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SOLUTION OF THE PROBLEM OF CHARGE MOTION IN CROSSED

ELECTRIC AND MAGNETIC FIELDS
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Using the method of first integrals, we find an exact solution for the relativistic motion of a charge in

orthogonal and uniform electric and magnetic fields with respect to laboratory time and for any value of

the dimensionless governing parameter equal to the ratio of the magnetic field strength to the electric field

strength.

Keywords: equation of motion of a charged particle in relativistic mechanics, method of first integrals,
uniform magnetic field, uniform electric field

DOI: 10.1134/S0040577916030119

1. Introduction

As is known, during the acceleration of electrons, their radiative losses increase with their energy
increase. For obtaining additional information about this effect, the picture of the behavior of charged
particles in crossed uniform electric and magnetic fields under variation of the dimensionless governing
parameter a, equal to the ratio of the magnetic field strength to the electric field strength, a = |H |/|E|,
0 < a < ∞, can be interesting. The parameter a is called the governing parameter because its value should
be changed in a certain way when building accelerators to decrease radiative losses and increase the stability
of the charged particle beam.

A complete exact solution of the problem of electron motion in crossed uniform electric and magnetic
fields with respect to the laboratory time is unknown to us. Solving this problem reduces to integrating
an autonomous system of ordinary differential equations, and the solution has been found only for the
governing parameter value unity in the nonrelativistic limit [1]. The laboratory time is a physical time
because it is defined uniquely by the problem conditions up to translations and allows determining the
velocity, momentum, and energy physically. There are many publications (see, e.g. [2]–[7] and the references
therein) dedicated to a different problem statement in which a different evolution parameter, called proper
time, is considered instead of a physical time.

Here, we present a complete exact solution of the problem posed in [1] of the motion of a charged
particle in crossed uniform electric and magnetic fields with respect to physical time. Consequently, any
informal motivation for using the proper time method disappears. In all subsequent editions of [1], there
is no mention of the proper time method (although its definition is there), while the strategy for the
complete solution in the first edition was not subsequently realized. The absence of references is easily
understood because the proper time is related to a single particle and the trajectory of its motion. But the
publications [2]–[7] indicated above are now undoubtedly interesting for explicating the physical meaning
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of proper time in a completely concrete physical situation. Because the exact solution that we give of a
long-posed interesting physical problem is obtained by the method of first integrals with respect to physical
time, it can be used to study the behavior of a charged particle beam not only in accelerators but also in
plasma physics and also to study the energy spectrum of ultrahigh-energy cosmic rays.

2. Equations of motion and first integrals

We consider the motion of a charge e in uniform constant electric and magnetic fields. We choose the
direction of the vector E along the y axis and the direction of the vector H along the z axis: E = (0, E, 0)
and H = (0, 0, H). Because (EH) = 0, the fields are crossed. We introduce the dimensionless governing
parameter a = H/E, the characteristic time T = mc/eE, the corresponding frequency ν = 1/T , and the
dimensionless velocity components

βx =
vx

c
, βy =

vy

c
, βz =

vz

c
, β2 = β2

x + β2
y + β2

z < 1.

The relativistic equation of motion [1] for the charge e with the mass m

dv
dt

=
e

m

√
1 − v2

c2

{
E +

1
c
[vH] − 1

c2
v(vE)

}

can then be represented componentwise as a system of equations for βx, βy, and βz:

dβx

dt
= ν

√
1 − β2(aβy − βxβy),

dβy

dt
= ν

√
1 − β2(1 − aβx − β2

y),

dβz

dt
= ν

√
1 − β2(−βyβz).

(1)

The first integrals of this system allow finding its solutions. To obtain them, we represent (1) as the system
of relations

dβx

aβy − βxβy
=

dβy

1 − aβx − β2
y

=
dβz

−βyβz
= ν

√
1 − β2 dt.

Multiplying the first equality by 2βy, we obtain

2 dβx

a − βx
=

d(β2
y)

1 − aβx − β2
y

.

We multiply the numerator and the denominator of the first fraction in the obtained equality by βx, and
by the property of equal fractions

a

b
=

c

d
=

c + μa

d + μb
,

which holds for any μ �= 0, we obtain (choosing μ = 1)

2 dβx

a − βx
=

d(β2
x + β2

y)
1 − β2

x − β2
y

.

Further, using the equalities

d(β2
x + β2

y) = −d(1 − β2
x − β2

y),
2 dβx

a − βx
= −d(βx − a)2

(βx − a)2
,
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we obtain the easily integrated equation

d(βx − a)2

(βx − a)2
=

d(1 − β2
x − β2

y)
1 − β2

x − β2
y

.

