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Abstract—The inner (or satellite) version of the restricted elliptic three-body problem is considered. The
terms up to the fourth order inclusive in small parameter are retained in the expansion of the perturbing func-
tion for the problem. The ratio of the orbital semimajor axes of perturbed and perturbing bodies is such a
parameter, while their mean longitudes are the fastest variables. The Gauss scheme of independent double
averaging over fast variables is used to analyze the orbital evolution of a body of negligible mass. Explicit ana-
lytical expressions for the doubly averaged perturbing function and its derivatives with respect to the elements
on the right-hand sides of the evolution equations are presented. The integrable cases of the doubly averaged
problem are studied in detail: planar and orthogonal apsidal orbits. The evolution system is numerically inte-
grated in the general (nonintegrable) case for some special values of the problem parameters and initial con-
ditions, in particular, for a set of orbital elements in which the so-called “flips”, i.e., transitions of the orbit
from prograde to retrograde and vice versa, manifest themselves. In the Sun—Jupiter—asteroid model using
some special asteroid orbits as an example, we show the influence of the retained fourth-order terms and the
ellipticity of Jupiter’s orbit on their evolution.
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INTRODUCTION AND FORMULATION
OF THE PROBLEM

The averaged problems of celestial mechanics are
both the subject of independent analytical and numer-
ical research and one of the methodological founda-
tions for studying the dynamics of real astronomical
objects on long time scales. Various averaged schemes
of'the three-body problem, both general and restricted
ones, are of special interest. The so-called Gauss
scheme of independently averaging the force function
of the problem over the two fastest variables, i.e., the
mean longitudes of perturbing and perturbed bodies
when their mean motions are incommensurable, is
particularly prominent. N.D. Moiseev obtained a
complete system of independent first integrals of the
averaged (evolution) equations in elements in the
restricted problem for a circular orbit of the perturbing
body relative to the central one (Moiseev, 1945).
Qualitative and analytical studies of the evolution
equations were carried out by M.L. Lidov for the sat-
ellite version of the problem, when only the second-
order terms are retained in the expansion of the per-
turbing function in powers of the small parameter o
(the ratio of the semimajor axes of perturbed and per-
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turbing bodies) (Lidov, 1961). Almost concurrently,
Kozai investigated the asteroid version of the problem
by including the terms ~o?f inclusive (Kozai, 1962).
Apart from applications to the dynamics of satellites of
planets and asteroids, these authors revealed the fall of
a body of infinitesimal mass to a central body if its
orbit is highly inclined to the orbital plane of the per-
turbing body. The monograph by I.I. Shevchenko
(2017) is devoted to describing this effect called the
Lidov—Kozai effect, along with its astrophysical appli-
cations. The paper by Ito (2016), where the doubly
averaged perturbing function of the restricted circular
three-body problem was expanded up o' inclusive for
the inner version (o < 1) and up to o~ " inclusive for
the outer version (o0 > 1), served as an elaboration of
the study by Kozai (1962). Undoubtedly, a misprint in
the last row of Eq. (33) from the Ito’s paper should be
noted.

A natural generalization of the evolution three-
body problem is its elaboration to the more realistic
case where the orbit of a perturbing body is noncircu-
lar. The corresponding doubly averaged restricted
elliptic problem has only a few integrable cases (Vash-
kov’yak, 1984) and is generally nonintegrable. Never-
theless, the Lidov—Kozai effect also manifests itself in
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this problem and, as a consequence, a new qualitative
feature arises—highly eccentric orbits that change
their type from prograde to retrograde and vice versa
during their evolution. This phenomenon, which is
related to the passage of the orbital inclination through
90° and was discovered by Katz et al. (2011) and Naoz
etal. (2011), was called a “flip”. Quite a few papers are
devoted to this phenomenon in the doubly averaged
elliptic three-body problem (both general and
restricted ones) with applications to the dynamics of
exoplanets, triple star systems, and small bodies of the
Solar system. Their extensive bibliography is con-
tained in the already mentioned book by Shevchenko
(2017). Among the recent works we will point out the
papers by Naoz (2016) and Sidorenko (2018) devoted
to the “eccentric Kozai—Lidov effect”.

In this paper we obtain a special form of the expan-
sion of the doubly averaged perturbing function for the
restricted elliptic three-body problem up to o* inclu-
sive (in particular, the terms ~o* contain the square of
the orbital eccentricity of a perturbing body). We con-
sider the integrable cases of the problem in more detail
and numerically integrate the evolution system with
initial data corresponding to both a flip orbit and a sta-
ble equilibrium solution of the corresponding planar
elliptic problem. In addition, we perform numerical
calculations showing that including the terms ~o* is
necessary when analyzing the evolution of special
asteroid orbits, in particular, a series of orbits of num-
bered asteroids with libration of the argument of peri-
helion: nos. 143219, 159518, 417444, and 1866.

