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QUANTUM MECHANICAL MODEL IN GRAVITY THEORY

V. V. Losyakov∗

We consider a model of a real massive scalar field defined as homogeneous on a d-dimensional sphere

such that the sphere radius, time scale, and scalar field are related by the equations of the general theory

of relativity. We quantize this system with three degrees of freedom, define the observables, and find

dynamical mean values of observables in the regime where the scalar field mass is much less than the

Planck mass.
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1. Introduction

General relativity (the theory of gravity) and quantum theory were formulated almost simultaneously
historically. While the first was recognized as the pinnacle of classical physics, the second demanded a
major reconsideration of the foundations of classical theory.

The evolution of quantum theory despite the arising mathematical difficulties was astonishingly impres-
sive: the positron prediction, calculation and experimental verification of radiative corrections, advances in
condensed matter physics, atomic spectroscopy, etc. We here note that the mathematical formulation of
quantum mechanics as a quantum theory with a finite number of degrees of freedom was established after
von Neumann’s works [1]. Under reasonable assumptions, it turned out that all representations of canonical
commutation relations in quantum mechanics are unitarily equivalent. The situation in quantum field the-
ory, the quantum theory with an infinite number of degrees of freedom, differs drastically. Emch wrote [2]
that the von Neumann uniqueness theorem does not admit a generalization to quantum field theory: it was

incontrovertibly proved that nonequivalent representations not only existed but also seemed so numerous

that they literally overwhelmed physicists. Attempts to construct a mathematically rigorous formulation of
a physically meaningful field theory containing interactions are still not crowned with success. As a result,
physicists obtained an S-matrix formulation of quantum field theory, which allow computing the scattering
cross sections of particles in the perturbation theory framework (see, e.g., [3]). The main achievement of
this theory is that the calculated results are beautifully confirmed by experimental data. This primarily
relates to the electroweak interaction.

The gravitational interaction is also weak on the elementary particle level, but the point is that it is
too weak. In our opinion, from the standpoint of a reasonable person, for example, an experimentalist,
taking quantum corrections caused by the gravitation field into account in scattering processes is the same
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as studying the Lamb shift before the experimental discovery of electromagnetic waves. In 1969, Dirac
wrote that there is no experimental data for quantization of the gravitational field (p. 321 in Russian [4]).
Very little has changed in that sense since then. Of course, this could not stop theoreticians, but they also
encountered principal difficulties in this path: in contrast to the theory of electroweak (and also strong)
interactions, the gravity theory turned out to be nonrenormalizable in the framework of the S-matrix
approach.

Theoretical works on the quantization of gravity can be very conditionally divided into three directions:

1. a formal quantization of gravity as a gauge theory with first-class constraints outside the perturbation
theory framework with all unsolved problems typical for any quantum field theory with interactions
(see the monograph by Gitman and Tyutin [5]),

2. a generalization of the theory of gravity on the classical level aiming to ameliorate the ultraviolet
behavior in the S-matrix approach (supergravity [6]), and

3. a quantization of gravity outside the framework of quantum field theory (the brightest theory in this
direction, in our view, is string theory, initially formulated unrelated to gravity theory and decisively
influencing modern theoretical and mathematical physics [7], [8]; Polyakov [9] wrote, “The unique
feature of critical strings is that they describe gravitons”).

Unfortunately or fortunately, physics is still physics: no experiment, no good theory.
But a small loophole exists (tested in constructing quantum theory). If there is no real experiment,

sometimes a thought experiment is possible. Gravity must be amplified. From general considerations, we
can assume that the role of quantum gravity is substantial at the beginning of our world or near a black
hole (Hawking radiation). But it is interesting that in these thought experiments, the dependence on time
is essential: the process is nonstationary. This does not in any way fit into the picture of the S-matrix
approach, where the initial state is given in the infinitely remote past and the scattering result is observed
in the infinitely remote future. And quantum mechanics is ideally suited to this.

Therefore, to obtain at least some kind of reliable information about the quantum properties of gravity,
we attempt to consistently reduce the classical general relativity theory to a system with a finite number of
degrees of freedom, quantize it, define the observables, and study the resulting quantum mechanical model
with no regrets regarding unsolved quantum field theory problems.