The equation
dβx

aβy − βxβy
=

dβz

−βyβz

can also be easily integrated.
Therefore, first integrals of system (1) are the functions

1 − β2
x − β2

y

(βx − a)2
,

βz

βx − a
,

and we hence equate them to the constants of motion A2 and B and obtain

1 − β2
x − β2

y = A2(βx − a)2, (2)

βz = B(βx − a). (3)

We write Eq. (2) in the form of an equation for an ellipse

(
βx − aA2/(1 + A2)

)2

F 2
+

β2
y

G2
= 1,

where

F =
ap

1 + A2
, G =

ap√
1 + A2

, p =

√
1 + (1 − a2)A2

a
. (4)

This implies that Eq. (2) admits the parametric representation defined by basic trigonometric functions

βx − aA2

1 + A2
= F sin ϕ, βy = G cosϕ, (5)

and in accordance with Eq. (3), βz can also be expressed in terms of sinϕ.
The problem of integrating Eqs. (1) thus reduces to integrating the equation satisfied by ϕ. We find

this equation. Equalities (2) and (3) imply that

√
1 − β2 =

√
A2 − B2 |βx − a|. (6)

Further, from Eqs. (5), we find that

dβx

dt
= F cosϕ

dϕ

dt
=

F

G
βy

dϕ

dt
.

Substituting this equality in the first equation in system (1), after eliminating βy and taking relations (6)
into account, we obtain

dϕ

dt
= εν

√
1 − γ2(1 + A2)(a − βx)2,

where
√

A2 − B2 =
√

1 + A2
√

1 − γ2 and ε = 1 if a − βx > 0 and ε = −1 if a − βx < 0. Because

a − βx =
a

1 + A2
(1 − p sinϕ)
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in accordance with (5), the sought equation is written as

dϕ

dt
=

ενa2
√

1 − γ2

1 + A2
(1 − p sin ϕ)2. (7)

Using Eq. (7), we find the equations for x, y, and z as functions of ϕ. Because

βx =
1
c

dx

dt
=

1
c

dx

dϕ

dϕ

dt
=

a

1 + A2
(A2 + 1 + p sinϕ − 1)

in accordance with relations (4) and (5), we have the equations for x and analogously for y and z:

dx

dϕ
=

εc

νa
√

1 − γ2

(
1 + A2

(1 − p sin ϕ)2
− 1

1 − p sinϕ

)
, (8)

dy

dϕ
=

εc
√

1 + A2

νa
√

1 − γ2

p cosϕ

(1 − p sin ϕ)2
, (9)

dz

dϕ
=

εcB

νa
√

1 − γ2

1
1 − p sinϕ

. (10)

The problem of integrating these equations, which determine the trajectory of the motion, thus reduces to
finding the integrals

I1(p, ϕ) =
∫

dϕ

1 − p sinϕ
, I2(p, ϕ) =

∫
dϕ

(1 − p sin ϕ)2
,

which, as is easily seen, are algebraically dependent,

I1(p, ϕ) + (p2 − 1)I2(p, ϕ) =
p cosϕ

1 − p sinϕ
. (11)

With p = 1 (with a = 1), this formula is inapplicable, we must use the equations

I1(1, ϕ) =
1 + sin ϕ

cosϕ
, I2(1, ϕ) =

2
3

1
cosϕ

1
1 − sin ϕ

+
1
3

tanϕ. (12)

We present the formulas for the first integral for other values of a. By definition

1 − p2 =
(a2 − 1)(1 + A2)

a2
,

and we therefore distinguish two cases. If a > 1, then 1 − p2 > 0, and we obtain

I1(p, ϕ) =
2√

1 − p2
arctan

sinϕ − p cosϕ − p√
1 − p2(1 + cosϕ)

. (13)

If a < 1, then p2 − 1 > 0, and we obtain

I1(p, ϕ) =
1√

p2 − 1
log

(
1 − 2

√
p2 − 1(1 + cosϕ)

sinϕ + (
√

p2 − 1 − p)(1 + cosϕ)

)
. (14)
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3. Motion trajectories

Different values of the governing parameter a imply different trajectories. In accordance with this, we
consider three cases.

