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SOLVING EVOLUTIONARY-TYPE DIFFERENTIAL EQUATIONS

AND PHYSICAL PROBLEMS USING THE OPERATOR METHOD

K. V. Zhukovsky∗

We present a general operator method based on the advanced technique of the inverse derivative operator

for solving a wide range of problems described by some classes of differential equations. We construct

and use inverse differential operators to solve several differential equations. We obtain operator identities

involving an inverse derivative operator, integral transformations, and generalized forms of orthogonal

polynomials and special functions. We present examples of using the operator method to construct solu-

tions of equations containing linear and quadratic forms of a pair of operators satisfying Heisenberg-type

relations and solutions of various modifications of partial differential equations of the Fourier heat con-

duction type, Fokker–Planck type, Black–Scholes type, etc. We demonstrate using the operator technique

to solve several physical problems related to the charge motion in quantum mechanics, heat propagation,

and the dynamics of the beams in accelerators.
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1. Introduction

Differential equations (DEs) are the most important mathematical tool for describing a wide range of
physical processes. Their study of and in itself constitutes a serious mathematical problem, the importance
of which can hardly be overestimated in view of physical applications of the obtained solutions. The use
and development of computer techniques in the 21st century made obtaining DE solutions much easier.
Exact analytic solutions, which allow an in-depth and comprehensive analysis of both the mathematical
aspects of the problem and the physical features of the modeled process, are especially valuable. Obtaining
exact analytic solutions is a complicated and not always solvable problem, even using the modern computer
programs that have appeared in the last decade for analytic calculations. The analytic description of the
behavior of physical systems has always been given much attention. This is indicated by the examples of
recent studies of the phenomena of nonlinear effects in electrodynamics, the spectra and dynamics of atoms
and the features of the motion and radiation from charges in magnetic fields [1]–[10], heat propagation
not obeying the Fourier law [11]–[14], and financial and even some biological models [15], which allowed
describing the behavior of complex systems partly or completely analytically.

Integral transformations were used to solve the Fokker–Planck equation in [16], and the results were
presented in the form of convergent series. The method of inverse differential operators [17]–[22] is useful
for obtaining the exact analytic solutions of linear DEs. It uses advanced forms of Hermite and Laguerre
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orthogonal polynomials [23] with many variables and indices [24], [25] and their operator representations [26].
Integral relations for tensor polynomials were investigated in [27].

Here, we generalize an operator technique that we developed for solving DEs to more complicated
equations of the type of heat conduction, Black–Scholes and Fokker–Planck equations with additional
terms. We show how using inverse differential operators combined with integral transformations and the
operator representations of the extended forms of orthogonal polynomials allow quickly solving relatively
complex problems.

2. Operator solution of ordinary differential equations of
noninteger order

The traditional approach to solving inhomogeneous DEs consists in using the Green’s function. Another
approach consists in using inverse differential operators including those of noninteger order. We consider
the DE (

β2 − (dx + α)2
)ν

F (x) = f(x), (1)

where α and β are constants and ν is an arbitrary real parameter. To find a particular integral, we use the
known operator identity [26]

q̂−ν =
1

Γ(ν)

∫ ∞

0

e−q̂ttν−1 dt, min{Re(q), Re(ν)} > 0, (2)

and integral representation (see [28])

ep̂2
=

1√
π

∫ ∞

−∞
e−ξ2+2ξp̂ dξ =

1√
π

∫ ∞

−∞
e−ξ2−2ξp̂ dξ, (3)

where in our case p̂ =
√

tD̃ and the shift and heat conduction operators have the respective forms [29]

Θ̂f(x) = eη(∂x+α)f(x) = eηαf(x + η), Ŝ = et∂2
x . (4)

The action of the last operator is easy to represent in the form of a Gauss–Weierstrass transformation.
As part of the operator approach, it is expedient to define polynomials using operator relations (see [29]
and [19], [30]). For the generalized forms of the Hermite and Laguerre polynomials Hn(x, y) and Ln(x, y),
we have the respective equalities

Hn(x, y) = ey ∂2/∂x2
xn, Ln(x, y) = e−y ∂xx ∂x

(−x)n

n!
. (5)

The Laguerre derivative LDx ≡ ∂xx∂x = ∂/∂D−1
x [29] makes a commutator with the inverse derivative

D−1
x : [LDx, D−1

x ] = −1, where

D−n
x f(x) =

1
(n − 1)!

∫ x

0

(x − ξ)n−1f(ξ) dξ, n ∈ N = {1, 2, . . .}

(see [19]).
We demonstrate the use of inverse differential operators and orthogonal polynomials to solve DEs. For

example, we consider noninteger-order ordinary DE (ODE) (1) with the monomial f(x) = xk. We use the
trivial operator relation to a shift of the inverse operator

(ψ(∂x + α))−1f(x) = e−αx(ψ(∂x))−1eαxf(x) (6)
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and the relation ey ∂2
xxkeαx = e(αx+α2y)Hk(x + 2αy, y) [21]. The particular solution of (1) with the initial

condition f(x) = xk can then be represented as

F (x) =
(
β2 − (dx + α)2

)−ν
xk =

1
Γ(ν)

∫ ∞

0

e−t(β2−α2)tν−1Hk(x + 2αt, t) dt. (7)

The integrand contains Hermite polynomials with a shifted argument. We note that solution (7) of Eq. (1)
can be represented as a series of the convolution φ(x) = Φ(x) ∗ f(x) with the kernel Φ(x) = xn and the
weight given by Hermite polynomials:

F (x) =
∞∑

n=0

φ(x)C(ν, α, β),

φ(x) =
∫ ∞

−∞
Φ(x − η)f(η) dη ≡ Φ(x) ∗ f(x),

Φ(x − η) = (η − x)n, Φ(x) = (−x)n,

C(ν, α, β) =
1√

πΓ(ν)

∫ ∞

0

τ2(ν−1)e−β2τ2 1
n!

