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ALGEBRAIC AND GEOMETRIC STRUCTURES OF ANALYTIC
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We study the problem of the compatibility of nonlinear partial differential equations. We introduce the

algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian

forms. Systems of differential equations are given by power series in the space of infinite jets. We develop

a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using

certain assumptions, we prove that compatible systems generate infinite manifolds.
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1. Introduction

The compatibility question is one of the first to arise in the study of a system of equations. The
compatibility criterion for linear algebraic equations is given by the Kronecker–Capelli theorem. There is
no such simple criterion in the case of polynomial equations: the elimination theory is therefore used to
study compatibility, and Gröbner bases are also used [1], [2]. It is much harder to obtain an answer for
systems of nonlinear partial differential equations, where both local and global problems arise. Moreover, it
is important to know the smoothness classes to which the equations belong. From the pioneering works of
Riquier and Janet [3], [4] to the modern works [5]–[9], concepts fundamental for compatibility—involutivity,
solvability—have been refined, and research methods have changed. The research focus has recently shifted
toward computational algorithms. For example, algorithms have been implemented in the computer algebra
system Maple [10] that should translate an original system of equations into some “standard” form. At the
same time, we can state that there is no established definition of an involutive (passive, standard) system
of partial differential equations. Here, we consider the passive systems introduced in [11], [12] and study
their properties.

This paper is structured as follows. In Sec. 2, we consider the infinite-dimensional space K
T of maps

of a countable set T to a field K that is complete under a nontrivial absolute value. The most important
examples of such fields are the fields of real and complex numbers. The topology of the direct product and
a Cartesian coordinate system is introduced in the space K

T . With an arbitrary point a ∈ K
T , we associate
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an algebra Fa of convergent power series. Each series in Fa depends on a finite number of variables, but
the number of these variables can be arbitrarily large. Using the series in Fa, we define analytic functions
on open sets of K

T and analytic maps of this space. This allows defining analytic manifolds in K
T . At the

end of the section, we introduce the concept of a normalized system of generators of an ideal of the algebra
Fa. We show that the zeros of analytic functions corresponding to the normalized system define a manifold
in K

T .
In Sec. 3, we study derivations of the algebra Fa, Pfaffian (differential) forms, and Lie derivatives of

these forms. We prove that derivations are uniquely defined by the action on the generators of Fa. We
introduce invariant ideals and submodules and then consider the space of (infinite) jets J = K

T , where
T = Nn ∪ (Nm ×N

n), Nn = {1, . . . , n}, and N is the set of integers. On the space J, we introduce operators
of total differentiation, canonical forms, contact differentiations, and symmetries of partial differential
equations. We note that the problems of calculating the symmetries and conservation laws of a system of
equation are closely related to the problem of testing whether an element of the algebra belongs to a given
differential ideal.

At the beginning of Sec. 4, we prove that if differential systems generate the same differential ideal,
then they give the same germs of zeros. We then define concepts such as the reduction of a series with
respect to a differential system, compatibility conditions, and passive systems. We show that if a system
S ⊂ Fa is passive, then a series f ∈ Fa belongs to the differential ideal generated by S if and only if f

reduces to zero with respect to S. Our main result in the paper is a theorem stating that if a differential
system satisfies certain conditions of weak solvability and compatibility, then it is passive at some point
a ∈ J and defines an analytic manifold in a neighborhood of that point. As an example, we consider the
Dubreil-Jacotin equation describing planar stationary flows of an inhomogeneous liquid and find an exact
noninvariant solution depending on two parameters.

2. The algebra of convergent power series and analytic functions

Let K be a field complete under a nontrivial absolute value.. We fix the notation: N is the set of
nonnegative integers, Nm = {1, . . . , m}, R+ is the set of positive real numbers, T is a countable set, and
K

T is the space of maps from T to K.

Definition. We call maps yt : K
T → K given by the formula

yt(z) = z(t), t ∈ T, (2.1)

Cartesian coordinate functions on K
T and call the values z(t) coordinates of the point z ∈ K

T .

It is convenient to let zt denote the value z(t) by analogy with the finite-dimensional case.
On the space K

T , we introduce the direct product topology by choosing points a ∈ K
T of the set

U(aτ , ρ) = {z ∈ K
T : |zti − ati | < ρi, i ∈ Nn} (2.2)

as the fundamental system of neighborhoods; here, ti ∈ T , ρi ∈ R+, ρ = (ρ1, . . . , ρn), aτ = {at1 , . . . , atn} is
the set of n coordinates of the point a, and zt1 , . . . , ztn are the coordinates of the point z. We call set (2.2)
a parallelepiped.

Let {Xt}t∈T be a set of symbols,

τ = {t1, . . . , tn} ⊂ T, ρ = (ρ1, . . . , ρn) ∈ R
n
+, aτ = {at1 , . . . , at1} ⊂ K.
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We let A(aτ , ρ) denote the set of power series of the form

f =
∑

α∈Nn

cα(Xt1 − at1)
α1 · · · (Xtn − atn)αn , (2.3)

where cα ∈ K, α = (α1, . . . , αn) ∈ N
n, for which the quantity

‖f‖ρ =
∑

α∈Nn

|cα|ρα1
1 · · · ραn

n (2.4)

is finite. As follows from [13], A(aτ , ρ) is a Banach algebra with norm (2.4).
We introduce a relation ≺ on R

n
+. Let ρ = (ρ1, . . . , ρn) and ρ∗ = (ρ∗1, . . . , ρ

∗
n). We assume that ρ ≺ ρ∗

if the difference ρ∗i − ρi is positive for all i ∈ Nn.