2. Notation and definitions

The metric tensor gμν , μ, ν = 0, 1, . . . , d, defines the invariant distance in the space–time (the metric
tensor signature is (−, +, . . . , +)):

ds2 = gμν dxμ dxν .

The Christoffel symbols (connection) can be written as

Γμ,νλ =
1
2
(∂λgμν + ∂νgμλ − ∂μgνλ), Γμ

νλ = gμ�Γ�,νλ,

where gμνgνλ = δμ
λ . The Riemann curvature tensor, the Ricci tensor, and the scalar curvature have the

forms
Rμ

λν� = ∂νΓμ
λ� − ∂�Γ

μ
λν + Γμ

νσΓσ
λ� − Γμ

�σΓσ
λν , Rμν = Rλ

μλν , R = gμνRμν .

For the Einstein action in the case of gravitation with a Λ-term (Λ = m2
λ), we have the expression

Sg =
1
4
md−1

P

∫
dd+1x

√
−g(R − 2m2

λ), (1)
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where mP is the Planck mass, g = det gμν , and dd+1x = dx0 dx1 · · ·dxd.
Below, we see that the simplest quantum mechanical model can be constructed if we add matter to it.

We also choose the simplest matter, a real massive (mass m) scalar field φ. The corresponding action has
the form

Sm = −1
2

∫
dd+1x

√
−g(gμν ∂μφ∂νφ + m2φ2), (2)

and the equations of motion are

md−1
P

[
Rμν − 1

2
Rgμν + m2

λgμν

]
= 2Tμν ,

Tμν = ∂μφ∂νφ − 1
2
gμν(gλσ ∂λφ∂σφ + m2φ2),

(3)

1√−g
∂μ

√
−ggμν ∂νφ − m2φ = 0. (4)

3. Model

We consider the space–time with the metric

ds2 = −e2(t) dt2 + a2(t)
d∑

i=1

dθ2
i

i−1∏
k=1

sin2 θk, (5)

where 0 ≤ θi < π, i = 1, . . . , d − 1, 0 ≤ θd < 2π, d is the dimension of the space (not necessarily three),
−∞ < t < ∞ is time, and a(t) > 0 and e(t) > 0 are the physical variables determining the considered
space–time. The topology of such a space–time is Sd × R

1. It coincides with the topology of the de Sitter
space–time. This metric is also known as the metric of a closed isotropic model [10].

The metric tensor gμν is diagonal:

g00 = −e2(t), gik = δika2(t)
i−1∏
m=1

sin2 θm ≡ δika2gi, i, k = 1, . . . , d,

g00 = − 1
e2

, gik = δik
1

a2gi
, i, k = 1, . . . , d.

The Ricci tensor can be written as

R00 = −d
ä

a
+ d

ė

e

ȧ

a
, R0i = 0,

Rik = δik
gi

e2

(
aä + (d − 1)ȧ2 + (d − 1)2 − ė

e
aȧ

)
,

(6)

and the scalar curvature is

R =
d

e2a2

[
2aä + (d − 1)ȧ2 + (d − 1)e2 − 2

ė

e
aȧ

]
.

We also consider the model matter (the field is homogeneous on the surface of the sphere). Let

φ(t, x) = φ(t). (7)
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After substituting Ricci tensor (6) and scalar field constraint (7) in Einstein’s equation (3) and scalar
field equation (4), we obtain

μ = ν = 0 : md−1
P

[
d(d − 1)

2a2
(ȧ2 + e2) − m2

λe2

]
= φ̇2 + m2e2φ2,

μ = i, ν = 0 : 0 = 0,

μ = i, ν = k : md−1
P

[
(d − 1)

(
ä

a
+

d − 2
2a2

(ȧ2 + e2) − ȧ

a

ė

e

)
− m2

λe2

]
= −φ̇2 + m2e2φ2,

φ̈ +
(

d
ȧ

a
− ė

e

)
φ̇ + m2e2φ = 0.