Consider the motion of a particle P of negligible
mass under the attraction of a central point .5 of mass
m and a perturbing point J of mass m; € m moving rel-
ative to §'in an elliptical orbit with a semimajor axis a,
and eccentricity e;. Let us introduce a rectangular
coordinate system Oxyz with the origin at point §
whose reference plane xOy coincides with the orbital
plane of point J. Let the Ox axis be directed to the
pericenter of the orbit of point J, the Oy axis be in the
direction of its motion from the pericenter in the refer-
ence plane, and the Oz axis complements the coordinate
system to a right-handed one. The perturbed orbit of
point P is characterized by osculating Keplerian ele-
ments: the semimajor axis a, the eccentricity e, the incli-
nation i, the argument of pericenter ®, and the longitude
of the ascending node €. The inner version of the prob-
lem suggests that the apocenter distance of point P during
the evolution of its orbit does not exceed the pericenter
distance of the perturbing point J, i.e.,

all+e)<a(l-e).

As a rule, the secular part W of the complete per-
turbing function is used to investigate the orbital evo-

lution of point P:
n2n
I .[ dA, dk
0

W (a,e i, Q, ae)
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Here, in addition to the already introduced nota-
tion for the orbital elements, fis the gravitational con-
stant, A is the distance between the perturbed and per-
turbing points Pand J, A and A, are the mean longitudes
of these points, respectively. The procedure of such
(independent) double averaging over fast variables is
called the Gauss scheme, in which the absence of low-
order commensurabilities between the mean motions of
points J and P is assumed. As a consequence, the first
integrals of the equations of perturbed motion in ele-
ments appear in the doubly averaged problem,

(1)

while one more first integral (1 — e?)cos?i = const exists in
the case of e, = 0 (Moiseev, 1945). In the function W a,
and e, along with a, play the role of parameters in the evo-
lution problem.

a =const, W(a,e,i,0,Q,a,¢) = const,

A SPECIAL EXPRESSION FOR THE AVERAGED

PERTURBING FUNCTION OF THE SATELLITE

VERSION OF THE PROBLEM AND EVOLUTION
EQUATIONS

Another equivalent expression for the function W
via well-known formulas is also commonly used in
analytical studies:

2n

W (ae,i,0,Qa,e) = ; [ (1= ecosE)V (E)aE,
0

(2

JSmy zf "12
2na, \/l—e 0 )

Here, E is the eccentric anomaly of the perturbed
point, v, is the true anomaly of the perturbing point,
ri=a, (1 —e?)/(1+ e cosv,),and Vis the force func-
tion of the elliptical Gaussian ring simulating the aver-
aged influence of point J. In what follows, the so-
called inner or satellite version of the problem will be
considered by assuming » << r|, while the terms up to
the fourth order inclusive will be retained in the
expansion of the function 1/A in Legendre polynomi-
als P, (or in powers of the ratio r/r;), so that

{15

1
p

V(E)=

V(E)=

dv,.

cosH = =(xcosv, + ysinv,),

JSmy

27ta12 VI — el2

2
1+LcosH + r—2(3cos2H - 1)
l 25
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+r—33(5cos3H - 3cosH)
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Performing the standard integration procedure in
(3), we obtain an explicit expression for the function V:

_ 3fm 1.2, .2y 12
V(E)—m Sy =3

+ﬁ[5 (x2 + y2) - 4r2J + m
35(2+5¢ ) x* +70(2 + 3¢ ) 7y +
X |+ 35(2 + Selz)y4 - 20(4 + 9e12)r2x2 -t
—20(4+9¢)r’y’ +8(2+3¢f)r*

4

where x, y, r are expressed via the eccentric anomaly £
using the well-known formulas for unperturbed elliptical
Keplerian motion. Performing a similar integration proce-
dure, we obtain the function W.

In the adopted approximation with respect to o
the expression for the function W is given in
Yokoyama et al. (2003). However, all of the subse-
quent results referring to the stability of Jupiter’s
outer satellites were obtained for the resonant part of
the function W containing only the terms ~cos(€2 +
) and ~cos2(£2 = ). In contrast to the expression
given in this paper, in the following more compact
formulas we directly separate out the dependence of W
on the longitude of the ascending node €2 (it is this depen-
dence that is an obstacle to the integrability of the doubly
averaged restricted elliptic three-body problem):

3 fimo) w
8a1(1—e12)32 ’

2 .2,
w=w, — Aw, + Bw,, w, =e —sin’i

W (ei,0,Q,a,e) =

+ e’sin’i (1 - 5sin20)), w, = A,cosQ + B;sing),
(%)
w, = (1 + %ef)AO + €] (A,c0s2Q + Bsin2Q),

S0
a=2 A= 1

1507
aq 8(1—e12), i

ea(i-¢f)
o(l+e)<l—e.