Statement 2.1. Let

τ = {t1, . . . , tn} ⊂ τ ′ = {t1, . . . , tm} ⊂ T, n < m,

ρ = (ρ1, . . . , ρn) ≺ ρ∗ = (ρ∗1, . . . , ρ
∗
n), ρ′ = (ρ1, . . . , ρn, 1, . . . , 1) ∈ R

m
+ .

Then the algebra A(aτ , ρ∗) is embedded in the algebra A(aτ , ρ), the algebra A(aτ , ρ) is embedded in the

algebra A(aτ ′ , ρ′), and the inclusions

∂

∂Xti

A(aτ , ρ∗) ⊂ A(aτ , ρ) (2.5)

hold for all i ∈ Nn.

Proof. The embeddings are obvious, and formula (2.5) follows from a similar formula in [13].

Definition. A power series f of type (2.3) is said to be convergent (in a neighborhood of a ∈ K
T ) if

f ∈ A(aτ , ρ) for some ρ ∈ R
n
+ and aτ = {at1 , . . . , atn} ⊂ K, where at1 , . . . , atn are the coordinates of the

point a ∈ K
T .

For each point a ∈ K
T with a part of the coordinates aτ = {at1 , . . . , atn}, we consider the union (not

disjoint) of the algebras
Fa =

⋃

ρ∈R
n
+, n∈N0,
aτ⊂K

A(aτ , ρ),

where N0 = N \ {0}. The set Fa is K-algebra of convergent power series.
Using the convergent power series Fa, we introduce analytic functions on open sets of the space K

T .
Each series f ∈ A(aτ , ρ) of type (2.3) generates a function f̃ as follows. Let τ = {t1, . . . , tn} ⊂ T ,
ρ = (ρ1, . . . , ρn) ∈ R

n
+, and aτ = {at1 , . . . , atn} ⊂ K. According to the definition of A(aτ , ρ), the series f

converges in the polycylinder

Π(aτ , ρ) = {(zt1 , . . . , ztn) ∈ K
n : |zti − ati | < ρi, i ∈ Nn}. (2.6)

This polycylinder uniquely corresponds to a parallelepiped U(aτ , ρ) of type (2.2). For any point z ∈ U(aτ , ρ),
the function f̃ can then be given by the formula

f̃(z) = f(zτ ) =
∑

α∈Nn

cα(zt1 − at1)
α1 · · · (ztn − atn)αn , (2.7)

where zτ = (zt1 , . . . , ztn) ∈ Π(aτ , ρ). The function f̃ thus depends on a finite number of variables. We say
that the constructed function f̃ is locally analytic. By analogy with the finite-dimensional case [14], this
allows introducing analytic functions on open sets.
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Definition. Let U be an open set in K
T . A function h : U → K is said to be analytic in U if for each

point z ∈ U , there exist a parallelepiped U(aτ , ρ) and a locally analytic function f̃ in this parallelepiped
such that h(z) = f̃(z) for all z ∈ U(aτ , ρ).

Remark. In what follows, for E ⊂ Fa,

Ẽ = {f̃ : f ∈ E} (2.8)

denotes the set of locally analytic functions f̃ corresponding to a series f ∈ Fa. It can be shown following [15]
that a function locally analytic in a parallelepiped U(aτ , ρ) is analytic in U(aτ , ρ).

Definition. Let U be an open set in K
T . A map φ : U → K

T with the components φt, t ∈ T , is
said to be analytic in U if each function φt is analytic in U . A map φ is said to be bianalytic if it has an
analytic inverse map φ−1.

Definition. The set
CS = {z ∈ K

T : z(t) = 0 for all t ∈ S ⊂ T }

is called a coordinate subspace in K
T .

The following definition of a manifold is a direct generalization of a finite structure.

Definition. A set M ⊂ K
T is called a manifold in K

T if for any point z ∈ M there exist open sets U

and U ′ in K
T and z ∈ U and a bianalytic map φ : U → U ′ such that

φ(U ∩ M) = U ′ ∩ CS ,

where CS is a coordinate subspace of K
T . This restriction φ̄ = φ|M∩U of φ to U ∩ M is called a local

coordinate system on U ∩M , and the set of variables (Cartesian coordinate functions on CS) on which the
inverse map φ̄−1 depends is called the parameter set of the manifold.

Analytic functions and manifolds in the coordinate subspaces are introduced similarly.
We let iv(f) denote the set of symbols on which the series f ∈ Fa depends. If E ⊂ Fa, then

iv(E) = {iv(f) : f ∈ E}. (2.9)

Definition. Let R be a subalgebra of Fa and I be an ideal in R. A system of generators B of the
ideal I is said to be normalized if

1. any element f ∈ B has the form f = Xs + g, the elements Xs form a subset L ⊂ {Xt}t∈T , and

2. if f1 = Xt + g1 ∈ B and f2 = Xt + g2 ∈ B, then g1 = g2.

In this case, L is called the set of principal variables of the system B.

Let T ′ ⊂ T . Then the set

C(T ′) = {z ∈ K
T : z(t) = 0 for all t ∈ T \ T ′} (2.10)

is a coordinate subspace of K
T . The topology in C(T ′) is induced by the topology in K

T . Analytic functions
on open sets of the subspace C(T ′) are determined by the power series and formula (2.7). The set of series

Fa(T ′) = {f ∈ Fa : iv(f) ⊆ {Xt}t∈T ′} (2.11)

forms a subalgebra of Fa.
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Statement 2.2. Let T ′ ⊆ T , B be a normalized system of generators of an ideal of the subalgebra

Fa(T ′) given by (2.11), B̃ be the corresponding set of analytic functions in some open set V of coordinate

subspace (2.10), L be the set of principal variables of the system B, S = {s ∈ T ′ : Xs ∈ L}, and T ′′ = T ′\S.