It is hence immediately obvious that this reduction is consistent. Indeed, the considered model is charac-
terized by the three variables a(t), e(t), and φ(t), which are obtained from solutions of three equations.
Moreover, Einstein’s equations are covariant under the general coordinate transformations

xμ −→ Xμ = Xμ(x),

gμν(x) −→ Gμν(X) =
∂xλ

∂Xμ

∂xσ

∂Xν
gλσ(x), φ(x) −→ Φ(X) = φ(x).

This leads us to the fact that in the total (d+1)(d+2)/2+1 equations of motion, there are d+1 fewer
independent equations, which reflects the gauge nature of gravity theory. We can verify that this property
is preserved in the reduced model. The third equation of motion follows from the first and last equations,
and all the equations of motion are covariant under a time rescaling:

t −→ T = f(t),

a(t) −→ A(T ) = a(t), e(t) −→ E(T ) =
e(t)
ḟ(t)

, φ(t) −→ Φ(T ) = φ(t).
(8)

The above equations of motion can be obtained from the principle of least action by substituting
metric (5) in action (1).

The determinant of the metric tensor has the form

g ≡ det gik = −e2a2d
d∏

m=1

sin2(d−m) θm,
√
−g = ead

d∏
m=1

sind−m θm.

We define the element of the d-dimensional solid angle and the complete solid angle:

dΩd =
d∏

m=1

dθm sind−m θm, Ωd =
2π(d+1)/2

Γ((d + 1)/2)
.

Substituting, we obtain

Sg =
1
4
md−1

P Ωd

∫ tf

ti

dt ad

[
−d(d − 1)

(
ȧ2

ea2
+

e

a2

)
− 2m2

λe

]
+

md−1
P Ωd

2e
∂0a

d

∣∣∣∣
tf

ti

.

Similarly, using (7), we find the matter action:

Sm =
1
2
Ωd

∫ tf

ti

dt ad

[
φ̇2

e
− em2φ2

]
.
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We bring the model variables to the dimensionless form. For this, we introduce the two dimensionless
parameters

μ =

√
d(d − 1)

2
m

mλ
, ζ =

d(d − 1)
2

m2
P

m2
λ

(
Ωdm

2
λ

mPm

)2/d

.

We measure time in units inverse to the scalar field mass, t −→ t/m, and define the new variables

q(t) =
(

Ωdm
2
λ

mPm

)1/d

mPa(t), Q(t) =
m

mλ
m

−(d−1)/2
P φ(t).

Hence, the complete action of the considered model has the form

S =
1
2

∫ tf

ti

dt qd

[
1
e

(
Q̇2 − μ2 q̇2

q2

)
− e

(
Q2 + 1 − ζ

q2

)]
, (9)

where q(t), Q(t), and e(t) are model variables and μ and ζ are its parameters. The equations of motion
corresponding to this action coincide with the previously obtained equations of motion. Moreover, this
action is invariant under time reparameterization (8).

4. Generalized Hamiltonian form of the model

The Lagrangian of the model has the form

L(Q, Q̇, e) =
1
2
qd

[
1
e

(
Q̇2 − μ2 q̇2

q2

)
− e

(
Q2 + 1 − ζ

q2

)]
, Q = (q, Q).

A feature of the theory is that the Lagrangian is independent of ė and its Hessian is equal to zero. The
generalized Hamiltonian approach to such theories was introduced by Dirac [11] and considered in detail
by Gitman and Tyutin [5].

If we define the generalized momenta P = (p, P ) as

P =
∂L

∂Q̇
, p = −μ2 qd−2

e
q̇, P =

qd

e
Q̇,

then we can obtain the equations of motion of the model by varying the action in the generalized Hamiltonian
form

S =
∫ tf

ti

dt [PQ̇ − λϕ(P ,Q)], (10)

and in our case, there is the constraint

ϕ(P ,Q) =
1

2qd

(
P 2 − 1

μ2
q2p2

)
+

1
2
qd

(
Q2 + 1 − ζ

q2

)

with the Lagrange multiplier λ = e and the canonical Hamiltonian

H(P ,Q, e) = PQ̇ − L(Q, Q̇, e)|Q̇=f(P,Q,e) = λϕ(P ,Q),

proportional to the constraint and vanishing on it. It can be shown that this type of action in the generalized
Hamiltonian dynamics fixes the considered model as a gauge theory with a primary first-class constraint.
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The Hamiltonian equations of motion have the forms

δS

δq
= ṗ + e

∂ϕ(P ,Q)
∂q

= 0,
δS

δp
= q̇ − e

∂ϕ(P ,Q)
∂p

= 0,

δS

δQ
= Ṗ + e

∂ϕ(P ,Q)
∂Q

= 0,
δS

δP
= Q̇ − e

∂ϕ(P ,Q)
∂P

= 0, ϕ(P ,Q) = 0.