Here, the coefficients 4, , , and B, , dependent on
the elements e, i, ® and independent of Q are defined
by the formulas
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A, = Ciecos®, B =[IO(1 - ez) sin’i — Cl]
X ecosisin®w, C;, =4+ 3¢’ — Ssin’i
X (1 —e+ 7ezsin20)), Ay = e (8 + 3e2)
— 2sin’if (1- ) (4 +3¢%) + 21¢°
X (2 + ez)sin2(1)] +C, A= 7e’ (2 + ez)
X cos2m+ 2sin’i | (1 - ) (3 - 10¢%) + 7e’sin’e  (6)
x (8 =17¢” +21e%sin’0) | - C,
B, = 7e’cosisin2mx
X [7sin2i (1 e 3ezsin203) — (2 + ez)],
C, = Tsin*i {(1 - &) +7eksin*ox
X [2 (1-¢")+ 3e2sin2m]}.
The function w, contains factor e and is multiplied

by the value proportional to e;, while the function w,
contains the terms of the zeroth and second orderin e,.

Below, it is convenient to introduce a new indepen-
dent variable, a “dimensionless time” T, according to
the formula

T=

3fm, 7 (t _to), (7)

Saf(l—ef) n

J7m

where n = S is the mean motion of point P.
a

To describe the evolution of orbits, we will use the
Lagrange equations in elements with the function w
that is their first (and generally unique) integral:

de _ _N1-¢€dw di _ 1

dT e a(l)’ dT B Slan — e2
[ 2
x(cosia—w—a—w), do _Nl—e’dw ()
Jo dQ/ dt e Oe
cosi  dw dQ _ 1 ow

siniVl —¢> 0 dT  ginil —¢* 0i

For arbitrary orbits of point Pand e, > 0 a rigorous
solution of Egs. (8) can be apparently found only by a
numerical method for specified initial conditions,
while the process of calculations can be controlled by
the constancy of the function w along this solution.
For completeness of the set of formulas, we provide
expressions for the derivatives of w,, w;, and w, in ele-
ments. They are needed to calculate the right parts of
the evolution equations.

The derivatives of the function w, are
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al—Ze[l+sml 1—551n03]

de
ow,
—0 =gin2i 5sin 0)
= sin2i[ (1 -1
% = —5¢’sin 151n20), 8_ =0.
0w 0Q
The derivatives of the function w, are
o _ aA‘ 0sQ + —1 95, sinQ,
de ae de
04, _

= cos(o{4 +9¢” — 5sin’i
e
X [1 — 3¢’ (1 - 7sin2m)]}, % = cosisinm

x {~(4+9¢”) + 15sin’i[1- &’ (3 - 7sin’w) |}
% 851 0sQ + aa—Bst
i i t
% = —Secoswsin2i (1 -+ 7‘3251“2(’))’
i

9B, _ esinisino{4 + 3¢’ + 5(2 — 3sin’)
l
X [3 (1 — ez) + 7e25in2(1)]},

om _ E)A] sQ+aB‘sinQ o4 _
)

o 0 IO ®
x {4 +3¢” = Ssin’i [ 1 -3¢’ (5 - Tsin’o) [},
JB

1 = ecosicosm
L0

x [15sin% (1 - & + 7e’sin’o) - (4 +3¢%) ],

—esinm

om = B,cosQ — A;sinfd.
0Q

The derivatives of the function w, are

Iw, (1 += 3 2)aA0 +e (8A2 cos2Q + 8832 sm2Q)

ae de de
%—110=4e[4+3e +(1+6e )sin - 42(1+ %)
X sin’isin 0)] + 8C2
e
% = 4e [7(1 +¢°)cos20 (13 - 20¢° ) sin’
+14 (4 - 17e2) sin’isin’® + 294e%sin%sin’wl - %,
e
% = 14ecosisin2®
de
X [7(1 —2¢%)sin’i + 42¢’sin’isin’w — 2 (1 + ez)],
9C _ 8esin®i [ez —1+7(1-2¢°)sin’0 + 21e2sin4m],
e

aal_ (1 += )aAO +ef (8A2 cos2Q + 9B, sm2Q)
i di

94, = —2sin2i [

l—e 4+3e)
2]+8C2 %

+ 21€° 2 + e sm (0} = 2sin2i

x[(1—e)( —10¢%) + 7¢° (8
% 9B, _
di i
X [16 —13¢* - 21(1 - ez)sinzi + 21e’sin’®

17e ) sin‘®

+ 147e%in* 0)] — = 7e’sinisin2m

X (2 - 3sin2i)] aaCl’2 = 28sin’icosi

x [(1 &) 4146 (1 - &)sin‘o+ 21e4sin40)},

ow, _ (1 += 2 )aAO +e (8A2 cos2Q + %BZ s1n2Q)

