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A PARTICULAR THIN-SHELL WORMHOLE

A. Övgün∗ and I. Sakalli∗

Using a black hole with scalar hair, we construct a scalar thin-shell wormhole (TSW ) in 2+1 dimensions

by applying the Visser cut and paste technique. The surface stress, which is concentrated at the wormhole

throat, is determined using the Darmois–Israel formalism. Using various gas models, we analyze the

stability of the TSW. The stability region is changed by tuning the parameters l and u. We note that the

obtained TSW originating from a black hole with scalar hair could be more stable with a particular value

of the parameter l, but it still requires exotic matter.
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1. Introduction

In 1988, Morris and Thorne [1] devised traversable wormholes, which are solutions of Einstein’s gravita-
tion equations. They are cosmic shortcuts that connect two points of the Universe by a throatlike geometry.
But they violate one or more of the so-called energy conditions: the weak energy condition (WEC), null en-
ergy condition (NEC), and strong energy condition (SEC) (see, e.g., [2]–[4]). Most physicists therefore agree
that wormholes require exotic matter—a kind of antigravity—to keep their throat (the narrowest point)
open [5]. In contrast, some physicists studying this subject claim that wormholes, such as the thin-shell
wormhole (TSW), can be supported by normal matter [6], [7].

At first, Visser [8] proposed a method for constructing TSWs by applying the Israel junction con-
ditions [9]. It was shown that the amount of exotic matter [10] around the throat can be minimized
with a suitable choice of the wormhole geometry. In the literature, there are now many studies following
Visser’s prescription focused on constructing TSWs described in arbitrary (lower or higher) dimensions
(see, e.g., [11]–[33]). Here, we consider the scalar-hair black hole (SHBH) in 2+1 dimensions that is a solu-
tion of the Einstein–Maxwell theory with a self-interacting scalar field described by the Liouville potential
V (φ) [34]. Using the standard cut-and-paste technique, we then construct a TSW and test its stability with
different physical gas states.

Our main motivation in constructing a TWH is to minimize the exotic matter, which is in general the

main source for supporting the throat. Here, we focus on the stability of the SHBH space–time in 2+1
dimensions because this black hole depends on two variables and we can obtain stable solutions by choosing

them.

This paper is organized as follows. In Sec. 2, we briefly describe the SHBH in (2+1)-dimensional
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geometry. In Sec. 3, we first introduce the basic concepts related to the TSW and then in Sec. 4 apply
various gas models to the equation of state (EoS) to study its stability. We present conclusions in Sec. 5.

2. The SHBH space–time

In this section, we briefly review the SHBH [34]. The Einstein–Maxwell gravity minimally coupled to
a scalar field φ is described by the action

S =
∫ √

−g
(
R − 2 ∂μφ∂μφ − F 2 − V (φ)

)
d3r, (1)

where R denotes the Ricci scalar, F = FμνFμν is the Maxwell invariant, and V (φ) denotes the scalar φ

potential. The SHBH is a solution of action (1) found in [34] as

ds2 = −f(r) dt2 +
4r2 dr2

f(r)
+ r2 dθ2, (2)

where the metric function is

f(r) =
r2

l2
− ur. (3)

Here, u and l are constants, and the event horizon of BH (2) is located at rh = u�2. It is clear that this BH
does not have a asymptotically flat geometry. Metric (2) can alternatively be written in the form

ds2 = − r

�2
(r − rh) dt2 +

4r�2 dr2

r − rh
+ r2 dθ2. (4)

The singularity located at r = 0 can be seen best by checking the Ricci and Kretschmann scalars:

R = −2r + rh

4r3�2
, (5)

K =
4r2 − 4rhr + 3r2

h

16r6�4
. (6)

The scalar field and potential are respectively given by [34]

φ =
log r√

2
, (7)

V (φ) =
λ1 + λ2

r2
, (8)

where λ1,2 are constants. The corresponding Hawking temperature of the BH (see, e.g., [35]) is

TH =
1
4π

∂f

∂r

∣∣∣∣
r=rh

=
1

8π�2
, (9)

which is constant. Radiation with a constant temperature is a well-known isothermal process. We note
that Hawking radiation of the linear dilaton black holes exhibits a similar isothermal behavior [35]–[42].
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3. Stability of a TSW

In this section, we consider two identical copies of the SHBHs with

M± = (x|r ≥ 0), r ≥ a,

and the manifolds bounded by hypersurfaces M+ and M−. To obtain a single manifold M = M+ + M−,
we match them at the surface of the junction