Then the set

Z(B̃) = {z ∈ V : f̃(z) = 0 for all f ∈ B̃}

is a manifold in the subspace C(T ′), and the set of Cartesian coordinate functions {yt}t∈T ′′ forms a set of

manifold parameters.

Proof. The map φ is given by the formulas y′
t = yt + gt and y′

s = ys, where yt corresponds to the
symbol Xt ∈ L and iv(gt), ys ∈ {yq}q∈T ′′ . Therefore, the inverse map φ−1 has the form yt = y′

t−gt, ys = y′
s.

Obviously, the restriction of φ to Z(B̃) is a projection Z(B̃) on V ∩ C(T ′′). Therefore, the set Z(B̃) is a
manifold.

Remark. It is important that in Statement 2.2, all the functions in B̃ must be given on the same open
set V .

3. Derivations and local systems

We recall that a K-linear map D : A → A for which D(ab) = aD(b) + bD(a) is called a derivation of a
commutative algebra A over the field K.

Lemma 3.1. An arbitrary derivation D of an algebra Fa is uniquely determined by the values on the

coordinate functions yt and is given for any f ∈ Fa by the formula

D(f) =
∑

t∈T

D(yt)
∂f

∂yt
.

Proof. Without loss of generality, we can assume that a = 0 ∈ K
T . We let yα denote the monomial

yα1
t1 · · · yαn

tn
. Let the polynomial p =

∑
α∈A cαyα, where cα ∈ K, and A be finite subset of N

n. By the
definition of a derivation, we have the formulas

D(yα) =
n∑

i=1

αiD(yti)y
α1
t1 · · · yαi−1

ti
· · · yαn

tn
=

n∑

i=1

D(yti)
∂yα

∂yti

,

D(p) =
∑

α∈A

cαD(yα) =
∑

α∈A

cα

n∑

i=1

D(yti)
∂yα

∂yti

=
n∑

i=1

D(yti)
∂p

∂yti

.

(3.1)

We prove that the derivation D extends uniquely from the algebra of polynomials to the algebra F0. We
suppose that there is a different derivation D0 of F0 coinciding with D on the polynomials. Then the
derivation D∗ = D −D0 vanishes on any polynomial.

We suppose that there exists a series f ∈ F0 such that D∗(f) 
= 0. We recall [16] that the smallest
positive integer q such that the homogeneous part of f to the power q is nonzero is called the order of the
series f 
= 0 (denoted by ord(f)).

For any polynomial p ∈ F0, we have the equality D∗(f) = D∗(f − p), and therefore

ord(D∗(f)) = ord(D∗(f − p)). (3.2)

Moreover, because of formulas (3.1), the inequality ord(D∗(f)) ≥ ord(f) − 1 holds. Hence, choosing a
polynomial p that “annihilates the smallest terms” of the series f , we can make ord(D∗(f − p)) be an
arbitrarily large number. But this contradicts (3.2) because the order of the series D∗(f) is a finite number.
The lemma is proved.
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Obviously, the set of derivations of an algebra Fa forms a module over Fa. We let Dera denote it. It
is well known [16] that the set of all derivations of a commutative algebra over a field forms a Lie algebra
with the commutator

[D1,D2] = D1D2 −D2D1.

Hence, Dera is a Lie algebra over the field K. According to Lemma 3.1, derivations of Fa can be also called
local vector fields in a neighborhood of a ∈ K

T .
Following [16], we call the linear map df : Dera → Fa, acting by the formula

df(D) = D(f)

the differential of the series f ∈ Fa. Obviously, the set of differentials of f ∈ Fa generates a module over
Fa. This module is denoted by Der∗a and is called a module of Pfaffian forms. The elements of this module
are finite sums of the form

∑
gt dft, where gt, ft ∈ Fa.

Statement 3.1. The module of Pfaffian forms Der∗a is generated by differentials of the Cartesian

coordinate functions, i.e., by the elements {dyt}t∈T .

Proof. It suffices to show that the differential df can be given by the classical formula

df =
∑

t∈T

∂f

∂yt
dyt. (3.3)

The summation in the right-hand side here is finite because f depends on a finite number of variables. We
take an arbitrary derivation D ∈ Dera and compare the values of the left- and right-hand sides of (3.3) on
D:

df(D) = D(f) =
∑

t

D(yt)
∂f

∂yt
,

∑

t

∂f

∂yt
dyt(D) =

∑

t

∂f

∂yt
D(yt).

We see that these values coincide.

Definition. A Lie derivative generated by differentiating D ∈ Dera is a K-linear map LD : Der∗a →
Der∗a satisfying

LD(g df) = D(g) df + g dD(f), f, g ∈ Fa. (3.4)

Statement 3.2. The set of Lie derivatives forms a Lie algebra over the field K, and the equalities

k1LD1 + k2LD2 = Lk1D1+k2D2 , (3.5)

[LD1 ,LD2 ] = L[D1,D2] (3.6)

hold for all k1, k2 ∈ K and any D1,D2 ∈ Dera.

Proof. To prove the statement, it suffices to verify formulas (3.5) and (3.6) on an arbitrary Pfaffian
form ω =

∑
t∈τ ft dyt, where τ is a finite subset of T . The equality of the left- and right-hand sides of

formula (3.5) can be elementarily verified by acting on the form ω.
We show that

LD1LD2(ω) − LD2LD1(ω) = L[D1,D2](ω).
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For this, we calculate LD1LD2(ω) and LD2LD1(ω). We obtain

LD1LD2(ω) = LD1LD2

(∑

t

ft dyt

)
= LD1

(∑

t

D2(ft) dyt +
∑

t

ft dD2(yt)
)

=

=
∑

t

D1D2(ft) dyt +
∑

t

D2(ft) dD1(yt) +
∑

t

D1(ft) dD2(yt) +
∑

t

ft dD1D2(yt),

LD2LD1(ω) =
∑

t

D2D1(ft) dyt +
∑

t

D1(ft) dD2(yt) +
∑

t

D2(ft) dD1(yt) +
∑

t

ft dD2D1(yt).