M L0 e [0) O]
aaAO —42e (2 + ez) sin’isin2m + %,
% = 14e2sin2m[(8 —17¢%)sin’
+ 42esinYisino - (2+ )| - 92,
o
% = 14e2cosi{[7(1 — ez)sinzi — (2 + ez)]
X COS2(M + 21ezsin2isin2(0(3 — 4sin2c0)} s
Eﬁ = 9Sezsin4isin2m(1 —t+ 3ezsin2(0),
e [0)

aw,
= 2¢? (B,c0s2Q — A,8in2Q
30 1 (By 5 )-

INTEGRABLE CASES OF THE ELLIPTIC
PROBLEM

Planar Orbits
If sin i = 0, then the orbit of point P is always
ai_g),
while the evolution equations are simplified. V\;cith the
introduction of the longitude of periastron of point P
g =Q+ ), )

where & = sign(cos i), the evolution system takes the

form
[ 2

located in the reference coordinate plane (

lde _ N1-e’ow 1dg _
ddt e dg ddt e de

In this case, it is obvious that the prograde (6 = 1)
and retrograde (& = —1) orbits evolve identically with
time inversion, while the existence of the first integral

h = const (11)

wie,g) =
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makes the planar evolution problem integrable as a
system with one degree of freedom.

The integrability of this (planar) version of the
doubly averaged restricted elliptic problem was first
established by E.P. Aksenov for B= 0, where the terms
~o* and higher are disregarded in the expansion of the
function W. A qualitative study of the problem was
carried out in Aksenov (1979a), while the quadratures
were analytically inverted and the time dependences of
the orbital elements were obtained in Aksenov
(1979b). E.P. Aksenov’s studies were elaborated by
Veresh (1980a; 1980b; 1980c) in terms of both a quali-
tative analysis of the problem and the construction of
its approximate analytical solution for o < 1. Subse-
quently, Vashkov’yak (1982) investigated the planar
case of the problem for arbitrary o using a numerical-
analytical method, which envisaged a numerical cal-
culation of the function W and an analytical determi-
nation of the function V'in Eqgs. (2). In what follows,
the results of these papers will be used and, where pos-
sible, the notation introduced in them will be retained.

Our goal is to derive refined quantitative evolution
characteristics compared to the case of B =0 and a
more detailed qualitative study of the problem for B >
0 than that performed in Veresh (1980a).

From Eqgs. (5) at sin i = 0 we obtain

w(e,g,0,e) =€ —Ae(4 + 3e2)cosg + Be’

(12)
X [(1 +%e12)(8 + 3e2) + 7e12 (2 + e2)00s2g:| =h,
and Egs. (10) take the form
1@2_\/1_‘32
ddt
x| A4 +3e’) — 28Bele(2 + ¢’ ing,
[ ( e) e,e( e )cosg}smg 1)

ldg _ V1 —e2{2 —4(4 + 9e2)cosg + 2B
ddt e

x| (2+3¢7) (4 +3¢%) + 14¢] (1+¢”) cos2g |}

At fixed parameters o and e, the integral (12)
defines an A-family of integral curves in the (g, e)
plane. For A = 0.1 and B = 0 Aksenov (1979a) con-
structed such a family, studied in detail its qualitative
structure, found the stationary values of the variables
e*, g* = 0, and revealed three possible types of phase
trajectories: I—libration of both variables e and g; 11—
libration of e and circulation of g; II1—degeneracy of
trajectories, when the phase point reaches a boundary
value of e = 1 in a finite time as g changes monotoni-
cally, which at a = const corresponds to the collision
of point P with the central point S. For oo = 0.5 and
e; = 0.3 Veresh (1980a) constructed similar families
for both B =0 (E.P. Aksenov’s solution) and B> 0. In
this case, it was established that including the terms of
higher orders in o does not change the qualitative
structure of the families of integral curves, does not
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give rise to any new types of phase trajectories, but
affects only their quantitative characteristics.