Hn

(
α,− 1

4τ2

)
dτ.

(8)

Moreover, because the expression for the generating exponential is ext+yt2 =
∑∞

n=0(t
n/n!)Hn(x, y), we can

easily show that the solution of (1) is given by an integral with the weight of the following convolution with
a kernel of the Gaussian-type probability distribution Ω(x, τ):

F (x) =
1√

πΓ(ν)

∫ ∞

0

τ2(ν−1)e−β2τ2
�(x, τ)dτ,

�(x, τ) =
∫ ∞

−∞
Ω(x − η, τ)f(η)dη ≡ Ω(x, τ) ∗ f(x),

Ω(x − η, τ) = exp
(

α(η − x) − (η − x)2

4τ2

)
, Ω(x, τ) = exp

(
−αx − x2

4τ2

)
.

(9)

With ∫ ∞

0

τ2(ν−1) exp
(
−(βτ)2 − (x − η)2

4τ2

)
dτ =

(
|x − η|

2β

)ν−1/2

Kν−1/2(β|x − η|)

taken into account, where Kn(x) is the Macdonald function, the solution becomes

F (x) =
1√

πΓ(ν)

∫ ∞

−∞

(
|x − η|

2β

)ν−1/2

Kν−1/2(β|x − η|)e−α(x−η)f(η)dη. (10)

We thus obtain the solution of noninteger order ODE (1) by the operator method in the form of a convo-
lution:

F (x) =
1√

πΓ(ν)

∫ ∞

−∞
χ(x − η)f(η)dη,

χ(x − η) =
(
|x − η|

2β

)ν−1/2

Kν−1/2(β|x − η|)e−α(x−η)

(11)

with the kernel χ. It can be written in abbreviated form as

F (x) =
1√

πΓ(ν)
χ ∗ f, χ =

(
|x|
2β

)ν−1/2

Kν−1/2(β|x|)e−αx. (12)
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The method of inverse differential and exponential operators finds numerous applications for solving
physical problems. Some of them were considered in [14], [17], [19]. Before turning to examples, we note
that formula (6), despite its triviality, allows significant progress in solving certain DEs by the operator
method. In accordance with relation (6), for example, for the equation f(x, t) = ψ(∂x + κ)F (x, t), we can
write the equality eκxF (x, t) = ψ−1(∂x)eκxf(x, t). For the function f(x, t) = ∂tF (x, t), for example, we
then have ψ(∂x)eκxF (x, t) = ∂te

κxF (x, t). Introducing the notation G(x, t) = eκxF (x, t), we obtain the
equation ψ(∂x)G(x, t) = ∂tG(x, t) with the initial condition g(x) = G(x, 0) = eκxF (x, 0) = eκxf(x). Hence,
to obtain the sought solution F (x, t) = e−κxG(x, t) of the equation ψ(∂x + κ)F (x, t) = f(x, t) with the
operator ψ(∂x + κ) and the initial condition F (x, 0) = f(x), we must solve the equation with the operator
ψ(∂x) for the function G(x, t) with the corresponding initial condition g(x) = eκxf(x).

3. Operator solution of equations of the Black–Scholes type

To demonstrate the technique outlined above, we solve the DE of the Black–Scholes type:

1
ρ

∂

∂t
F (x, t) =

[
x2 ∂2

∂x2
+ (2αx2 + λx)

∂

∂x
+ (αx)2 − μ

]
F (x, t), f(x) = F (x, 0), (13)

where α, ρ, λ, and μ are constant coefficients and f(x) = F (x, 0) is a function of the initial condition. It is
easy to see that (13) is an equation with a shifted derivative, and it reduces to an equation of the form

1
ρ

∂

∂t
G(x, t) = x2 ∂2

∂x2
G(x, t) + λx

∂

∂x
G(x, t) − μG(x, t), g(x) = G(x, 0), (14)

by replacing ∂x → ∂x + α. The solution of Eq. (13) can then be written in terms of the solution G(x, t) of
Eq. (14) with the initial condition g(x) = G(x, 0) = eαxF (x, 0):

F (x, t) = e−αxG(x, t), g(x) = G(x, 0) = eαxF (x, 0). (15)

Equation (14) in turn was solved by the operator method (see [19]). We choose the initial condition for
Eq. (13) of the Black–Scholes type with a shifted variable in the form f(x) = e−axxn. Then g(x) = xn,
and with the equalities (see [19])

G(x, t) =
e−ρεt

√
π

∫ ∞

−∞
e−σ2+σγλ/2ρg(xeσγ)dσ

taken into account, the sought solution of Eq. (13) takes the simple form

F (x, t)|f(x)=e−axxn = e−αxxneρt(n2+λn−μ). (16)

Another example is the generalization of the DE of the Black–Scholes type with the Laguerre derivative

