ(m)))u−(g, δ(m))−1 + u−(g, δ(m))Q0z
ju−(g, δ(m))−1}Ψg,δ(m)

and, on the other hand,

∂j(Ψg,δ(m)) = {∂j(p+(g, δ(m))) + p+(g, δ(m))Q0z
j}δ(m)γg−1 =

= {∂j(p+(g, δ(m)))p+(g, δ(m))−1 + p+(g, δ(m))Q0z
jp+(g, δ(m))−1}Ψg,δ(m).

Comparing the coefficients of Φg,δ(m) in these expressions, we can see that

Mj := ∂m(u−(g, δ(m)))u−(g, δ(m))−1 + u−(g, δ(m))Q0z
ju−(g, δ(m))−1

belongs to gl2(R)[z, z−1)≥0. Because of relation (31), for Φg,δ(m), we have the equality

∂j(Φg,δ(m)) = MjΦg,δ(m)
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for all j ≥ 0. We similarly compute ∂j(Φg,δ(m)) for all j < 0. We obtain the relations

∂j(Φg,δ(m)) = {∂j(p+(g, δ(m))) + p+(g, δ(m))Q0z
j}δ(m)γg−1 =

= {∂j(p+(g, δ(m)))p+(g, δ(m))−1 + p+(g, δ(m))Q0z
jp+(g, δ(m))−1}Φg,δ(m)

and

∂j(Φg,δ(m)) = {∂j(u−(g, δ(m))) + u−(g, δ(m))Q0z
j}δ(m)γg =

= {∂j(u−(g, δ(m)))u−(g, δ(m))−1 + u−(g, δ(m))Q0z
ju−(g, δ(m))−1}Φg,δ(m).

Comparing coefficients of Φg,δ(m) in these expressions, we see that

Nj := ∂j(p+(g, δ(m)))p+(g, δ(m))−1 + p+(g, δ(m))Q0z
jp+(g, δ(m))−1

belongs to gl2(R)[z−1, z)<0. Because of relation (31), for Ψg,δ(m), we also have the equality

∂j(Ψg,δ(m)) = NjΨg,δ(m)

for all j < 0. We have thus shown that all the conditions in Proposition 3 are satisfied, which means that
we have the following theorem.

Theorem 1. We consider the product space Π := LanGL2(C) × Δ and its subset S defined by (27).
For each point (g, δ(m)) ∈ S, we define a pair of oscillating matrices (Ψg,δ(m), Φg,δ(m)) in M≥0 ×M<0 by

relations (29) and (30). This pair is a set of wave matrices for the combined AKNS hierarchy. In particular,

the pair of deformations (Qg,δ(m), Sg,δ(m)) defined by

Qg,δ(m) = u−(g, δ(m))Q0u−(g, δ(m))−1,

Sg,δ(m) = p+(g, δ(m))Q0z
−1p+(g, δ(m))−1

is a solution of the combined AKNS hierarchy. This solution does not change if δ(m) is replaced with

δ(m)δk, k ∈ Z.
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