Therefore, the equalities

(LD1LD2 − LD2LD1)(ω) =
∑

t

(
D1D2(ft) −D2D1(ft)

)
dyt +

∑

t

ft d
(
D1D2(yt) − D2D1(yt)

)
=

=
∑

t

[D1,D2](ft) dyt +
∑

t

ft d([D1,D2](yt)) = L[D1,D2](ω)

hold.

Definition. An ideal I of the algebra Fa is said to be invariant under the derivation D ∈ Dera

if D(I) ⊂ I. A submodule M of the module Der∗a of Pfaffian forms is said to be invariant under the
derivation D ∈ Dera if LD(M) ⊂ M.

Statement 3.3. The set of derivations leaving the ideal I ⊂ Fa or the submodule M ⊂ Der∗a invariant

forms a Lie algebra over the field K.

Proof. Let D1,D2 ∈ Dera and Di(I) ⊂ I. Then we have D1D2(I) ⊂ I and D2D1(I) ⊂ I. Therefore,
[D1,D2] ⊂ I. Similar arguments apply to the submodule M.

In what follows, we assume that T = Nn ∪ (Nm × N
n). In this case, the space K

T is called a jet space

and is denoted by J. Cartesian coordinate functions on J are denoted by xi and uj
α, where i ∈ Nn, j ∈ Nm,

and α ∈ N
n. The set Y of Cartesian coordinate functions is partitioned into two subsets

X = {x1, . . . , xn}, U = {uj
α}

j∈Nm

α∈Nn . (3.7)

We introduce n maps D1, . . . , Dn from Y to Y :

Dk(xk) = 1, Dk(xi) = 0 for i 
= k, Dk(uj
α) = uj

α+ek
,

where k ∈ Nn and e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) are elements of N
n. According to Lemma 3.1,

these maps then uniquely continue to derivations of the algebra Fa and are given by

Dk(f) =
∂f

∂xk
+

∑

j∈Nm,
α∈N

n

∂f

∂uj
α

uj
α+ek

(3.8)

for arbitrary f ∈ Fa. The derivations Dk are often called total differentiation operators [17] because
formula (3.8) is the chain rule.

Therefore, the algebra Fa of convergent power series with n total differentiation operators is a differ-
ential algebra. The product of the operators Dα1

1 · · ·Dαn
n is denoted by Dα, where α = (α1, . . . , αn). The

differential ideal of Fa generated by S ⊂ Fa is denoted by 〈〈S〉〉.
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We recall that a triple of sets (K, Y, S), where S is a finite subset of Fa was called a local analytic

system of partial differential equations in [11]. For brevity, we call a finite set S ⊂ Fa a local differential
system.

We consider a countable set Ω = {ωi
α}i∈Nm

α∈Nn of canonical Pfaffian forms

ωi
α = dui

α −
n∑

j=1

ui
α+ej

dxj .

We let Pa denote the submodule of Der∗a generated by these canonical forms. We recall that LD denotes
the Lie derivative generated by differentiating D.

Definition. A derivation D ∈ Dera is called a contact derivation if the condition LD(Pa) ⊆ Pa is
satisfied.

Obviously, the total differentiation operators D1, . . . , Dn given by (3.8) are contact derivations. If D
is a contact derivation then the operators

D −
n∑

j=1

D(xj)Dj

are also contact derivations. Therefore, without loss of generality, we can consider contact derivations of
the form

D =
∑

i∈Nm,
α∈N

n

D(ui
α)

∂

∂ui
α

. (3.9)

Such derivations are often said to be vertical [18].
In fact, repeating well-known arguments [17], [18], we can show that derivation (3.9) is a contact

derivation if and only if [D, Di] = 0 for all i ∈ Nn. This means that the coefficients D(ui
α) in (3.9) are given

by the formula D(ui
α) = DαD(ui).

Definition. A contact derivation D ∈ Dera is called an (infinitesimal) symmetry of the local differen-
tial system

S = {f1, . . . , fk} ⊂ Fa

if the differential ideal I = 〈〈S〉〉 is invariant under D, i.e., D(I) ⊆ I.

We note that it suffices to verify the invariance of the ideal 〈〈S〉〉 for any differential system of generators.
More precisely, the following statement holds.

Statement 3.4. Let S be a local differential system and D be a contact derivation such that D(S) ⊆
〈〈S〉〉. Then D is a symmetry of the system S.

Proof. Let f ∈ 〈〈S〉〉. Then
f =

∑

i∈Nk,
α∈A

ai
αDαfi,

where ai
α ∈ Fa, A is a finite subset in N

n, and fi ∈ S. We must prove that D(f) ∈ 〈〈S〉〉. By the definition
of a derivation, we have

D(f) =
∑

D(ai
α)Dαfi +

∑
ai

αDDαfi.
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Without loss of generality, we can assume that the derivation is vertical, and this equality can hence be
rewritten in the form

D(f) =
∑

D(ai
α)Dαfi +

∑
ai

αDαD(fi).

Each term in the right-hand side of this equality is in the ideal 〈〈S〉〉. Consequently, the left-hand side
belongs to the ideal.

Remark. The definition of symmetry presented above can be found formulated from other positions
in [18].

The concepts in which differential ideals are used are applicable to conservation laws and various
defining equations [19]. We can introduce a conservation law as follows.

Definition. A conservation law of a differential system S ⊂ Fa is a tuple (g1, . . . , gn) ∈ Fn
a such that

D1g1 + · · · + Dngn ∈ 〈〈S〉〉.