LDx
1
ρ

∂

∂t
A(x, t) = (∂xx∂x)2A(x, t) + λ(∂xx∂x)A(x, t) − μA(x, t), g(x) = A(x, 0), (17)

where ρ, λ, and μ are constant coefficients. We note that Eq. (17) is essentially a generalization of two
equations, the diffusion and the Laguerre heat conduction equations, previously discussed in [19] and [25].
Following [19], we write solution (17) in form A(x, t) = eρt((LDx+λ/2)2−μ−(λ/2)2)g(x), and using operator
relation (3), we obtain the solution for A(x, t)

A(x, t) =
e−ρt(μ+(λ/2)2)

√
π

∫ ∞

−∞
e−σ(σ+

√
ρt(λ−2LDx))g(x)dσ. (18)
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We choose the initial function in the form g(x) = (−x)n/n!. With operator definition (5) of the Laguerre
polynomials, we obtain

A(x, t) =
e−ερt/4

√
π

∫ ∞

−∞
e−σ(σ+

√
ρtλ)Ln(x, 2σ

√
ρt)dσ. (19)

Integrating over dσ, we obtain the solution of generalized Black–Scholes equation (17) with the Laguerre
derivative with the initial condition g(x) = (−x)n/n!:

A(x, t) =
e−ρtμ

√
π

n!
n∑

r=0

(−x)r(2
√

ρt)n−r

(n − r)!(r!)2
×

×
{

ei(n−r)π + 1
2

Γ
(

1 + n − r

2

)

1F1

(
−n − r

2
,
1
2
,−

(
λ
√

ρt

2

)2)
+

+
ei(n−r)π − 1

2
λ
√

ρt Γ
(

1 +
n − r

2

)

1F1

(
1 − (n − r)

2
,
3
2
,−

(
λ
√

ρt

2

)2)}
, (20)

where Γ is the gamma function and 1F1 is the hypergeometric function. It is obvious that the solution for
an initial condition in the form of a polynomial in x corresponds to the sum of expression (20), and for an
initial condition function given as a series of Laguerre polynomials g(x) =

∑
n anLn(x), the solution can

be written as a series in the form

A(x, t) =
e−ερt/4

√
π

∑

n

an

∫ ∞

−∞
e−σ(σ+λ

√
ρt)Ln(x, 2σ

√
ρt + 1)dσ. (21)

We introduce the transform ϕ(x) =
∫ ∞
0 e−κg(xκ)dκ of the function g(x) = ϕ(D−1

x ){1} in the same way as
described in [19]. The solution of Eq. (17) with the equalities [LDx, D−1

x ] = −1 and e−t ∂/∂D−1
x ϕ(D−1

x ) =
e−t ∂/∂D−1

x g(x) = ϕ(D−1
x −t){1} taken into account can be expressed by the integral of the inverse derivative

operator D−1
x under the condition that it converges:

A(x, t) =
e−ερt

√
π

∫ ∞

−∞
e−σ(σ+αλ)g(x, t)dσ, (22)

where
g(x, t) = ϕ(D−1

x − 2σα){1} = e−2σα ∂/∂D−1
x ϕ(D−1

x ){1}. (23)

For example, for g(x) = W0(−x2, 2), where

Wn(x, m) =
∞∑

r=0

xr

r!(mr + n)!
, m ∈ N, n ∈ N0,

is a special case of the Bessel–Wright function [29], its image turns out to be a function ϕ(x) = e−x2
, and

applying operator relation (3), according to (23) (see [19]), we obtain the formula

g(x, t) =
1√
π

∫ ∞

−∞
e−ξ2+4iσαξC0(2iξx)dξ, (24)

where Cn(x) is the Bessel–Tricomi function [31] associated with the Bessel–Wright function and Bessel
functions,

Cn(x) = Wn(−x, 1) = x−n/2Jn(2
√

x) =
∞∑

r=0

(−x)r

r!(r + n)!
, n ∈ N0.

Some modifications of the Black–Scholes equations were studied by the operator method in [32] and [33].
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4. Operator solution of the extended Fourier heat conduction
equation and Schrödinger-type equations

The dynamics of a charge passing a potential barrier in an electrostatic field is described by generalized
heat conduction equation with a linear term

∂tG(x, t) = α ∂2
xG(x, t) + βxG(x, t), G(x, 0) = g(x), (25)

and is essentially the Schrödinger equation with imaginary time. The Euclidean approach in quantum
mechanics corresponding to this is described in detail, for example, in [34]. The tunneling effect of a
particle in the region where its energy is lower than the potential energy of the barrier also seems important
in the study of vacuum effects in quantum chromodynamics. In the context of heat propagation, the second
term in the right-hand side of (25) describes radiation in an environment with a small temperature difference
across a heat insulating gasket with a linearly varying thickness along the coordinate. Equation (25) was
studied in [17], [18], and [20]. The solution was obtained in the form of the sequential action of the operators
̂̄S and ̂̄Θ given by (4) on the initial condition function G(x, 0) = g(x),

G(x, t) = eΦ(x,t;α,β) Θ̂Ŝg(x) = eΦ(x,t;α,β)g(x + αβ t2, t) =

=
eΦ(x,t;α,β)

2
√

παt

∫ ∞

−∞
e−(x+αβt2−ξ)2/4tαg(ξ)dξ, (26)

where Θ̂ = eαβt2 ∂x , Ŝ = eαt ∂2
x , and Φ(x, t; α, β) = αβ2t3/3 + βtx. Solutions describing the evolution of a

pulse have a special significance for the practical study of heat propagation because it is a well-established
experimental method in investigating the heat conduction of materials. We consider Eq. (25) with the
initial condition g(x) = xkeδx. It models an asymmetric pulse at δ < 0, and an approximation of the
experimental data by the series

∑
k,δ xkeδx allows studying the evolution of almost all pulses analytically.