From the condition for preserving the constraint with time without using the vanishing of the corresponding
variational derivatives in the equations of motion, we can obtain

δS

δq
= μ2 qd−2

p

[
δS

δp

∂ϕ(P ,Q)
∂q

+
δS

δQ

∂ϕ(P ,Q)
∂P

+
δS

δP

∂ϕ(P ,Q)
∂Q

]
.

Hence, there is no need at all to consider the equation δS/δq = 0. The number of independent equations of
motion is one less than the number of determinable variables. For the solution of the classical equations of
motion to be unique, we must fix one of the variables (or a function of it) by imposing a gauge condition
that completely eliminates the arbitrariness. This must be done consistently. To choose the gauge class,
we propose the gauge1

q = et. (11)

At the same time, we have the previously imposed conditions q > 0, −∞ < t < ∞. But that is not the
point. In this case, the equation δS/δp = 0 uniquely determines the Lagrange multiplier

e = −μ2 e(d−1)t

p
, (12)

and from the constraint equation ϕ(P ,Q) = 0, we find the momentum conjugate to the coordinate q,

p = −μe−t
√

P 2 + e2dt(Q2 + 1 − ζe−2t). (13)

The sign of the square root in the constraint solution is chosen to satisfy the condition e > 0 (see (12)).
As a result, there are two equations δS/δQ = 0 and δS/δP = 0, which become

Ṗ = −μe2dt Q√
P 2 + e2dt(Q2 + 1 − ζe−2t)

, Q̇ = μ
P√

P 2 + e2dt(Q2 + 1 − ζe−2t)
. (14)

These equations of motion are Hamiltonian. The classical dynamics (not generalized and simply Hamil-
tonian) occur in the phase space −∞ < P, Q < ∞ without any constraints and are determined by the
physical Hamiltonian

Hphys = μ
√

P 2 + e2dt(Q2 + 1 − ζe−2t). (15)

We note that according to the “canonical” procedure [5], gauge condition (11) and the primary first-
class constraint ϕ(P ,Q) = 0 form a secondary second-class constraint. Further, we should perform the
canonical transformation

P, p; Q, q −→ P, p; Q, q − et.

Such a time-dependent canonical transformation implies that the canonical Hamiltonian, vanishing on the
equations of motion, maps to Hphys, and the Dirac brackets for the variables P and Q become ordinary
Poisson brackets.

1We could also choose other gauge classes, Q = f(t) for example. In that case, the physical variables would be q and p,
and it would already be another model.
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5. Quantizing the model

The canonical variables P and Q are independent and defined on the entire phase plane. Quantization
means that we define two self-adjoint operators P̂ and Q̂ (it is possible in this situation) and impose
canonical commutation relations on them,

Q̂P̂ − P̂ Q̂ ≡ [Q̂, P̂ ] = i.

We construct the Hamiltonian Ĥphys. For this, we use the spectral theorem and its corollaries (see [12]).
Let ĥ be a self-adjoint operator acting on a Hilbert space H. Let ĥ have a pure point spectrum λN ,

i.e., the eigenvectors |φN 〉 of this operator form a basis of H. The operator ĥ can then be represented in
the form of a linear combination of projectors,

ĥ =
∑
N

λN |φN 〉〈φN |,

and its domain consists of those vectors |φ〉 ∈ H for which

∑
N

λ2
N |〈φN |φ〉|2 < ∞.

If there is a classical observable f(h), then the corresponding observable f̂(h) in quantum mechanics is
defined as

f̂(h) =
∑
N

f(λN )|φN 〉〈φN |,

and if the function f(λ) is real-valued, then the operator f̂(h) is self-adjoint.
In the considered case,

Hphys = f(h) = μ
√

h, ĥ = P̂ 2 + e2dt(Q̂2 + 1 − ζe−2t).