A question about verifying that an element belongs to an ideal arises. In the algebra of polynomials,
it is helpful to use the Gröbner basis of the ideal [1] for this. In our case, the analogue of a Gröbner basis
is a passive system. This concept and its application are considered in the next section.

4. Manifolds generated by systems

In this section, we prove the main results in the paper, but we first use notation (2.8) to formulate a
statement that turns out to be very useful in what follows.

Statement 4.1. Let S = {f1, . . . , fk} ⊂ Fa be a local differential system. Then there exists a par-

allelepiped U(aτ , ρ) of type (2.2) such that the functions D̃αfi are analytic in this parallelepiped for all

i ∈ Nk and any α ∈ N
n.

Proof. Obviously, there exists a polycylinder Π(aτ , ρ∗) of type (2.6) in which the series f1, . . . , fk,
converge i.e., S ⊂ A(aτ , ρ∗). According to derivation formula (3.8), we have

Di(fs) =
∂fs

∂xi
+

∑

j∈Nm,
α∈N

n

∂fs

∂uj
α

uj
α+ei

, s ∈ Nk,

where the sum in the right-hand side contains a finite number of terms. Moreover, by virtue of Statement 2.1,
the partial derivatives ∂fs/∂xi and ∂fs/∂uj belong to the algebra A(aτ , ρ) for any ρ ≺ ρ∗. Therefore, the

corresponding functions ˜∂fs/∂xi and ˜∂fs/∂uj are analytic in the parallelepiped U(aτ , ρ). Because ρ is an
arbitrary tuple satisfying ρ ≺ ρ∗, repeating the arguments presented above, we see that D̃αfi is an analytic
function in U(aτ , ρ) for all i ∈ Nk and any α ∈ N

n. The statement is proved.

Let S = {f1, . . . , fk} ⊂ Fa be a local differential system and W = U(aτ , ρ) be a parallelepiped in which
the functions D̃αfi are analytic for all i ∈ Nk and any α ∈ N

n. In the space J, we consider the set

ZW (S) = {z ∈ W : D̃αfi(z) = 0 for all i ∈ Nk, α ∈ N
n} (4.1)

and a point a ∈ W . In what follows, Za(S) denotes the germ of the set ZW (f) (see [20]).

1600



Statement 4.2. If two local differential systems

f = {f1, . . . , fk} ⊂ Fa, g = {g1, . . . , gs} ⊂ Fa

generate the same differential ideal Fa, then they define identical germs, i.e.,

Za(f) = Za(g). (4.2)

Proof. Because the sets f and g generate the same differential ideal, any series gi ∈ g can be repre-
sented as

gj =
∑

i,α

ci,j
α Dαfi, ci,j

α ∈ Fa. (4.3)

We consider the sets ZW (f) and ZW (g) in the parallelepiped U(aτ , ρ). Obviously, the inclusion

Za(g) ⊆ Za(f) (4.4)

follows from (4.3). Using the above arguments, we obtain the representation

fi =
∑

j,α

bj,i
α Dαgj , bj,i

α ∈ Fa,

and the inclusion
Za(f) ⊆ Za(g). (4.5)

Equality (4.2) follows from formulas (4.4) and (4.5).

Below, we present concepts and results from [11], [12] that are needed for proving the main theorem.

Definition. The orbit of a subset S in Fa is a set

O(S) = {Dαs : α ∈ N
n, s ∈ S}.

Definition. A convergent differential series f ∈ Fa of the form f = ui
α + g is said to be solvable for

ui
α if g it is independent of the orbital elements O(ui

α). If the series f ∈ Fa is solvable for ui
α, then the

symbol st f denotes ui
α. If S is a set of solvable series, then st S = {st f : f ∈ S}.

Definition. Let S ⊂ Fa be a local differential system consisting of solvable differential converging
series. Let the ideal 〈〈S〉〉 
= Fa have a normalized system of generators B, and let the set of principal
variables L of the system B satisfy the condition L = O(st S). Then S is called a passive system of the
ideal 〈〈S〉〉.

A problem of verifying that a local differential system is passive arises. To solve it, we must introduce
additional concepts, partially used in [12].

We recall that a preorder on a set is a reflexive, transitive relation and a strict preorder is an irreflexive,
transitive relation [21].

Statement 4.3. Let {Hγ}γ∈Γ be a partition of the set H , where Γ is a well-ordered set. Then a

preorder � and a strict preorder ≺ can be defined on H by

h1 � h2 ⇐⇒ ∃γ1, γ2 : h1 ∈ Hγ1 , h2 ∈ Hγ2 , γ1 ≤ γ2, (4.6)

h1 ≺ h2 ⇐⇒ ∃γ1, γ2 : h1 ∈ Hγ1 , h2 ∈ Hγ2 , γ1 < γ2. (4.7)
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Proof. The proof is obvious.

Let a semigroup G act on a set M (from the left), i.e., let there be a map (g, m) → gm of the set
G × M to M satisfying

g1(g2m) = (g1g2)m, m ∈ M, g1, g2 ∈ G.

Definition. Let a semigroup G act on a set M , and let a partition {Mγ}γ∈Γ of the set M generate a
strict preorder ≺ according to (4.7). The set M is called a stratified G-set if the following conditions are
satisfied for all g ∈ G:

1. If m1 ≺ m2, then gm1 ≺ gm2 for all m1, m2 ∈ M .

2. For all m ∈ M , m ≺ gm.

Let x0 ∈ K
n and K[〈x1, . . . , xn〉]x0 be an algebra of germs of analytic functions at the point x0

isomorphic to the corresponding algebra of convergent power series. We consider a point a ∈ J whose
standard projection in K

n is equal to x0; hence, the Cartesian coordinates of x0 are part of the Cartesian
coordinates of a. We let F̂a denote the set Fa \ K[〈x1, . . . , xn〉]x0 .