In accordance with (26) and (4), we obtain solution (25) at g(x) = xkeδx

G(x, t)|g(x)=xkeδx = eΦ+δ(x+δαt+αβt2)Hk(x + 2tαδ + αβt2, αt), (27)

and for g(x) =
∑

k,δ xkeδx, we have G(x, t) = eΦ
∑

k,δ eδ(x+δαt+αβt2)Hk(x + 2tαδ + αβt2, αt).
We consider a generalization of Eq. (25) of the form

∂tF (x, t) = α∂2
xF (x, t) + ς ∂xF (x, t) + βxF (x, t) + γF (x, t), F (x, 0) = f(x). (28)

Following the general logic of solving equations with a shifted derivative (see the beginning of this section)
and separating the square of the operator ∂x + κ, where κ = ς/2α, we obtain the solution of Eq. (28)

F (x, t) = et(γ−ακ2−κx)G(x, t), (29)

where the function G(x, t) satisfies (25) with the initial condition g(x) = eκxf(x). We choose the initial
condition for (28) in the form of a monomial f(x) = xk. Then g(x) = xkeκx, and substituting solution (27)
of Eq. (25) in (29), we immediately obtain the sought solution of Eq. (28) written in terms of Hermite
polynomials:

F (x, t)|f(x)=xk = exp
(

αβ2t3

3
+

ςβt2

2
+ βtx + tγ

)
Hk(x + ςt + αβt2, αt). (30)

We now consider the two-dimensional heat conduction equation

∂tF (x, y, t) = {(α ∂2
x + ε ∂x ∂y + γ ∂2

y) + bx + cy}F (x, y, t), min(α, ε, γ) > 0, (31)
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with the initial condition F (x, y, 0) = f(x, y), which also describes the two-dimensional dynamics of a
charge in an electric field passing under a potential barrier. The operator solution of Eq. (31) can be
obtained by analogy with the solution of one-dimensional equation (25) (see [17], [20]) or by using the
Baker–Campbell–Hausdorff formula. It is a sequential action of the two-dimensional analogue Ŝ of the heat
conduction operator

Ê = et(α ∂2
x+ε ∂x ∂y+γ ∂2

y) (32)

on the initial condition Êf(x, y) = f(x, y, t) and the action of the coordinate shift operators Θ̂x =
et2(αb+εc/2)∂x and Θ̂y = et2(γc+εb/2)∂y on f(x, y, t). As a result, we obtain a solution

F (x, y, t) = eΨ Θ̂xΘ̂yÊf(x, y) ∝ f

(
x + t2

(
αb +

εc

2

)
, y + t2

(
γc +

εb

2

)
, t

)
, (33)

where Ψ = (αb2 + γc2 + εbc)t3/3 + t(bx + cy) is the phase. The action of Ê has the form of a double
Gauss-type integral (see [22]). At ε = 0 in (31), instead of the heat conduction operator Ê, we have the
product ŜxŜy of heat conduction operators (4) for each of the coordinates, and the solution hence becomes

F (x, y, t; ε = 0) = eΨΘ̂xΘ̂yŜxŜyf(x, y) ∝ f(x + t2αb, y + t2γc, t). (34)

Operator definition (32) allows obtaining a solution of Eq. (31), for example, for a power-law function
of the initial condition f(x, y) = xmyn. The action of the heat conduction operator Ê on f gives the
expression

Ê{xmyn} = Hm,n(x, tα, y, tγ|tε), (35)

where Hm,n(x, tα, y, tγ|tε) are Hermite polynomials in three variables and parameters with two indices
(see [19], [22], [26]). The subsequent shift by the operators Θ̂xΘ̂y leads to the solution of two-dimensional
heat conduction equation (31) with f(x, y) = xmyn:

F (x, t) = eΨHm,n

(
x + t2

(
αb +

βc

2

)
, tα; y + t2

(
γc +

βb

2

)
, tγ

∣∣
∣
∣tε

)
. (36)

It is obvious that the obtained solution (36) of two-dimensional heat conduction equation (31) is a direct
generalization of solutions (27) with δ = 0 for the one-dimensional analogue (25) of Eq. (31). A further
generalization to three dimensions is not difficult.