The self-adjoint operator ĥ, up to the coefficient 1/2, is the Hamiltonian of the harmonic oscillator with
a unit weight and a frequency equal to ω(t) = edt. Its eigenstates |φN (t)〉 and eigenvalues λN (t) can be
found from the equation ĥ|φN (t)〉 = λN (t)|φN (t)〉 (time plays the role of a parameter in this problem) and
are well known.

We introduce the creation and annihilation operators

â+(t) =
1√
2
(e−dt/2P̂ + iedt/2Q̂), â(t) =

1√
2
(e−dt/2P̂ − iedt/2Q̂),

and then

|φN (t)〉 =
1√
N !

(â+(t))N |φ0(t)〉, λN (t) = edt(2N + 1) + e2dt(1 − ζe−2t), N = 0, 1, . . . ,

where |φ0(t)〉 is the solution of the equation â(t)|φ0(t)〉 = 0.
We can now define the physical Hamiltonian

Ĥphys = μ

∞∑
N=0

√
edt(2N + 1) + e2dt(1 − ζe−2t) |φN (t)〉〈φN (t)|. (16)
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For the physical Hamiltonian to be self-adjoint, it is necessary and sufficient that the condition

1 + edt(1 − ζe−2t) ≥ 0

be satisfied. If we now require that the considered problem be well defined for any times (−∞ < t < ∞),
then it is necessary to impose the condition

ζ ≤ d
(d − 2)2/d−1

22/d
, d > 2, (17)

on the problem parameters.2

A given model state |Φ0〉 in the domain of Ĥphys(t0) evolves according to the Schrödinger equation3

i
d

dt
|Φ(t)〉 = Ĥphys|Φ(t)〉, |Φ(t0)〉 = |Φ0〉.

If we use the expansion

|Φ(t)〉 =
∞∑

N=0

cN (t)|φN (t)〉, (18)

then we write a system of differential recurrence relations for the expansion coefficients cN (t):

ċN (t) + iμ
√

λN (t)cN (t) =
1
4
d(

√
(N + 2)(N + 1)cN+2(t) −

−
√

N(N − 1)cN−2(t)), N = 0, 1, . . . .

6. Model observables

Which model properties are interesting? First of all, both the geometry of the space–time obtained
in the process of the evolution of the initial state and the state of matter in this space–time are interest-
ing. Therefore, to begin, we restrict ourself to such observables: the metric of the model space–time and
the stress–energy tensor of the scalar field. To find a quantum observable, we must define the classical
observable.

The metric in the model is determined by the scale factor a(t) and the metric tensor component
g00 = −e2:

a =
μ

m
√

ζ
et, g00 = −μ2 e2dt

P 2 + e2dt(Q2 + 1 − ζe−2t)
.

The stress–energy tensor of the scalar field is given by (see (3))

T 0
0 = −me−dt

2Ωd
(e−dtP 2 + edtQ2), T i

k = δi
k

me−dt

2Ωd
(e−dtP 2 − edtQ2), T i

0 = 0,

and the quantum mechanical observables are

ĝ00 = −μ2edt
∞∑

N=0

|φN (t)〉 1
2N + 1 + edt(1 − ζe−2t)

〈φN (t)|, (19)

T̂ 0
0 = −me−dt

2Ωd
(â+(t)â(t) + â(t)â+(t)), T̂ i

k = δi
k

me−dt

2Ωd
((â+(t))2 + (â(t))2). (20)

2The condition that e is finite transforms this relation into a strict inequality.
3The one-parameter family of the Hamiltonian �Hphys(t) has a common domain.
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In the selected gauge class, the scale factor is a parameter. Moreover, because the scale factor is invariant
under reparameterization transformations (8), the time t should be expressed in terms of the invariant scale
factor a after all the calculations.