Any partition {Uγ}γ∈Γ of the set U (see relations (3.7)) creates a partition of F̂a. Indeed, we consider
the family of sets

Yγ = X ∪
( ⋃

Θ≤γ′≤γ

Uγ′

)
, (4.8)

where X is defined in (3.7), Θ = min
γ∈Γ

γ. Obviously, we have the formulas

Y =
⋃

γ∈Γ

Yγ , Yγ′ ⊂ Yγ′′ for all γ′ < γ′′.

We choose a point a ∈ J and consider the chain (by inclusion) of subalgebras of Fa given by

Fγ
a = {f ∈ Fa : iv(f) ⊂ Yγ}. (4.9)

Here, as before, iv(f) means a set of variables that determine the series f . The chain {Fγ
a }γ∈Γ then

generates a partition {Φγ
a}γ∈Γ of the set F̂a on blocks

Φγ
a = Fγ

a \
( ⋃

γ′<γ

Fγ
a

)
, γ > Θ,

ΦΘ
a = FΘ

a \ K[〈x1, . . . , xn〉]x0 .

(4.10)

Moreover, subset chain (4.8) of the set Y generates a coordinate subspace chain

Jγ = {z ∈ J : y(z) = 0 for all y ∈ Y \ Yγ} (4.11)

of the space J. Obviously, we have the formulas
⋃

γ∈Γ

Jγ = J, Jγ′ ⊂ Jγ′′ for all γ′ < γ′′.

On the sets U and F̂a, the action of the semigroup N
n
−0 = N

n \ 	0, where 	0 is a tuple of zeros, is given
by

αui
β = ui

α+β , αf = Dα(f),

for any α ∈ N
n
−0. As follows from [11], F̂a is a stratified N

n
−0-set if U is a stratified N

n
−0-set.

In what follows, we everywhere assume that F̂a is a stratified N
n
−0-set endowed with an appropriate

preorder (4.6) and strict preorder (4.7).
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Definition. A series f ∈ Fa of the form

f = ui
α + h, h ≺ ui

α, (4.12)

is said to be orderedly solvable (with respect to ui
α).

Definition. Let F be an arbitrary series in the algebra Fa and f ∈ Fa be an orderedly solvable series
with respect to ui

α. We say that the series F reduces to a series r ∈ Fa with respect to f if there exists
an element δ ∈ N

n for which ui
α+δ ∈ iv(F ) and if there is a series q ∈ Fa such that F = qDδf + r, where

q � F , r � F , and ui
α+δ /∈ iv(r). If the series F reduces to r with respect to f , we use the notation F −→

f
r.

The following statement was proved in [12].

Statement 4.4. Let F be an arbitrary series in the algebra Fa and ui
β ∈ iv(F ). If the series f ∈ Fa

is orderedly solvable with respect to ui
α and there exists δ ∈ N

n such that ui
β = ui

α+δ, then F −→
f

r.

Definition. The subset S in Fa is said to be weakly solvable if each series f ∈ S is orderedly solvable
with respect to some ui

α. An element ui
α is called the highest term of the series f and is denoted by lt f .

Definition. Let F ∈ Fa and S = {f1, . . . , fk} ⊂ F(a) be a weakly solvable subset. A series F reduces

to a series r ∈ F(a) with respect to S if there is a finite sequence of one-step reductions of the form

F −−→
fi1

r1 −−→
fi2

r2 −−→
fi3

· · · −−→
fip

r, (4.13)

where fij ∈ S. This sequence of reductions is denoted by F −→
S

r for short.

Definition. A series f ∈ Fa is said to be irreducible with respect to a weakly solvable set S if
iv(f) ∩ O(lt S) = ∅, where ltS = {lt f : f ∈ S}.

Definition. A series r ∈ Fa is called the normal form of the series f ∈ Fa with respect to a weakly

solvable subset S ⊂ Fa if f →
S

r and r is a series irreducible to S. The normal form of a series f with respect

to S is denoted by NF(f ↓ S).

In the general case, the normal form of a series with respect to an arbitrary weakly solvable subset is
not defined uniquely. For the normal form to be unique, it suffices for S to be a passive system [12].

We introduce a binary operation � on N
n: for α = (α1, . . . , αn) and β = (β1, . . . , βn), we set

α � β = (μ1, . . . , μn), μi = max(αi, βi) − αi.

Definition. Let f1 and f2 be two solvable series in Fa of the form

f1 = ui
α + h1, f2 = ui

β + h2, (4.14)

where ui
α = lt f1 and ui

β = lt f2. Then the difference

Dα�βf1 − Dβ�αf2 (4.15)

is called the τ -series of f1 and f2 and is denoted by τ(f1, f2).
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Definition. Let S = {f1, . . . , fk} be a local differential system that is a weakly solvable subset of Fa.
We say that the system S satisfies the compatibility conditions if for each pair fi, fj ∈ S of form (4.14),
the corresponding τ -series (4.15) reduces to zero with respect to S.

The following statement and the theorem below answer the question about a series belonging to a
differential ideal.

Statement 4.5. Let S = {f1, . . . , fk} ⊂ Fa be a passive system and ltS = stS. A series f ∈ Fa

belongs to the differential ideal I = 〈〈S〉〉 if and only if f reduces to zero with respect to S.

Proof. If f →
S

0, then it follows from the definition of a reduction that

f =
∑

ai
αDαfi, fi ∈ S,

i.e., f ∈ I.
Conversely, let f ∈ I. As shown in [12], each nonzero element of the ideal I depends on at least one

element in the orbit O(lt S). If f →
S

0, where the series r cannot be reduced with respect to S, then r is

independent of elements in O(lt S). Hence, r = 0.