5. Propagation of a δ-pulse in the Fourier heat conduction

The experimental value of heat conduction of different materials is usually determined by measuring
heat pulses [35]. The characteristic relaxation time is measured for this purpose [36]. An ultrashort laser
pointlike pulse is often used as the initial pulse. It is modeled by the Dirac δ-function. We model such a
pulse mathematically in the equation of Fourier heat conduction in two dimensions, f(x, y) = δ(x, y). The
action of an operator Ŝ on the δ-function yields the Gaussian-type distribution

f(x, y, t) = ŜxŜyδ(x, y) =
exp[−(x2/α + y2/γ)/4t]

4πt
√

αγ
, (37)

and the shift operators Θ̂x,y in the presence of linear terms in the Fourier heat conduction equation leads
to a solution with the initial function f(x, y) = δ(x, y):

F (x, y, t)|f=δ(x,y) ≡ χ(x, y, t) = eΨ Θ̂xΘ̂yŜxŜyδ(x, y) =

= eΨ exp
(
−[(x + t2αb)2/α + (y + t2γc)2/γ]/4t

)

4πt
√

αγ
. (38)
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Its one-dimensional analogue in the case of Eq. (25) at f(x) = δ(x) has the form

F (x, t)|f=δ(x) ≡ χ(x, t) = eΦ exp
(
−(x + αβt2)2/4tα

)

2
√

πtα
, (39)

where Φ and Ψ are defined above (see (26) and (33)). By direct substitution, we can easily verify that the
solutions obtained above satisfy Eqs. (25) and (31).

We now find a solution of extended heat conduction equation (28) with the initial condition f(x) = δ(x).
We distinguish ∂x + κ, where κ = ς/2α, and use result (29). The solution for the function G(x, t) with the
initial condition g(x) = eκxδ(x) is easy to find from (26):

G(x, t)|g(x)=eκxδ(x) =
eΦ(x,t;α,β)

2
√

παt

∫ ∞

−∞
e−(x+αβt2−ξ)2/4tαeκξδ(ξ)dξ =

=
eΦ(x,t;α,β)

2
√

παt
e−(x+αβt2)2/4tα. (40)

The sought solution of Eq. (28) with f(x) = δ(x) becomes

F (x, t)|f(x)=δ(x) = exp
(

1
3
αβ2t3 + t

(
βx + γ − ς2

4α

)
− ς

2α
x

)
1

2
√

παt
e−(x+αβt2)2/4tα. (41)

We note that the linear term appears in the equations of various models of heat conduction (see,
e.g., [11]). The example of solution (41) of extended Fourier equation (28) shows that the initial δ-function
decays, but there is then an unlimited exponential growth of the solution with a shift with respect to the
maximum point x = 0, where the maximum is located at the initial instant (see Fig. 1, where α = 0.3 and
β = γ = −ς = 1). The behavior of solution (39) of Eq. (25) at α = 0.3 and β = 3 is qualitatively similar
to the behavior shown in Fig. 1; we omit the plot for brevity. Choosing the parameter values α, β, γ, and
ς, we can ensure that the solution almost completely decays in a wide area (see Fig. 2). We note the weak
asymmetry of solution (39) with respect to the initial maximum point x = 0 at small times t due to the
linear term β �= 0.

The obtained solution (39) of ordinary Fourier equation (25) with β = 0 decays as t → ∞ (see Fig. 3).
Hence, although the influence of the linear term in Fourier equation (25) is insignificant at small times (see
Fig. 1–3 for t < 0.1), it becomes dominant at large times (see Fig. 1 for t > 0.1 and Fig. 2 for t > 2.5).

Moreover, the solution F (x, t) of extended Fourier equation (28) reaches its maximum at the border
t = T of the considered area x ⊂ [−l, L], t ⊂ [T0, T ] (see Figs. 1 and 2), violating the maximum principle,
which guarantees the uniqueness and stability of solutions. The failure to satisfy the maximum principle
and the fact that the solution growth over time is unlimited in the context of heat transfer do not correspond
to the second law of thermodynamics, which assumes that β = 0.

Returning to the quantum mechanical interpretation of Eqs. (25) and (31), we note that by replacing
t → −iτ , α → −α, and γ → −γ in (25) and (31), we obtain the ordinary Schrödinger equation for a charge
in an electrostatic field, and its solution can be obtained by respectively replacing as above in (26), (34) and
in (38), (39) for the initial δ-function. The obtained solutions F (x, y, t) can be regarded as the amplitude
of the transition probability from the initial point x = 0 of the particle at t = 0 to the point with the
coordinate x during the time interval t > 0. We note that in this case, the phases Φ and Ψ become complex
and do not matter from the physical standpoint, because the probability is determined by |F (x, y, t)|2;
the increase of this probability over time due to the phase in the same way as shown in Fig. 1 does not
happen in this case. A solution F (x, y, t) of Eqs. (25) and (31) can also be understood as the concentration
with each particle moving independently of the others. The initial function f(x) = δ(x, y) means that all

59



Fig. 1. Evolution of the initial function δ(x) in the extended Fourier heat conduction equation with

α = 0.3 and β = γ = −ς = 1, t ∈ [0.01, 1.43].

Fig. 2. Evolution of the initial function δ(x) in the extended Fourier heat conduction equation with

α = 1 and β = γ = ς = −1, t ∈ [0.01, 3.2].

