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NEW APPROACH TO CALCULATING THE SPECTRUM OF A

QUANTUM SPACE–TIME

A. N. Starodubtsev∗

We study the dynamics of a massive pointlike particle coupled to gravity in four space–time dimensions.

It has the same degrees of freedom as an ordinary particle: its coordinates with respect to a chosen origin

(observer) and the canonically conjugate momenta. The effect of gravity is that such a particle is a black

hole: its momentum becomes spacelike at a distances to the origin less than the Schwarzschild radius.

This happens because the phase space of the particle has a nontrivial structure: the momentum space

has curvature, and this curvature depends on the position in the coordinate space. The momentum space

curvature in turn leads to the coordinate operator in quantum theory having a nontrivial spectrum. This

spectrum is independent of the particle mass and determines the accessible points of space–time.
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1. Introduction

It has long been hoped that a nonperturbative quantization of general relativity could ensure its
ultraviolet regularization. Several arguments were advanced in favor of such a possibility. Among them are
the discreteness of the area operator in loop quantum gravity [1], dimensional reduction at the Planck scale
observed numerically in the framework of the approach based on causal dynamical triangulation [2], and
the impossibility to make a measurement at sub-Planckian scales because of the formation of a black hole,
first already noted in 1935 [3].

The fact that all three arguments presented above are interrelated is easiest to see in (2+1)-dimensional
gravity where matter is represented by pointlike particles. Such a theory is exactly solvable [4]. The particle
momentum is described by a Wilson loop of the Lorentz connection around the particle worldline [4], [5].
The space of such momenta is the Lorentz group manifold. It has one compact dimension: a spatial
rotation canonically conjugate to the time coordinate. The first consequence of this is that the particle
energy is bounded by the Planck value or, more precisely, a particle energy–momentum vector above the
Planck value cannot be timelike. The second consequence is that the compactness of one direction in
the momentum space leads to an analogue of Kaluza–Klein reduction at large energies. And, finally, the
coordinate canonically conjugate to the compact momentum has a discrete spectrum in quantum theory.

Here, we continue an attempt started in [6] to generalize the abovementioned arguments to (3+1)-
dimensional gravity. We derive an effective action of a particle coupled to gravity in 3+1 dimensions in
terms of its coordinates and momenta. Just as in [6], the momentum space is the group manifold, but its
curvature now depends on the radial coordinate in accordance with Newton’s law. Therefore, the action
becomes especially simple with a fixed radial coordinate. The curvature of the momentum space becomes
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constant, as in (2+1)-dimensional gravity, and we can use the results obtained in that case. The time
coordinate has a discrete spectrum, and the remaining two spatial coordinates are continuous. The issue of
the spectrum of the radial coordinate remains open.

2. Action principle and boundary conditions

We choose a pure-gauge formulation of (3+1)-dimensional gravity where the gauge group also includes
translations in addition to Lorentz transformations. This is the MacDowell–Mansouri formulation [7], which
is very similar to the Chern–Simons formulation of (2+1)-dimensional gravity but is applicable only in the
case of a nonzero cosmological constant (for definiteness, we here choose it initially positive but let it tend
to zero as soon as this becomes possible).

Let AIJ be an SO(4, 1) connection, where I, J = 0, 1, . . . , 4, and vI be a 0-form taking values in the
space of SO(4, 1) vectors. A particle is introduced as an extrinsic charge of the gauge group (charges of
SO(4, 1) are the energy–momentum and spin).

The action of gravity coupled to the particle has the form

S =
l2

8πG

∫
M4

εIJKLMF IJ(A)vK ∧ FLM (A) + λ(vIvI − 1) +
∫

γ

Tr(h−1 dAhK), (1)

where F IJ(A) is the curvature 2-form of the connection A. The second term in (1) is the normalization
condition for vI introduced using a Lagrangian multiplier. The last term is the particle action, where K
is a fixed element of the so(4, 1) algebra, h is an element of the group SO(4, 1) added to compensate the
change of A under gauge transformations, M4 is the four-dimensional space–time, γ denotes the particle
worldline, and l = 1/

√
Λ is the cosmological length.