For completeness, we provide here the A-families
of integral curves (12) for oo =0.24, ¢, = 0.5, 4 =0.1,
B=0.024 (Fig. 1), and B =0 (Fig. 2).

In view of the existing symmetry of phase trajecto-
ries, only the regions 0° < g < 180° are shown. The open
circles in the figures mark the stationary points (g = 0,
e =¢e*) and the points (g =0, e =¢,) and (g =90°, e =0)
on the integral curves that bound the libration zones of
the argument of pericenter. The filled circles mark the
points (g =0, e =1) and (g =90°, e =¢,) on the sepa-
ratrices separating the circulation regions from the
regions corresponding to degenerate trajectories. The
phase point moves along these curves in such a way
that e — 1 as ¥ — oo, As was also noted in Veresh
(1980a), a comparison of Figs. 1 and 2 makes it possi-
ble to estimate the influence of the factor B on the
quantitative characteristics of the family of phase tra-
jectories for the problem. Below, such characteristics
will be presented for a fairly wide domain of parame-
ters o and e;.

The stationary solutions of system (13) are found by
setting the right-hand sides of both equations equal to
zero. From the first equation in (13) we have

g =0 or g=m or

A(4+3¢°)
28Beje(2+¢%) |

It can be shown that for the last two equalities the
right-hand side of the second equation in (13) is posi-

tive for any o, e; and e # 1. Therefore, fore < 1 the only
stationary value of the variable g is

14
g= arccos[ (14)

g=g" =0. (15)

The stationary value of the eccentricity 0 < e* < 1 is

found as the corresponding real root of the cubic
equation

c3e*3 + cze#<2 +ce*+c¢, =0, (16)

where
¢ =2B(6+23¢]), ¢, =94,
¢ = 2[1 +2B(4+ 13e,2)], ¢y = —4A.

At B = 0 Eq. (16) is quadratic and the stationary
value of the eccentricity is defined by one of its roots
by the formula (Aksenov, 1979a)

e*:glA(l—xh—%Az). (18)

Since A and B depend on the problem parameters
o and e, for clarity, it is natural to present the results
of the solution of Eq. (16) in the form of a family of
isolines e*(a, e;) = const (Fig. 3). The numerical val-
ues of e* are plotted vertically near the right ends of the

(7)
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100 120 140 160 180

g, deg

Fig. 1. The family of integral curves (12) in the (g, e) plane for o =0.24, e; = 0.5, 4 = 0.1, and B = 0.024 (F. Veresh’s solution).

thick lines. The corresponding dashed lines (B = 0)
virtually coincide with the thick lines at small o. At o
differing noticeably from zero the solid and dashed
lines diverge, which gives an estimate of the influence
of the terms ~0/* in the expansion of the averaged per-
turbing function on e*. In particular, for the parame-
ters o = 0.24 and e, = 0.5 adopted when constructing
the families in Figs. 1 and 2, e* = 0.155 and 0.230,
respectively.

In the domain of parameters o and e, under con-
sideration the values of e* are relatively small and do
not exceed about 0.2.

Remark. Going beyond the planar integrable case,
we will note the recent paper by Neishtadt et al.
(2018), where the spatial stability of stationary solu-
tions was investigated in the linear approximation in i.
It is also pointed out that the KAM theory guarantees
the Lyapunov stability of stationary solutions for all
values of the parameters in the o, e; plane, except,
possibly, for the parameters belonging to some finite
set of analytical curves.

The families e,(ct, e;) = const (Fig. 4) and e (., e;) =
const (Fig. 5), which characterize the sizes of the libra-

tion and circulation zones, are constructed similarly to
the family of isolines for e*.

The following equations serve to determine e, and
e., respectively:

1. 3,1, 2,1

—ce, +-ce, +=ce, +¢, =0, 19

4 3 3 2 2l 0 ( )
1, 4 1 3 1 2
—ce, ——ce. +—ce. —cpe, —h, = 0. 20
46 3& 5© 0 (20)

In Eq. (20) A, is defined by the formula

h =1-74+B(22+75¢})/2. Q1)

For the parameters oo = 0.24 and e, = 0.5 adopted
when constructing the families in Figs. 1 and 2, e, =
0.32 and 0.48, respectively, while e, = 0.595 and 0.370,
respectively.