Fig. 3. Evolution of the initial function δ(x) in the extended Fourier heat conduction equation with

α = 0.3 and β = γ = ς = 0, t ∈ [0.01, 1.43].

particles were at the point (x, y) at the moment t = 0, and the solutions of Eqs. (25) and (31) describe
the particle concentration during the time interval t. All the results, up to a factor equal to the number of
diffusing particles, then relate to the particle concentration under the condition that we neglect the mutual
interaction of the diffusing particles.
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We also note that solutions (26) and (34) of Eqs. (25) and (31) for an arbitrary function of the initial
condition is a convolution of the initial condition function f with the solution of the initial Dirac δ-function.
Using the operator method, we thus obtain a solution of the Schrödinger equation (of heat conduction) of
a particle in an electrostatic field diffusing under a potential barrier by a convolution with the kernel χ:

F (x, y, t) =
∫ ∞

−∞
χ(x − η, y − ρ)

∣
∣
t→−iτ,
α→−α,
γ→−γ

f(η, ρ)dη dρ ≡ χ ∗ f, (42)

where the Gauss-type kernel χ is a solution of the original equation with F (x, y, 0) = δ(x, y) and is defined
by formula (38) with the replacements t → −iτ , α → −α, and γ → −γ. A one-dimensional analogue of
convolution (42) turns out to be with kernel (39) by the same replacement.

Although the Fourier equation well describes the transfer of heat in homogeneous nondeformable solids
under normal conditions, it is inapplicable at ultralow temperatures and also to low-dimensional systems,
such as graphene, nanofibers, etc., and to materials with substantial internal inhomogeneity. The study of
heat transfer processes in such cases is nontrivial and requires special consideration. We will turn to this
in future publications.

6. Operator solution of equations of the Fokker–Planck type

Equations of the Fokker–Planck type are encountered in modeling the propagation of electron beams
in accelerators and undulators. An operator solution of the Fokker–Planck equation

∂tF (x, t) = α ∂2
xF (x, t) + βx∂xF (x, t), F (x, 0) = f(x), (43)

is analogous to the solution of the Schrödinger equation:

F (x) = Ûf(x), Ûf(x) = etα ∂2
x+tβx ∂xf(x) = eσ ∂2

xf(eβtx), (44)

where σ = (1 − e−2βt)α/β (see, e.g., [17]). In contrast to the Schrödinger equation, in the solution of a
Fokker–Planck-type equation, the initial function f is transformed by only one heat conduction operator Ŝ

(compare (44) with (26)).
We now consider the generalization of the Fokker–Planck equation

∂tF (x, t) = {α ∂2
x + (βx + 2αδ)∂x + βδx + γ}F (x, t). (45)

For Fokker–Planck-type equations, it makes sense to consider a Gauss-type initial condition f(x) = e−x2

because it is most common for beams in accelerators. Separating the operator ∂x + δ, we see that the
generalized solution of Fokker–Planck-type equation (45) reduces to the solution of Eq. (43) for the function
G with the initial condition g(x) = G(x, 0) = eαxf(x) = eδx−x2

. The solution G(x, t) is obtained using the
Gauss-type transformation

G(x, t) =
1√
2πρ

∫ ∞

−∞
g(ξ) exp

[
−

(
eβtx − ξ√

2ρ

)2]
dξ,

where ρ(t) = (α/β)(e2βt − 1). We then have F (x, t) = eγ−αδ2
e−δxG(x, t) and finally obtain the sought

solution of Eq. (45) in the form

F (x, t)|f(x)=e−x2 =
eγ−(δ/2)2(4α−1)−δx

√
1 + 2ρ(t)

exp
(
− (eβtx − δ/2)2

1 + 2ρ(t)

)
. (46)
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Fig. 4. Plot of the solution of the Fokker–Planck-type equation ∂tF (x, t) = {α ∂2
x + (βx + 2αδ)∂x +

βδx + γ}F (x, t) for F (x, 0) = e−x2
, F (x,∞) < ∞ with α = 1, β = 4, γ = 3, and δ = 2.

A plot of the solution at α = 1, β = 4, γ = 3, and δ = 2 is shown in Fig. 4. We note the asymmetry of
the solution due to the nonzero γ and δ. It is also important that the solution reaches a maximum inside
considered area and violates the maximum principle, which guarantees the uniqueness and stability of the
solution.

Another modification of Fokker–Planck equation (43) consists in adding a second-order differential
operator ∂2

t with respect to time in the left-hand side of the equation,

(
∂2

∂t2
+ ε

∂

∂t

)
F (x, t) =

(
α

∂2

∂x2
+ βx∂x

)
F (x, t), α, β, ε = const, (47)

similar to the hyperbolic heat conduction equation of Cattaneo [37], who proposed a relaxation heat con-
duction model qualitatively describing the low-temperature process due to heat transfer by the phonon
mechanism in the equation (τ ∂2

t + ∂t)T = kT∇2T . Studying this equation is beyond the scope of our
paper; we will return to it in future publications. We use the operator technique to solve Eq. (47). For
equations of the type (

∂2

∂t2
+ ε̂(x)

∂

∂t

)
F (x, t) = D̂(x)F (x, t) (48)

containing the operator ε̂(x), the operator solution with the initial condition F (x, 0) = f(x) and the final
condition F (x,∞) = 0, or at least a bounded solution as t → ∞, F (x,∞) < ∞, can be obtained using the
Laplace transformation

e−t
√

V =
t

2
√

π

∫ ∞

0

e−t2/4ξ−ξV dξ

ξ
√

ξ
, t > 0, (49)

as an integral

F (x, t) = e(−t/2)ε̂(x) t

4
√

π

∫ ∞

0

e−t2/16ξe−ξε̂2(x)e−4ξ �D(x)f(x)
dξ

ξ
√

ξ
(50)