Knowing the expansion coefficients cN (t) for the state |Φ(t)〉 (see (18)) allows easily calculating the
mean values of the observables in this state:

g00(t) ≡ 〈Φ(t)|ĝ00|Φ(t)〉 = −μ2edt
∞∑

N=0

c̄N (t)cN (t)
2N + 1 + edt(1 − ζe−2t)

,

T 0
0 (t) ≡ 〈Φ(t)|T̂ 0

0 |Φ(t)〉 = −me−dt

2Ωd

∞∑
N=0

(2N + 1)c̄N (t)cN (t),

T (t)δi
k ≡ 〈Φ(t)|T̂ i

k|Φ(t)〉 = δi
k

me−dt

2Ωd

∞∑
N=2

√
N(N − 1)(c̄N (t)cN−2(t) + c̄N−2(t)cN (t)).

7. Calculations in the regime m � mP

From relation (17), we can obtain the restriction

μ <
1

[(d − 1)Ωd]1/(d−2)

√
d

d − 2

(
m

mP

)(d−1)/(d−2)

, d > 2,

and we can therefore assume that μ → 0 if m � mP. And because the physical Hamiltonian Ĥphys

is proportional to that small parameter, a given initial state |Φ0〉 remains almost unchanged in some
sufficiently large4 interval after the initial instant t0.

Let the initial state be the vacuum state. Then we have

|Φ(t)〉 = |Φ0〉 = |φ0(t0)〉, â(t0)|φ0(t0)〉 = 0. (21)

This state should now be expanded in the basis |φN (t)〉 to determine the coefficients cN (t) and calculate
the mean values of the observables as functions of the scale factor a.

Omitting the intermediate calculations, we present the answers. The expansion coefficients are

c2N =
(−1)N

√
(2N)!

2NN !
√

cosh(d(t − t0)/2)
tanhN d(t − t0)

2
, c2N+1(t) = 0, N = 0, 1, . . . .

The strength–energy tensor (see Fig. 1) is

T 0
0 (a) = − m

4Ωdad
0

[
1 +

(
a0

a

)2d ]
, T (a) = − m

4Ωdad
0

[
1 −

(
a0

a

)2d ]
, (22)

and the quantum component of the metric tensor5 (see Fig. 2) is

g00(a) = −d(d − 1)
4

mmd−1
P a

d/2
0

a3d/2

ad + ad
0

∫ 1

0

du uβ(a)−1√
1 − uz2(a)

,

β(a) =
1
4

[
1 +

1
2m

Ωdm
d−1
P ad−2(2m2

λa2 − d(d − 1))
]
, z(a) =

ad − ad
0

ad + ad
0

,

(23)

4If the initial state is not strongly excited, then this approximation works roughly when the dimensionless scale factor
0 < q � (d/μ)1/d � 1.

5Let F (α, β; γ | z) be the Gauss hypergeometric function. Then� 1

0

du uβ−1

√
1 − z2u

=
1

β
F

�
1

2
, β; β + 1

���� z2

�
.
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Fig. 1. Plots of T 0
0 (continuous curve) and T (dashed curve) depending on the scale factor: the unit

of measurement of the components T ν
μ is m/(2ad

0Ωd) and d = 3.

Fig. 2. Plots of g00 depending on the scale factor (in the units μ2): the continuous curve is ζ = 1.8,

the dashed curve is ζ = 1.5, and the dotted curve is ζ = 1, d = 3, and q0 = 1/16.

where a0 is the initial scale factor.

We do not analyze the obtained formulas in detail. Our purpose here is to construct a quantum
mechanical model in the framework of general relativity, and these formulas merely illustrate its capabilities.
We only note the asymptotic behavior of the solutions.

First, we define the energy density ε = −T 0
0 and pressure pδk

i = T k
i . The equation of state of matter
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at the initial instant ε = ε(a0), p(a0) = 0 then reaches its asymptotic value (a � a0)

ε = −p =
1
2
ε(a0). (24)

Second, we consider a classical analogue of the solutions. At the initial instant, we define the state of
the field with an energy minimum (an analogue of the vacuum state) as φ(t0) = φ̇(t0) = 0. The solution
of the classical equations of motion in the proper time τ [10] is then well known. It is the de Sitter metric,
and the scalar field remains unexcited:

φ(τ) = 0, e(τ) = 1, a(τ) = a(τ0) coshκdS(τ − τ0), κ2
dS =

2m2
λ

d(d − 1)
.

The asymptotic form of this solution as τ → ∞ is

a(τ) τ→∞−−−−→ eκdSτ .