Σ± = (x|r = a),

where the boundaries Σ are given. On shell, we can choose

ds2 = −dτ2 + a2(τ) dθ2 (10)

as the space–time, where τ represents the proper time [20]. Setting the coordinates ξi = (τ, θ), we write
the extrinsic curvature formula connecting the two sides of the shell in the simple form [26]

K±
ij = −n±

γ

(
∂2xγ

∂ξi ∂ξj
+ Γγ

αβ

∂xα

∂ξi

∂xβ

∂ξj

)
, (11)

where the unit normals ((nγnγ = 1) are

n±
γ = ±

∣∣∣∣gαβ ∂H

∂xα

∂H

∂xβ

∣∣∣∣
−1/2

∂H

∂xγ
, (12)

where H(r) = r − a(τ). With the metric functions, the nonzero components of n±
γ become

nt = ∓2aȧ, (13)

nr = ±2

√
al2(4ȧ2l2a − l2u + a)

(l2u − a)
, (14)

where the dot denotes the derivative with respect to τ . The nonzero components of extrinsic curvature (11)
are then written as

K±
ττ = ∓

√
−al2(8ȧ2l2a + 8äl2a2 − l2u + 2a)

4a2l2
√
−4ȧ2l2a − l2u + a

, (15)

K±
θθ = ± 1

2a3/2l

√
4ȧ2l2a − l2u + a. (16)

Because Kij is not continuous around the shell H [26], we use the Lanczos equation [43]–[45]

Sij = − 1
8π

([Kij ] − [K]gij), (17)

where K is the trace of Kij , [Kij ] = K+
ij − K−

ij , and Sij is the energy–momentum tensor at the junction,
which in the general case has the form [11], [26]

Si
j = diag(σ − p), (18)
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where p is the surface pressure and σ is the surface energy density. Because of the circular symmetry, we
have

Ki
j =

(
Kτ

τ 0
0 Kθ

θ

)
. (19)

From Eqs. (17) and (18), we therefore obtain the surface pressure and the surface energy density [26].
Using the cut-and-paste technique, we can excise the interior regions r < a of geometry (10) and link

its exterior parts. But there exists a bounce (deduced from the extrinsic curvature components at the
surface r = a) that is related to the energy density and pressure:

σ = − 1
8πa3/2l

√
4ȧ2l2a − l2u + a, (20)

p =
1

16πa3/2l

8ȧ2l2a + 8äl2a2 − l2u + 2a√
4ȧ2l2a − l2u + a

. (21)

Consequently, the energy and pressure quantities in the static case (a = a0) become

σ0 = − 1

8πa
3/2
0 l

√
−l2u + a0, (22)

p0 =
1

16πa
3/2
0 l

−l2u + 2a0√
−l2u + a0

. (23)

If σ ≥ 0 and σ + p ≥ 0, then the WEC is satisfied. In addition, the condition σ + p ≥ 0 is the NEC.
Moreover, the SEC depends on satisfying σ+p ≥ 0 and σ+2p ≥ 0. It is obvious from Eq. (24) that negative
energy density violates the WEC, and we consequently need exotic matter for constructing the TSW. We
note that the total matter supporting the wormhole is given by [46]

Ωσ =
∫ 2π

0

(ρ
√
−g)

∣∣
r=a0

dφ = 2πa0σ(a0) = − 1

4a
1/2
0 |l|

√
−l2u + a0. (24)

We investigate the stability of such a wormhole using a linear perturbation in which the EoS is written
as

p = ψ(σ), (25)

where ψ(σ) is an arbitrary function of σ. We introduce the energy conservation equation as [26]

Si
j;i = −Tαβ

∂xα

∂ξj
nβ , (26)

where Tαβ is the bulk energy–momentum tensor. We can hence rewrite Eq. (26) in terms of the pressure
and energy density:

d

dτ
(σa) + ψ

da

dτ
= −ȧσ. (27)

From this equation, we obtain

σ′ = −1
a
(2σ + ψ), (28)

and its second derivative yields

σ′′ =
2
a2

(ψ̃ + 3)
(

σ +
ψ

2

)
, (29)
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where prime and tilde denote the respective derivatives with respect to a and σ. The equation of motion
for the shell in the general case is

ȧ2 + V = 0, (30)

where the effective potential V is found from Eq. (22) as

V =
1

4l2
− u

4a
− 16a2σ2π2. (31)