In addition to the above special values of the eccen-
tricity, finding its extreme values for each of the char-
acteristic ranges of the constant / of the integral (12) is
of interest. As our analysis shows, / can vary within the
range

min A = h* = h(e*,0) < h, = h(e;,0) = h(0,—) < A, (32)
= h(e,,m) < I** = h(l,T) = max A.
Here, e* is the stationary value of the eccentricity,

e, is its value at g =0, and e, is its minimum value at

g =1/2 corresponding to the circulation of g, whereby
e(g=0)=1.
From the known e* for B > 0 it is easy to find

h* = e* ‘l‘c3e*3 + lc:2e>l<2 + %cle* + co), (23)

which corresponds to the stationary solution. The
remaining special values in the system of inequalities
(22) are defined as

ho=0, i =1+74+ B(22+75¢])/2

and by Eq. (21) for A,

The types of phase trajectories revealed by
E.P. Aksenov at B = 0 (Aksenov, 1979b) are also
retained for B > 0, but their extreme characteristics

(24)

SOLAR SYSTEM RESEARCH  Vol. 54 No.1 2020



SOME PECULIARITIES OF THE EVOLUTION OF ORBITS 55

1.0

100 120 140 160 180
g, deg

Fig. 2. Same as Fig. 1, but for B =0 (E.P. Aksenov’s solution).
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0.30 0.35 0.4

Fig. 3. The family of isolines of the stationary values for the eccentricity e*(a., e;) = const (the solution for B >0—the thick lines;

the solution for B = 0—the dashed lines).

undergo changes. Figures 6 and 7 present the 4 depen-
dences of the extreme values of the eccentricity con-
structed at o0 =0.24, ¢, = 0.5, and A = 0.1 for B=0.024
and B = 0, respectively. The Roman numerals mark
three regions with different types of change in ele-
ments.

For region I (A* </ <0, the libration of e and g) the
extreme values of the eccentricity 0 < e, < 1 are
defined by the two positive roots of the quartic poly-
nomial
No. 1
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1 4 1 3 1

2
_ceex+—Ceex+—ceex+ceex—h=(). 25
47 T3 T 0 (25)

For region II (0 < 4 < A,, the libration of e and the
circulation of g) the minimum value of the eccentricity

0 < e, < 1isdefined by the positive root of the poly-
nomial

1 4 1 3 1 2
—C3€x — Z €2y +§cleex

-h=0, 26
4 3 20

— Cpex
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Fig. 4. Same as Fig. 3, but for ey(at, e;) = const.
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Fig. 5. Same as Fig. 3, but for e (0, ;) = const.

while its maximum value 0 < e,,, < 1 is defined by the
root of the polynomial (25), but with a different range
of change in A.

Finally, for region III (degenerate trajectories, A, <
h < h**) the minimum value of the eccentricity 0 <
enin <1 is defined by the positive root of the polyno-
mial (26).

The procedure for calculating the roots of polyno-
mials is among the standard ones in many computing
systems, in particular, in Matlab, while the choice of

the necessary roots is straightforward. Furthermore,
the above algebraic equations allow, if necessary,
dependences similar to those in Figs. 1 and 6 to be
constructed for any admissible values of the problem
parameters o and e;.

It can be seen from a comparison of Figs. 6 and 7
presented on the same scale that our inclusion of the
terms ~o* leads to a reduction in the extreme values of
the eccentricity and allows their more accurate values
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Fig. 6. Extreme values of the eccentricity versus 4 for o0 = 0.24, e; = 0.5, 4= 0.1, and B = 0.024.

eCX

1.0
0.9
0.8
0.7
0.6
0.5k
0.4 /

03 (|1
0.2
0.1

I

I1

0
—0.050.10 0.25 0.40 0.55 0.70 0.85 1.00 1.15 1.30 1.45 1.60 1.75 1.90 2.05 2.20

h

Fig. 7. Same as Fig. 6, but for B= 0 (E.P. Aksenov’s solution).

differing significantly from those in the case of B= 0
to be obtained.

Orthogonal Apsidal Orbits

If cos i = 0 and sin Q = 0, then the orbit of point P
is always orthogonal to the orbital plane of the per-
turbing point J (di/dt =0, dQ/dt=0). A general
qualitative study of this case, including the possible
intersections of the orbits of points P and J, was car-
ried out using a numerical-analytical method by Vas-
hkov’yak (1984) for arbitrary .. Here, the satellite ver-
sion of the problem is investigated with the derivation
of more detailed quantitative evolution characteristics.
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In the approximation under consideration the evolu-
tion equations (8) are also simplified and take the form

de _ _Vi—é’ow do_vl-eow

=2, . (27)
dt e Jdo dr e Jde
Here,
w(e,0,0,e) = e’ (500520) — 3) + Ad,ecosm
X [1 +e*(27- 35cos2w)] +B (28)

y (10 + 3.«312)«32 + %(46 + 95e12)e4 —7e’cos’®

x [2 vl +(22+453]) e’ - %(2 + Sef)eZCosz(D}

= h = const,
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8, = sign(cosQ), so that