under the condition that it converges. In the general case of D̂(x) and ε̂(x), Eq. (48) describes a very wide
range of physical processes such as diffusion, heat propagation, evolution of packets of charged particles,
etc. The solution depends entirely on the explicit form of D̂(x) and ε̂(x) and on the value of commutator
[ε̂2, D̂]. In our case, ε = const, and commutator with D̂(x) = α ∂2

x + βx∂x is equal to zero. We then have

F (x, t) = e(−t/2)ε t

4
√

π

∫ ∞

0

e−t2/16ξ−ξε2
e−a ∂2

x−bx ∂xf(x)
dξ

ξ
√

ξ
, (51)
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Fig. 5. Plot of the solution of the generalized Fokker–Planck equation (τ ∂2
t +∂t)F = (A ∂2

x+Bx∂x)F

for F (x, 0) = e−x2
, F (x,∞) < ∞ at τ = 2/3 and B = 8/3 (α = 1, β = 4, ε = 1.5).

where a = 4ξα > 0, b = 4ξβ > 0, and a/b = α/β. Therefore, the exponential Û = e−a ∂2
x−bx ∂x differs

from the exponential in the solution of the ordinary Fokker–Planck equation by the sign and the time-
independence. Using the identity

eÂ+B̂ = eÂ(1−e−m)/meB̂,

which holds for [Â, B̂] = mÂ (in our case, Â = −a ∂2
x, B̂ = −bx ∂x, and m = −2b), and the relation

e−bx ∂xf(x) = f(e−bx),

according to [19] and [21], we have Ûf(x) = Ŝf(y), where Ŝ = e(−ρ/2)∂2
y and y = e−bx. Hence, the sought

solution of Eq. (47) transforms into the integral of the action of the operator Ŝ = e(−ρ/2)∂2
y on the function

f(y):

F (x, t) =
te−tε/2

4
√

π

∫ ∞

0

e−t2/16ξ−ξε2
Ŝf(y)

dξ

ξ
√

ξ
. (52)

As the initial function, we choose the Gaussian function f(x) = e−x2
, which under the action of the evolution

operator transforms into

Ûf(x) = Ŝf(y) =
1√

1 − 2ρ
exp

[
−e−2bx2

1 − 2ρ

]
, (53)

where ρ = (a/b)(1 − e−2b) = (α/β)(1 − e−8βξ). Hence, the evolution of the initial Gaussian distribution
f(x) = e−x2

under the condition that the solution of Eq. (47) is bounded is given by

F (x, t)|f(x)=e−x2 =
te−εt/2

4
√

π

∫ ∞

0

exp
(
− t2

16ξ
− ξε2 − e−8βξx2

1 − 2α(1 − e−8βξ)/β

)
×

× dξ

ξ
√

ξ
√

1 − 2α(1 − e−8ξβ)/β
. (54)

Equation (47) can also be written as

(τ ∂2
t + ∂t)F (x, t) = (A∂2

x + Bx∂x)F (x, t), (55)

where τ = 1/ε, A = α/ε, and B = β/ε. Plots of the obtained solution (54) are shown in Figs. 5–7.
We note the rapidly decaying solution at small values of the parameter τ , i.e., at large ε (cf. Figs. 5

and 7). The solution is symmetric in x, and the contribution of the term with β �= 0 can be seen in the
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Fig. 6. Plot of the solution of the generalized Fokker–Planck equation (τ ∂2
t +∂t)F = (A ∂2

x+Bx∂x)F

for F (x, 0) = e−x2
, F (x,∞) < ∞ at τ = 2/3, A = 2/3, and B = 32/3 (α = 1, β = 16, ε = 1.5).

Fig. 7. Plot of the solution of the generalized Fokker–Planck equation (τ ∂2
t +∂t)F = (A ∂2

x+Bx∂x)F

for F (x, 0) = e−x2
, F (x,∞) < ∞ at τ = 1/15, A = 2/3, and B = 8/3 (α = 10, β = 40, ε = 15).

overall rise and convexity (i.e., the sign of the derivative ∂2
t F ) of the constructed solution with respect

to t for t > 0 independently of the value of x (see Fig. 6) compared with the solution of the ordinary
Fokker–Planck equation ∂tF = (A∂2

x + Bx∂x)F , shown in Fig. 8 (cf. Fig. 5).
We note that for small values of the parameter β, the constructed solution of extended Fokker–Planck

equation (47) is close to the solution of the hyperbolic Cattaneo heat conduction equation [37], which can
be obtained at β = 0 and qualitatively describes such phenomena as the second sound in liquid helium [38]
and solid crystals [39], conductivity at low temperatures less than 25K, and other phenomena.

For contrast, we give the operator solution of an equation similar to (47) involving a mixed derivative
with respect to the coordinate and time:

(
∂2

∂t2
+ ε

∂2

∂x ∂t

)
F (x, t) =

(
∂2

∂x2
+ βx∂x

)
F (x, t), ε, β = const, (56)

which contains an operator ε̂ = ε ∂x commuting with the second derivative with respect the coordinate in
D̂. Acting similarly to solving Fokker–Planck-type equation (47), we obtain the equality

F (x, t) =
t

4
√

π

∫ ∞

0

e−t2/16ξ Θ̂Ŝf(y)
dξ

ξ
√

ξ
, (57)

where
Ŝ = e−(ρ/2)∂2

y , Θ̂ = e(−t/2)ε ∂x ,

ρ =
a

b

(
1 − e−2b

(
1 − ξε2 2b

a

))
=

α

β

(
1 − e−8βξ

(
1 − ξε2 2β

α

))
.
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Fig. 8. Plot of the solution of the ordinary Fokker–Planck equation ∂tF = (A ∂2
x + Bx ∂x)F ,

F (x, 0) = e−x2
for F (x,∞) < ∞ at A = 2/3 and B = 8/3.