If the system S is not passive, then Statement 4.5 is inapplicable in the general case because the result
of a reduction is not defined uniquely.

Example. We consider the system S = {f1 = u1,1 + u, f2 = u0,2 − u} and the series f = u1,2 − u1,0.
This system is not passive, because D2f1 − D1f2 = u1,0 + u0,1 is independent of elements of the orbit
O(lt(u0,2), lt(u1,2)). The series f can be represented in two ways: f = D2f1 − u1,0 − u0,1 and f = D1f2,
i.e., f reduces to −u1,0 − u0,1 in the first case and to zero in the second case.

We note that if f ∈ Fb, then f ∈ Fa for an infinite number of points a. Let S = {f1, . . . , fk} ⊂ Fb be
a local differential system and fi(b) = 0 for all i ∈ Nk. We say that points a, b ∈ J are equivalent modulo
S (and write a ∼ b mod S) if fi ∈ Fa and fi(a) = 0 for all fi ∈ S.

Theorem 4.1. Let S = {f1, . . . , fk} ⊂ Fb be a local differential system that is a weakly solvable

subset of Fb satisfying the compatibility conditions and fi(b) = 0 for all fi ∈ S. Then S is a passive system,

there exist a point a ∈ J equivalent to b modulo S and a parallelepiped W containing this point such that

the set ZW (f) of type (4.1) is an analytic manifold in W with the system of parameters Y \ ltS.

Proof. The passivity of the system S was proved in [11]. It was also shown that there exists a point
a ∈ J (where a ∼ b mod S) such that f(a) = 0 for all series f in the orbit O(S). Moreover, it was proved
that there exists a normalized system B of generators of the ideal 〈〈S〉〉, whose set of principal variables
coincides with ltS.

Without loss of generality, we can assume that S is a normalized set (or, in the terms in [22], is
orthonormalized) because according to the results in [11], [12], S is a passive system and there exists a
canonical set S′ such that 〈〈S〉〉 = 〈〈S′〉〉. It then follows from Statement 4.2 that the germs Za(S) and
Za(S′) coincide. It therefore suffices to prove that there is a parallelepiped W containing the point a such
that the analytic set ZW (S′) is a manifold in the parallelepiped W .

According to Statement 2.2, we must show that the set of analytic functions in B̃ corresponding to
the normalized system of generators B of the ideal 〈〈S′〉〉 is given in some parallelepiped V ⊂ J. As follows

from Statement 3.1, there exists a parallelepiped U(aτ , ρ) in which all functions in Õ(S′) are analytic. It
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therefore suffices to show that the set of analytic functions in B̃ is also defined in U(aτ , ρ). For this, we
recall how a normalized system of generators was constructed in [11].

As previously noted, the partition of U in (3.7) generates chain (4.9) of subalgebras Fγ
a , chain (4.11)

of subspaces Jγ , and partition (4.10), {Φγ
a}γ∈Γ. We let aγ denote the natural projection of the point a on

the subspace Jγ . We introduce the notation

γ0 = min{γ ∈ Γ: O(S) ∩ Fγ
a 
= ∅}, Πγ = U(aτ , ρ) ∩ Jγ ,

Oγ = O(S) ∩ Fγ
a , Cγ = O(S) ∩ Φγ

a,

where Fγ
a and Φγ

a are respectively given by (4.9) and (4.10). Obviously, for any γ� ≥ γ, we have

Oγ� = Cγ� ∪
( ⋃

γ0≤γ<γ�

Cγ

)
. (4.16)

We let 〈Oγ〉aγ denote the algebra ideal Fγ
a generated by the set Oγ .

Using the transfinite induction principle, we show that

1. for any γ ≥ γ0, there exists a normalized system of generators Bγ of the ideals 〈Oγ〉aγ of the algebra
Fγ

a such that Lγ = ltOγ , where Lγ is the set of principal variables of the system Bγ , and

2. all functions in B̃γ are analytic in Πγ .

At γ = γ0, we have the equalities

Oγ0 = S ∩ Fγ0
a = S ∩ Φγ0

a = Cγ0 .

It is easy to see (also see [11]) that the set Oγ0 is a normalized system of generators of the ideal 〈Oγ0〉aγ0
.

Therefore, according to Statement 2.2, the analytic set

Zγ0 = {z ∈ Πγ0 : f̃(z) = 0 for all f ∈ Õγ0}

is a manifold in Πγ0 . Obviously, Lγ0 = ltOγ0 .
We now suppose that for all values of γ satisfying the inequalities γ0 ≤ γ < γ�, there exists a normalized

system of generators Bγ of the ideal 〈Oγ〉aγ such that Lγ = ltOγ and all functions in B̃γ are analytic in
Πγ . We show that these properties also hold for γ = γ�.

According to equality (4.16) and the induction hypothesis, the set

Gγ� = Cγ� ∪
( ⋃

γ0≤γ<γ�

Bγ

)

is a system of generators of the ideal 〈Oγ�〉aγ�
. A normalized system of generators Bγ� was constructed

in [11] using a set Gγ� . Our case where S′ is a canonical set has its own specific features. Namely, any
series f ∈ Cγ� has the form f = ui

α + g, where g ≺ ui
α, while at the same time, because of derivation

formulas (3.8), the series g ∈ Fγ
a for γ < γ� is a polynomial in the principal variables of the normalized

system of generators Bγ . According to relation (2.5), the coefficients of this polynomial are power series
converging in Πγ and depending only on the parametric variables of the system Bγ . If we express the
principal variables in g in terms of the series in Bγ , then we obtain series f� ∈ Bγ� that converge in Πγ� .