In the considered model, we can easily find the asymptotic mean value g00:

g00(a) a→∞−−−→ −d(d − 1)
2

√
πΩd(mPa0)(d−1)/2 m

mλ

√
m

mP
.

If we now pass to the proper time in this metric, then the law of growth of the scale factor is also exponential
(de Sitter metric), but the exponent is very different:

a(τ) τ→∞−−−−→ e
√

κdSκQτ , κ2
Q =

4ε(a0)
πd(d − 1)md−1

P

, ε(a0) =
m

2Ωdad
0

, (25)

where ε(a0) is the energy density of the zero-point oscillation at the initial instant. Moreover, this growth
indicator depends on the initial scale factor a0, the value of which is not among the initial parameters of
the Lagrangian in the classical theory. It is determined by the initial quantum state, which is the vacuum
state only at the initial instant (a feature of a nonstationary problem). What then “swings” the scale
factor differently in quantum theory? The answer is quite obvious: the zero-point oscillations, which are
responsible for matter in the considered model. We also note that the “seed” Λ term (defined by κ2

dS)
interacts with the quantum κ2

Q not by the rule of the arithmetic mean (i.e., addition) but by the rule of the
geometric mean (multiplication with taking the square root), which indicates a significant mutual influence
of gravity and matter in this model.

Acknowledgments. B. L. Voronov says that if a participant “takes away” one idea from a seminar,
then it was a good seminar, and if more, then it was outstanding. In that sense, any conversation with
Igor Viktorovich Tyutin is outstanding. That is why I am heartily grateful to Igor Viktorovich for an
opportunity to communicate with him (including the discussions about this paper) and to wish him well
on his birthday.

The author thanks S. Apenko, A. Semenov, and E. Akhmedov for the discussions and P. Arseev,
C. Zybin, A. Marshakov, and the participants in their seminars for the chances to talk and the remarks.
Special thanks are due to E. Goncharov for the useful remark and to A. Smirnov for the refining explanation.

728



REFERENCES

1. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, N. J.

(1996).

2. G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Interscience Monogr.

Texts Phys. Astron., Vol. 26), Interscience, New York (1972).

3. A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka,

Moscow (1988); English transl.: L. D. Faddeev and A. A. Slavnov Gauge Fields: Introduction to Quantum

Theory , Addison-Wesley, Redwood City, Calif. (1991).

4. P. A. M. Dirac, Collected Scientific Works [in Russian], Vol. 4, Gravitation and Cosmology: Memoirs and

Thoughts (Lectures, Scientific Papers 1937–1984), Fizmatlit, Moscow (2005).

5. D. M. Gitman and I. V. Tyutin, Canonical Quantization of Fields with Constraints [in Russian], Nauka, Moscow

(1986); English transl.: Quantization of Fields with Constraints, Springer, Berlin (1990).

6. D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D, 13, 3214–3218 (1976).

7. A. Yu. Morozov, Sov. Phys. Usp., 35, 671–714 (1992).

8. A. V. Marshakov, Phys. Usp., 45, 915–954 (2002).

9. A. M. Polyakov, Gauge Fields and Strings (Contemp. Concepts Phys., Vol. 3), Harwood Academic, Chur (1987).

10. L. Landau and E. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 2, The Classical Theory of Fields,

Nauka, Moscow (1988); English transl. prev. ed., Pergamon, New York (1971).

11. P. A. M. Dirac, Lectures on the Quantum Mechanics, Acad. Press, New York (1967).

12. F. A. Berezin and M. A. Shubin, The Schrödinger Equation [in Russian], Moscow Univ. Press, Moscow (1983);

English transl. (Math. Its Appl. Soviet Ser., Vol. 66), Kluwer Academic, Dordrecht (1991).

729


	Quantum mechanical model in gravity theory
	Abstract
	1. Introduction
	2. Notation and definitions
	3. Model
	4. Generalized Hamiltonian form of the model
	5. Quantizing the model
	6. Model observables
	7. Calculations in the regime $m\ll m_{\mathrm{P}}$
	Acknowledgments
	References


		2016-05-27T12:23:36+0300
	Preflight Ticket Signature