By a change of notation, the first term in the right-hand side of (1) reduces to the action of gravity
with a cosmological constant in the Einstein–Cartan form with an additional term containing the Euler
characteristic. We introduce the connection ωIJ with respect to which vI is covariantly constant, dωvI = 0.
Its curvature RIJ(ω) is an SO(3, 1) curvature in the vI stability subgroup because RIJ(ω)vI = 0. We then
introduce the tetrad

eI = l dAvI .

This is indeed a tetrad because eIvI = 0. The SO(4, 1) connection can then be decomposed as

AIJ = ωIJ − 1
l
(vIeJ − vJeI),

which leads to the decomposition of the curvature

F IJ = RIJ +
1
l2

eI ∧ eJ +
1
l
(vJ dωeI − vI dωeJ). (2)

Substituting this expression in (1), we see that the last term in (2), which contains torsion, does not enter the
action. The first two terms give the gravity action; in particular, the cross term gives the Einstein–Cartan
action.

To make the action functionally differentiable, we must add boundary conditions and the corresponding
compensating boundary term to it. The first thing to do is to eliminate the Euler term

∫
εIJKLMRIJ(ω)RKL(ω)vM

from the action because this term imposes the flatness condition RIJ(ω) = 0 on the boundary. As the
boundary, we choose a sphere on which an observer (a test particle with negligible energy and momentum)
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is located. In the general case, this boundary is located at a finite distance from the massive particle, and
the flatness condition therefore cannot be imposed at the boundary.

We follow the “solve constraints then quantize” strategy [8]: we first solve the constraints and then
substitute the solution back in the action. To obtain the constraint equations, we must vary the action
with respect to the time component of the connection At, and no boundary term should remain after
the variation. For this, we must either fix At on the boundary or add a compensating term of the form∫

∂M
εIJKLMF IJvK ∧ ALM

t dx0. Either of these two choices breaks the gauge invariance on the boundary
and leads to the appearance of the so-called “would be gauge” degrees of freedom [9], among which are the
degrees of freedom of the considered particle.

We thus obtain the action

S =
l2

8πG

∫
M4

εIJKLM (2 dAvI ∧ dAvJvK ∧ FLM (A) + dAvI ∧ dAvJvK ∧ dAvL ∧ dAvM ) +

+
∫

M4
λ(vIvI − 1) − l2

4πG

∫
∂M4

εIJKLM dAvI ∧ dAvJvK ∧ ALM
t dx0 +

∫
γ

Tr(h−1 dAhK). (3)

The boundary conditions for At are arbitrary, and for the spatial components of A, they follow from the
choice of a particular solution of the constraint equations. Actions (1) and (3) are equivalent up to the
boundary terms, and we can therefore use the simpler expression (1) to derive the equations of motion in
the bulk.

3. Particle effective action

Varying action (1) with respect to the time components of A, we obtain the set of constraint equations

1
8πG

dA(εIJKLMvKFLM ) = (hKh−1)IJ δ3(x − xp). (4)

We consider a spinless particle. Hence, there exists a gauge in which hKh−1 = MT04 (here T04 is the
generator of time translations and M is a parameter of the dimension of mass), and there exists a spherically
symmetric solution. If we make an analogy with the Yang–Mills theory, then it turns out that the energy–
momentum is an analogue of the magnetic charge, vI plays the role of the Higgs field, and the solution of
constraints (4) in its angular dependence is similar to the ’t Hooft–Polyakov solution [10].