In fact, Eq. (30) is just the equation of the oscillatory motion in which the stability around the
equilibrium point a = a0 depends on satisfying the condition V ′′(a0) ≥ 0. Using Eqs. (30) and (31), we
finally obtain

V ′′ = − 1
2a3

[
64π2a5(σσ′)′ + 4σ′σ

a
+

σ2

a2
) + u

]∣∣∣∣
a=a0

(32)

or, equivalently,

V ′′ =
1

2a3

{
−64π2a3[(2ψ′ + 3)σ2 + ψ(ψ′ + 3)σ + ψ2] − u

}∣∣∣∣
a=a0

. (33)

The equation of motion of the throat for a small perturbation becomes [47]–[49]

ȧ2 +
V ′′(a0)

2
(a − a0)2 = 0.

We note that under the condition V ′′(a0) ≥ 0, the TSW is stable, and the motion of the throat is oscillatory

with the angular frequency ω =
√

V ′′(a0)/2.

4. Some models of the EoS supporting the TSW

In this section, we use particular gas models—linear barotropic gas (LBG) [47], [50], Chaplygin gas
(CG) [51], [52], generalized Chaplygin gas (GCG) [53], and logarithmic gas (LogG [20]—to investigate the
stability of the TSW.

4.1. Stability analysis of the TSW in the LBG model. The EoS of the LBG [47], [50] is given
by

ψ = ε0σ, (34)

and hence
ψ′(σ0) = ε0, (35)

where ε0 is a constant parameter. Changing the values of l and u in Eq. (35), we illustrate the stability
regions for the TSW in terms of ε0 and a0, as shown in Fig. 1.

4.2. Stability analysis of the TSW in the CG model. The EoS of the CG that we consider is
given by [51]

ψ = ε0

(
1
σ
− 1

σ0

)
+ p0, (36)

and we naturally obtain
ψ′(σ0) = − ε0

σ2
0

. (37)

Substituting Eq. (37) in Eq. (35), we plot the stability regions for the TSW supported by the CG in
Fig. 2.
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Fig. 1. Stability regions of the TSW in the LBG model for different values of l and u.

Fig. 2. Stability regions of the TSW in the CG model for different values of l and u.
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Fig. 3. Stability regions of the TSW in the GCG model for different values of l and u.

4.3. Stability analysis of the TSW in the GCG model. We use the EoS of the GCG [53]

ψ = p0

(
σ0

σ

)ε0

, (38)

whence we obtain
ψ′(σ0) = −ε0

p0

σ0
. (39)

In Fig. 3, we show the stability regions of a TSW supported by a GCG that are obtained by substituting
Eq. (39) in Eq. (35).

4.4. Stability analysis of the TSW in the LogG model. In our final example, we choose the
EoS for the LogG in the form (see [20])

ψ = ε0 log
σ

σ0
+ p0, (40)

which leads to
ψ′(σ0) =

ε0

σ0
. (41)

In Fig. 4, we show the stability regions of a TSW supported by a LogG that are obtained by substituting
the expression presented above in Eq. (35).

5. Conclusion

We have constructed a TSW by gluing two copies of a SHBH by the cut-and-paste procedure. For
this, we used the fact that the throat radius must be greater than the event horizon of the given metric:
a0 > rh. We applied the EoSs for the LBG, CG, GCG, and LogG representing the exotic matter located
at the throat. The stability analysis then reduces to checking that the second derivative of the effective
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Fig. 4. Stability regions of the TSW in the LogG model for different values of l and u.

potential is positive at the throat radius a0: V ′′(a0) ≥ 0. In all cases, we managed to find the stability
regions in terms of the throat radius a0 and the constant parameter ε0 connected with the considered EoS.
The problem of the angular perturbation is outside the scope of this paper. We therefore only considered a
linear perturbation, but we plan to study the angular perturbation in our future continuation of this study.
This will be done in the near future.

One of the most relevant topics in theoretical physics is the relation between an Einstein–Rosen
(ER) bridge (wormhole) [54] and an Einstein–Podolsky–Rosen (EPR) bridge [55] (a synonym for entangle-
ment [56], [57]). In our opinion, another open problem here is nature of the relation between the TSW and
the EPR wormhole. Is it possible to solve the exotic matter problem of the TSW using the EPR wormhole,
or vice versa? Are there any exotic forces between pairs of EPR wormholes? All these question remain
open and await their solutions, and they should be adequately studied. Our next project is to add one
more piece to this big puzzle.

Acknowledgments. The authors thank the editor and anonymous referee for the valuable comments
and suggestions to improve the paper.
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