2 (50052(1) — 3)

+2B

e

At fixed parameters o and e; the integral (28)
defines an A-family of integral curves in the (m, e)
plane. One of these families for o = 0.3 and e; = 0.4 is
presented in Figs. 8 and 9 (for two ranges of eccentric-
ities). For greater detail, Figs. 8 and 9 show the ranges
0<e<0.1and0.1 <e< 1, respectively. As in the well-
known case of orthogonal orbits in the doubly aver-
aged Hill problem, where ¢, = 0 and o0 — 0 (B =0)
(Lidov, 1961; 1962), all phase trajectories intersect
with the boundary straight line e = 1 in a finite time
(except for the separatrices) and point P collides with
the central point S. A slight qualitative change is the
appearance of a saddle stationary point at the bound-
ary o = 180°.

In view of the existing symmetry of phase trajecto-
ries, Figs. 8 and 9 also show only the regions 0° < @ <
180°. The open circles in the figures mark the boundary
points of the singular integral curves (0 = 90°, e = 0).
The filled circles mark the points (0 = 180°, e =¢*) on
the separatrices. The phase point moves along these
curves in such a way that e — 1 as t — too,

The stationary solutions of system (29), or the sin-
gular points in the (®, ) phase plane, are found by set-
ting the right-hand sides of both equations equal to
zero. In general, the existence of singular points within
the rectangular region under consideration is not ruled
out at arbitrary values of the constants 4 and B. Their
coordinates can satisfy the system of two equations
derived by setting the expressions in braces (29) equal
to zero. However, here we consider only the solutions
sin ® = 0 following from the first equation in (29), i.e.,

o =0, or ® =m, &, =sign(cosw®). (30)

The stationary value of the eccentricity 0 < e* < 1 is
found as the corresponding real root of the cubic
equation

p3e*3 + Pze*z + pe*+ py =0, (31)

where

T sine 10ecosm + A9, [1 +3 (9 - 3500s2(o) ez}
+14Becosw| 21(2+ 5] ) e’cos'@— (22 + 53¢ ) =2 —¢] |

10+ 3¢’ + (46 +95¢7 ) ¢’
~7(2+ ¢ +2(22+53¢7) e’ —21(2 + 5¢] ) ’cos’w) cos’

+A9, cosm[l +3 (27 - 3500s20)) ez]

b

(29)

+r.

p=16B(4+1le}), p, =-24483,,
P = 4[1 ~2B(1+ ef)], P = A8,5,.

At B = 0 Eq. (31) is quadratic and its solution is
given in Vashkov’yak (1984):

o= L (fired 1)
124

The solution satisfying the condition 0 < e* < 1
exists only at 8,0, <0, i.e.,

(32)

(33)

either at (Q = 0 and " = 1) (34)

or at (Q =7 and ®* = 0).

This corresponds to the opposite directions of
motion of point P, with the stationary value in both
cases being g* = Q + 0* = 1.

For the general case of B > 0 the isolines e*(a, e;) =
const are shown in Fig. 10. The numerical values of e*
are plotted vertically near the right ends of the thick
lines. The corresponding dashed lines virtually coin-
cide with the thick ones at small o. At o differing
noticeably from zero the solid and dashed lines
diverge. This gives an estimate of the influence of the
terms ~0* in the expansion of the averaged perturbing
function, which were included in this paper, on e*.

In the domain of parameters o and e, under con-
sideration the values of e* are relatively small and do
not exceed about 0.2.

NUMERICAL SOLUTION
OF THE EVOLUTION SYSTEM

Model Examples

In this section we present the results of our numer-
ical solution of Egs. (8) in the model of a system that
includes the Sun—a central attracting point and one
main perturbing point—Jupiter (a;, = 5.2 AU, e, =
0.048). Our calculations were performed with various
initial data for a series of evolving orbits of hypotheti-
cal and real asteroids.
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Fig. 8. The family of integral curves (28) in the (m, e) plane.
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Fig. 9. Same as Fig. 8, but for 0.1 <e < 1.