Let the governing parameter be equal to unity. From relations (7)–(10) and (12), we then obtain

2
3

1
cosϕ

1
1 − sin ϕ

+
1
3

tanϕ =
ν
√

1 − γ2

1 + A2
t + C0 (15)

and

x =
c

ν
√

1 − γ2

(
(1 + A2)

(
2
3

1
cosϕ

1
1 − sin ϕ

+
1
3

tan ϕ

)
− 1 + sin ϕ

cosϕ

)
+ C1, (16)

y =
c
√

1 + A2

ν
√

1 − γ2

1
1 − sin ϕ

+ C2, (17)

z = − Bc

ν
√

1 − γ2

1 + sin ϕ

cosϕ
+ C3, (18)

where C0, C1, C2, and C3 are integration constants. It follows from (15) and (16) that

x = ct − c

ν
√

1 − γ2

1 + sin ϕ

cosϕ
+ C.

As already noted above, the case just now considered for a = 1 was also investigated in [1]. The solution
presented there is related to the parameter py. Because

py =
mcβy√
1 − β2

,

the connection between the two parameterizations is established using formulas (5) and (6). We present
the result:

py =
mc√
1 − γ2

1 + sin ϕ

cosϕ
.

If the governing parameter is greater than unity, then ε = 1, and in accordance with (7), we have

I2(p, ϕ) =
νa2

√
1 − γ2

1 + A2
t,

which in accordance with (11) and (13) yields

p cosϕ

1 − p sin ϕ
− 2√

1 − p2
arctan

sin ϕ − p cosϕ − p√
1 − p2(1 + cosϕ)

= εν(1 − a2)
√

1 − γ2 t + C0. (19)

Similarly, it follows from (8), (11), and (13) that

x =
c

νa(1 − a2)
√

1 − γ2

{
a2p cosϕ

1 − p sinϕ
− 2√

1 − p2
arctan

sinϕ − p cosϕ − p√
1 − p2(1 + cosϕ)

}
+ C1.

Comparing this equality with (19), we obtain the relation

x = act − c

νa
√

1 − γ2

2√
1 − p2

arctan
sin ϕ − p cosϕ − p√

1 − p2(1 + cosϕ)
. (20)
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For the coordinates y and z, we obtain

y =
c
√

1 + A2

aν
√

1 − γ2

1
1 − p sinϕ

+ C2, (21)

z = − Bc

νa
√

1 − γ2

{
2√

1 − p2
arctan

sin ϕ − p cosϕ − p√
1 − p2(1 + cosϕ)

}
+ C3. (22)

Finally, we consider the case where the governing parameter is less than unity and a−βx is consequently
not sign-definite. Because all necessary explanations have previously been made, we present only the
additional necessary relations: we have

p cosϕ

1 − p sinϕ
− 1√

p2 − 1
log

(
1 − 2

√
p2 − 1(1 + cosϕ)

sin ϕ + (
√

p2 − 1 − p)(1 + cosϕ)

)
= εν(1 − a2)

√
1 − γ2 t + C0,

whence we obtain

x =
εc

νa(1 − a2)
√

1 − γ2

{
a2p cosϕ

1 − p sin ϕ
−

− 1√
p2 − 1

log
(

1 − 2
√

p2 − 1(1 + cosϕ)
sin ϕ + (

√
p2 − 1 − p)(1 + cosϕ)

)}
+ C1

and in another form

x = act − εc

νa
√

1 − γ2

{
1√

p2 − 1
log

(
1 − 2

√
p2 − 1(1 + cosϕ)

sinϕ + (
√

p2 − 1 − p)(1 + cosϕ)

)}
,

y =
εc
√

1 + A2

aν
√

1 − γ2

1
1 − p sin ϕ

+ C2,

z = − εBc

νa
√

1 − γ2

{
1√

p2 − 1
log

(
1 − 2

√
p2 − 1(1 + cosϕ)

sin ϕ + (
√

p2 − 1 − p)(1 + cosϕ)

)}
+ C3.

We have thus established all the necessary relations.
When the initial data are given, the integrals of motion are expressed in terms of them. Let βx(t0) = β0

x,
and similarly for the other velocity components. By continuity, we then obtain

A2 =
1 − (β0

x)2 − (β0
y)2

(a − β0
x)2

, B =
β0

z

β0
x − a

.

Consequently, the problem can be simplified if we impose the condition β0
z = 0, because then B = 0 and

the motion occurs in the plane (x, y).
In conclusion, we note that because the connection between classical and quantum mechanics is well

known [8], it would be interesting to give an exact solution of the problem of charged particle motion in
crossed electric and magnetic fields at the quantum level.
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