As follows from the preceding considerations, the set B =
⋃

γ0≤γ Bγ is a normalized system of gen-
erators of the ideal 〈〈S〉〉 and the corresponding set B̃ consists of functions analytic in the parallelepiped
U(aτ , ρ). It remains to refer to Statement 2.2 to complete the proof.
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Remark. We can standardly define tangent bundles and vector fields on manifolds and also sheaves
of germs of analytic functions [14], [23].

Example. We consider the Dubreil-Jacotin nonlinear equation [24]

Δψ +
ρ′

2ρ
[(∇ψ)2 + y] + F = 0, (4.17)

where ψ is a current function depending on x and y, ρ is the fluid density depending on ψ, Δ is the Laplace
operator, (∇ψ)2 = ψ2

x + ψ2
y, and F is some function of ψ. This equation describes stationary planar flows

of a stratified fluid in a gravitational field. In our notation (Cartesian coordinates on J), this equation is
given by the series

u(2,0) + u(0,2) +
ρ′

2ρ
[u2

(1,0) + u2
(0,1) + x2] + F,

where ρ and F are analytic functions of u(0,0). In what follows, we use the standard notation and, for
example, write ux and uy instead of u(1,0) and u(0,1).

We find the functions ρ and F for which Eq. (4.17) allows a generalized separation of variables, i.e.,
solutions of the form ψ = G(α(x) + β(y)), where G is a certain function and α and β are respectively
functions of x and y. This type of solutions of the nonlinear Laplace equation was described in [20].

The problem can be reformulated as the problem of investigating the compatibility of the system
formed by Eq. (4.17) and the equation

φ(ψ)xy = 0, (4.18)

where φ is the inverse function of G.
We introduce a new function w = φ(ψ), and Eqs. (4.17) and (4.18) then become

Δw + (∇w)2r + yf + g = 0, (4.19)

wxy = 0. (4.20)

Here, r, f , and g are some functions of w. We briefly describe the study of the compatibility of sys-
tem (4.19), (4.20) using the methods proposed above. Total differential operators (3.8) are denoted by Dx

and Dy. The calculations are voluminous, and we therefore used the computer algebra system Maple [10].
Applying the operator DxDy to (4.19) and reducing this expression with respect to (4.20), i.e., replacing

all the derivatives wxy, wxxy, and wxxxy with zero, we obtain a second-order equation. Reducing the last
equation with respect to (4.19), we obtain a polynomial E1 in wx and wy . It is easy to show that all the
coefficients of the polynomial vanish only if Eq. (4.19) has the form

Δw + (∇w)2 + ay + bw = 0, a, b ∈ R.

The generalized method of separation of variables for this equation can be found in [20], where the corre-
sponding pictures of the streamlines are also presented. We note that the differential ideal generated by
the last equation and by Eq. (4.19) has a normalized system of generators. We can regard Dn

xDm
y wxx and

Dn
xDm

y wxy for n, m ∈ N as the principal variables of this system of generators.
If the polynomial E1 is nonzero, then acting on it by Dx and reducing this expression with respect

to (4.19) and (4.20), we obtain a relation. If we act on the polynomial E1 by Dy and reduce the resulting
expression with respect to (4.19) and (4.20), then we obtain a new relation. Using (4.19) and (4.20), we
can eliminate all the variables wxy, wxx, and wyy from these two relations and obtain a new polynomial E2

in wx and wy .
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We now assume that the polynomials E1 and E2 differ only by a factor. This gives seven ordinary
differential equations for the three functions f , g, and r in the left-hand side of Eq. (4.19). From these
seven equations, we can obtain three first-order differential equations, which we solve and obtain

r =
1

−2w + c0
, g =

c1

−2w + c0
, f =

c2

−2w + c0
,

where c0, c1, c2 ∈ R. Therefore, Eq. (4.19) can be written as

Δw + (∇w)2
1

−2w + c0
+ y

c2

−2w + c0
+

c1

−2w + c0
= 0. (4.21)

It is easy to see that the common solution of this equation and Eq. (4.20) is the polynomial

w = b1y + a2x
2 + a1x + a0, (4.22)

where b1, a1 ∈ R, a2 = c2/4b1, and a0 = (c1 + 2c0a2 + a2
1 + b2

1)/4a2. If we introduce new variables

y′ = y +
c1

c2
, w′ = w − c0

2
,

then Eq. (4.21) becomes

Δw′ +
(∇w′)2

−2w′ +
c2y

′

−2w′ = 0.

By replacing w′ = ψ2 − c2/4, we obtain an equation for the stream function in the Dubreil-Jacotin form:

Δψ +
c2

c2ψ − 4ψ3
[(∇ψ)2 + y] = 0. (4.23)

The solution of this equation found above has the form ψ = (w − c0/2 + c2/4)1/2, where the function w is
given by (4.22). Some other Dubreil-Jacotin equations that allow a generalized separation of variables were
presented in [25].

A group classification of the Dubreil-Jacotin equation was shown in [19]. It follows from the results of
this classification that Eq. (4.23) allows a two-dimensional symmetry algebra and solution (4.22) that we
found is not invariant.

5. Conclusion

We have considered the algebra Fa of convergent power series. Instead of it, the ring of germs of
smooth (infinitely differentiable) real-valued functions can be studied with the majority of our results
remaining applicable. In particular, our observations are based on the Weierstrass division theorem, but
the statement on the uniqueness of the remainder also occurs in the smooth case if there is a normalized
system of generators for the corresponding ideal. This is related to the fact that the Weierstrass theorem
in this case follows from the implicit function theorem [26].

Extending this approach to difference algebras and equations is undoubtedly interesting. Unfortunately,
the study of difference equations cannot be limited to local algebras. Nevertheless, symmetries of the
difference equations introduced by Dorodnitsyn [27] are currently being studied actively.
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