Fig. 9. Plot of a bounded solution of the equation (∂2
t + ε ∂2

x,t)F (x, t) = (α ∂2
x + βx ∂x)F (x, t) with

the initial function f(x) = e−x2
for α = 1, β = 5, and ε = 0.

For the equation with an initial condition in the form of a Gaussian function f(x) = e−x2
, we obtain a

solution bounded at t = ∞ in the form

F (x, t)|f(x)=e−x2 =
t

4
√

π

∫ ∞

0

exp
(
− t2

16ξ
− e−8ξβ(x − tε/2)2

1 − 2α(1 − e−8βξ(1 − ξε22β/α))/β

)
×

× dξ

ξ
√

ξ
√

1 − 2α(1 − e−8βξ(1 − ξε22β/α))/β
. (58)

With ε = 0, the result is simplified to

F (x, t; ε = 0)|f(x)=e−x2 =
t

4
√

π

∫ ∞

0

exp
(
− t2

16ξ
− e−8ξβx2

1 − 2α(1 − e−8ξβ)/β

)
×

× dξ

ξ
√

ξ
√

1 − 2α(1 − e−8ξβ)/β
. (59)

A plot of the function F (x, t)|f(x)=e−x2 with α = 1, β = 5, and ε = 0 is shown in Fig. 9. The solution
increases with time and saturates for t > 2, unlike solution (54) of Eq. (47), which decays. An example of
the solution with α = 1, β = 5, and ε = 4 is shown in Fig. 10. Nonzero values of ε break the monotonicity
of the growth and lead to the appearance of a local maximum (see Fig. 10). In both cases, the maximum
principle does not hold, as shown in Figs. 9 and 10.
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Fig. 10. Plot of a bounded solution of the equation (∂2
t + ε ∂2

x,t)F (x, t) = (α ∂2
x + βx ∂x)F (x, t) with

the initial function f(x) = e−x2
for α = 1, β = 5, and ε = 4.

7. Conclusions

Using the operator method, we have obtained solutions for various classes of DEs. We used inverse
differential operators and exponential operators and widely used operator identities and integral transfor-
mations. In particular, an operator solution of an ODE with a real noninteger-order derivative in the form
of a convolution including the Macdonald function (second-kind Bessel function with an imaginary argu-
ment). We obtained an operator solution of an extended Black–Scholes-type equation with additional terms.
We solved a Black–Scholes-type equation with the Laguerre derivative, i.e., an equation with fourth-order
derivatives with respect to the coordinate.

We constructed the solution of the Schrödinger equation for a charge in an electric field passing through
a potential barrier in the two-dimensional case. The quantum mechanical interpretation of the obtained
solution of the Schrödinger equation for a particle in an electrostatic field is the amplitude of the probability
that a particle located at the initial point x = 0 at the initial instant appears at the point with the
coordinate x at the instant t. For an arbitrary initial condition f , the solution can be written in the
form of its convolution with the solution for the initial Dirac δ-function. We constructed a solution of
the extended Fourier heat conductivity equation and demonstrated the propagation of a δ-shaped impulse,
simulating the most widespread technique for experimentally measuring heat conduction using an ultrashort
initial laser impulse. We obtained exact analytic solutions of the Fourier heat conductivity equation in two
dimensions. We analyzed the propagation of the initial δ-function and an exponential-power function that
allows modeling almost any kind of impulses.

Using the operator method, we solved different variations of the Fokker–Planck equation, simulating
the propagation of electron beams, particularly for free electron lasers. We showed and compared plots of
the solutions. All solutions were obtained exactly in explicit analytic form. The maximum principle, which
ensures the uniqueness and stability of the solution holds for the Fourier heat conductivity equation only
when additional terms are absent from the equation. Based on the considered examples of equations of this
type, the maximum principle does not hold for solutions of Eqs. (25), (28), and (31) in the presence of linear
and other terms, because the maximum of the solution in the space–time rectangle R = {0 ≤ x ≤ 1, 0 ≤ t ≤
T } is achieved not at the initial time (t = 0) and not at extreme values of the coordinates (x = 0 or x = 1).
For Fokker–Planck equation (56), the maximum principle also does not hold. This is possible because the
considered equation is neither elliptic nor parabolic. In obtaining solutions, we used generalized forms of
Laguerre and Hermite polynomials, which allowed writing them as a series expansion of polynomials of
the above types. Using the operator definitions and representations made it easy to use them to solve
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mathematical problems arising in modeling physical processes of heat propagation and particle beams and
charges in classical and quantum mechanics.

We showed that the inversion of differential operators and the use of the inverse derivative often paves
the way for directly obtaining analytic solutions and enables progress in solving complicated mathematical
problems and associated physical processes. Our study showed that the operator approach, combined with
integral transformations, using the extended forms of orthogonal polynomials and special functions and
operator relations is a powerful tool for studying a wide range of physical problems.

The operator technique developed above is applicable to the solution of other DEs describing a wide
range of different physical processes. They will be discussed in subsequent publications.
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