In a gauge where the fields are time-independent, the solution in the limit l → ∞ has the form (the
time components of the connection are not included, because they are not in constraint equations (4))

Aij
S = (1 − N)(ni dnj − nj dni), Ai0

S = 0,

lAi4
S =

(
1 − 1

N

)
ni dr + (1 − N)r dni,

lvi = rni, v0 = 0, v4 = 1 + O

(
r2

l2

)
,

(5)

where N =
√

1 − 2MG/r is the familiar expression for the lapse function and

ni =
ri

|r| (6)

is a normalized vector field normal to the two-sphere called a “hedgehog.” Solution (5) is just the Schwarz-
schild solution written in an unusual gauge, and the mass in the right-hand side of (4) coincides with the
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Schwarzschild mass M observed at infinity. We note that the field ni in (5) is not necessarily spherically
symmetric as in (6). The only requirement is that it be normalized nini = 1 and have the winding number
one on the sphere, ∫

S2
εijkni dnj ∧ dnk = 4π. (7)

For any such ni, expression (5) is a solution of (4). We use this freedom in what follows.
In the next step, we transfer solution (5) into an arbitrary gauge A = g−1(d + AS)g and substitute it

back in action (3). As a result, we obtain a total derivative in the Lagrangian, and the action finally reduces
to an integral over the boundary. This is analogous to how the Chern–Simons action in three dimensions
reduces to the Wess–Zumino–Witten action on the boundary (see, e.g., [8], [11]). This action (again in the
limit l → ∞) has the form

S =
1

4πG

∫
∂M4

εabcdx
a dxb ∧ d(ġg−1)cd dt +

M

2π

∫
∂M4

εijkLMni dnj ∧ dnk(ġg−1)LM dt, (8)

where xa is the translational part of g, a, b = 0.3, and ni is the hedgehog field in solution (5). The first
term in (8) is a three-dimensional analogue of the Wess–Zumino–Witten action, and the second term is a
source contribution.

We have obtained a field theory with infinitely many degrees of freedom. We are interested in only
a finite number of them, those that are the particle degrees of freedom. We therefore naturally choose a
spherically symmetric ansatz for the group field g:

g0i ∼ g4i ∼ gjkεijk ∼ ni, (9)

where ni is hedgehog (6) and the angular degrees of freedom of the particle can now be identified with the
coordinates on which ni depends.

Our action is now invariant under simultaneous continuous norm-preserving transformations of all the
fields in (9). For further simplification of the action, it seems tempting to use this invariance to make xa (and
ni) constant on the sphere (“comb the hedgehog”), pull them outside the integral in (8), and again obtain
a total derivative in the integrand. If this were possible, then the result in (8) would be zero because the
sphere has no boundary. But the transformation from a hedgehog to a constant ni is impossible to realize
on the whole sphere because it changes the winding number from 1 to 0. Nevertheless, this transformation
can be made continuous on any open subset of the sphere. Hence, we can cut the sphere in half and comb
the hedgehog on each of the hemispheres [12] (this is the transformation of a ’t Hooft–Polyakov monopole
into a Wu–Yang monopole). As a result, the three-dimensional field theory reduces to a two-dimensional
field theory on the cut S1 × R

1.
On the sphere, there is a preferred direction of the field xa, which must remain fixed under deformations

of the hedgehog. This is xa
0 , the coordinates of the origin (observer) with respect to the particle. We make

the field xa constant and equal to xa
0 on one hemisphere. On the other hemisphere, it is natural to choose

the direction opposite to xa
0 . We introduce g⊥x0 = x0, the subgroup of the Lorentz group that leaves xa

0

fixed and x⊥ ⊥ x0. As a result, we obtain the two-dimensional action

S =
1

4πG

∫
R1

dt xa
0

∫
S1

εabcd dxb
⊥ (ġ⊥g−1

⊥ )cd +

+
M

2π

∫
R1

dt
xi

0

R

∫
S1

εijkLMmj dmk (ġ⊥g−1
⊥ )LM ,

where R is the radius of the sphere (the absolute value of xa
0), mini = 0, and mimi = 1.
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This action becomes especially simple if the radial coordinate does not change in time, Ṙ = 0, but
ẋ⊥ �= 0. In this case, we obtain the Wess–Zumino–Witten action for g⊥ in the form in which it is obtained
from (2+1)-dimensional gravity with pointlike particles [5], [11] but with the coupling constant G/R:

S =
R

4πG

∫
R1×S1

dt εbcd dxb
⊥(ġ⊥g−1

⊥ )cd +
M

2π

∫
R1×S1

dt dφTr(T 04ġ⊥g−1
⊥ ). (10)

Hence, following [5], [11], we can derive a particle action with a finite number of degrees of freedom depending
only on the particle coordinates and momenta. The momentum is given by the Wilson loop of the Lorentz
group around the spatial circle S1 in (10):

u = g⊥ exp
(

T 12π

(
1 −

√
1 − 2MG

R

))
g−1
⊥ . (11)

This loop can also be obtained from connection (5), but defined only for R > 2MG. It satisfies the
constraint equation fixing its conjugacy class:

Tr(u) = cos
(

π

(
1 −

√
1 − 2MG

R

))
= − cos

(
π

√
1 − 2MG

R

)
. (12)

We note that the last equation can naturally be continued inside the Schwarzschild radius, R > 2MG. In
this region, the argument of the cosine in the right-hand side of (12) becomes imaginary, and the cosine
becomes hyperbolic. This means that the Lorentz transformation u cannot be reduced to a pure rotation
by a similarity transformation, and static solutions do not exist.

If the distance to the origin is less than the Schwarzschild radius, then the Wilson loop around S1

gives an elliptic Lorentz transformation, and the particle momentum is timelike. Inside the Schwarzschild
radius, the Wilson loop around S1 gives a hyperbolic Lorentz transformation, and the particle momentum
is spacelike. This transition occurs because the time direction is compact in the momentum space.

The final particle action has the form

Sp =
∫

dt εabcx
a(u−1u̇)bc + λ

(
Tr(u) + cos

(
π

√
1 − 2MG

R

))
.

Here, the kinetic term has the standard form in the case where half the canonical variables are group-
valued [5].

4. Quantization

Here, we list the results in [5] that can be applied to our case.
Our momentum space is the SO(2, 1) group manifold or the AdS3 space. Quantization of x⊥ is done

based on harmonic analysis on the AdS3 space. If we work in the momentum representation, then wave
functions are functions on AdS3. Coordinate operators act as left-invariant derivatives,

x̂a|u〉 =
l2P
R
La|u〉.

The interval operator is the Beltrami–Laplace operator

Ŝ2|u〉 = x̂ax̂a|u〉 =
l4P
R2

LaLa|u〉.
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The eigenstates and eigenvalues are

x̂0|t〉 =
l2P
R

t|t〉, t ∈ Z,

Ŝ2|t, λ〉 =
l4P
R2

(λ2 + 1)|t, λ〉, Ŝ2|t, l〉 = − l4P
R2

l(l − 2)|t, λ〉,

where λ ∈ R
+, l ∈ Z

+, 2 ≤ l ≤ |t|. The spacelike part of the spectrum of the interval operator is continuous,
while the timelike part is discrete. We note that the time coordinate is quantized not in Planck units but
in l2P /R units, where R is the distance to the origin introduced in (10). The interval between eigenvalues
of the time operator tends to zero at large distances.

5. Conclusion

If we compare the results in this paper with the results obtained in various versions of loop gravity, then
we see more similarity with the results in the Lorentz-covariant version [13], while there are contradictions
with earlier results [1]. In our case, the results can be explained based on phenomena well known in classical
gravity, such as gravitational collapse, which adds to their verisimilitude.

We have not yet quantized the radial variable. The complication here is that it is a canonical coordinate
and, on the other hand, defines the curvature of the momentum space. It is therefore unclear in which
representation to work. But the radial variable was quantized in a different approach [14], where it was the
only variable. It would be interesting to connect these results.
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