As one of the test model examples for demonstrat-
ing a “flip” (a well-known phenomenon that takes
place in the restricted elliptic doubly averaged three-
body problem and that consists in the transition of an
asteroid orbit during its evolution from prograde to
retrograde and vice versa), we consider an orbit with a
semimajor axis @ =2.2 AU and initial elements e, =
0.15, iy = 75°, @, = 0. This orbit, which is highly
inclined to the reference plane, to a certain extent is
close to the one in Naoz et al. (2013), in which, how-
ever, no initial longitude of the ascending node is
specified. It is well known that flips can exist only in
some domain of initial orbital elements. Lithwick and
Naoz (2011) constructed the boundaries of these
domains in the (e, cosiy) plane for fixed values of the

SOLAR SYSTEM RESEARCH Vol.54 No.1 2020

small parameter € = 84/5 numerically. In particular,
Sidorenko (2018) proposed a satisfactory asymptotic
approximation for the analytical fit of these boundar-
ies in the case of € <0.1.

In the example given here , = 120° was chosen in
a special way, while Fig. 11 shows the time depen-
dences of the inclination and the quantity log(1—e)
(convenient for a graphical representation instead of e)
in a time interval of 3 Myr.

As the orbital inclination approaches 90° (the
dashed straight line in the upper panel of Fig. 11), the
eccentricity becomes very close to one. In reality,
given the Sun’s nonzero radius, this, of course, would
lead to the fall of an asteroid to its “surface” already at
t= 0.4 Myr (the first intersection of the dashed straight
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Fig. 10. The family of isolines of the stationary values for the eccentricity e*(0., e;) = const (the solution for B > 0—the thick lines;

the solution for B = 0—the dashed lines).
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Fig. 11. Time variations of the inclination and eccentricity of an orbit with initial elements a = 2.2 AU, ¢ = 0.15, ij =75°, oy =

0, and Q; = 120°.

line with the graph in the lower panel of Fig. 11). Inter-
estingly, a fairly subtle flip effect is detected even when
using one of the simplest numerical integration meth-
ods (in this paper the fourth-order Runge—Kutta
method).

Tracing the transformation of the stable stationary
solution in the planar integrable case of the problem
with initial conditions e, = e*(a., e,), iy =0, and g, =
g* =0 as i increases serves as another model example.
For this purpose, we numerically integrated system (8)
for the adopted constant parameters a,, e}, a = 2.2 AU.

(a0 = 0.423), ¢, =0.019 and initial angular elements
o, =, =0. The results of these calculations are illus-
trated by Table 1, where the extreme values of the ele-
ments in a time interval of 1 Myr are presented. At ini-
tial inclinations no greater than about 32°.7 the argu-
ment of pericenter and the longitude of the ascending
node circulate, while the elements e, i, and g librate,
although the oscillation amplitude of g can approach
180°, with the minimum values of the eccentricity and
the maximum values of the inclination being fairly
close to the initial ones. For i, > 33° both variables g
and o change monotonically with time, but the oscil-
SOLAR SYSTEM RESEARCH  Vol. 54
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Table 1. Extreme values of the elements of evolving orbits in a time interval of 1 Myr for a = 2.2 AU, ¢, = ¢* = 0.019, o, =
Q, = 0, and various initial inclinations i,

iy, deg €min €max Imin» deg Imax> deg 8min» deg Smax> deg
1 0.019 0.020 0.999 1.000 —0.016 0.015

10 0.019 0.020 9.99 10.00 —1.72 1.73
20 0.018 0.022 19.99 20.00 —6.38 6.38
30 0.019 0.075 29.89 30.07 —40.10 40.17
32 0.019 0.252 30.695 32.996 —104.09 104.01
32.7 0.019 0.328 30.555 34.494 —165.52 165.04
33 0.019 0.121 32.547 33.195 0 360

40 0.0097 0.363 34.97 40.01 0 360

50 0.0086 0.639 34.26 50.25 0 360

60 0.0012 0.812 33.66 60.61 0 360

70 0.0072 0.946 33.10 73.87 0 360

75 0.0119 0.998 32.77 86.66 0 360

76 0.0096 0.9999 32.82 147.15 0 360

80 0.0023 0.9999 32.87 147.17 0 360

89 0.0055 0.9999 33.37 146.67 0 360

Table 2. Qualitative and quantitative evolution characteristics of special asteroid orbits in two different models: B = 0

(model ~a?) and B > 0 (model ~o*)

B=0 B>0
Asteroid number
type of evolution of ® €min € max type of evolution of ® €min € max
1866 C 0.10 0.60 L 0.16 0.61
143219 L 0.02 0.67 L 0.03 0.72
159518 L-C 0.02 0.67 L 0.21 0.67
417444 L—-C—-L 0.03 0.35 L 0.13 0.42

lation amplitudes of the eccentricity and inclination
increase significantly. Such trends are also typical for
the circular doubly averaged problem (Lidov, 1961;
1962; Kozai, 1962). They are retained at inclinations
that are not too close to 90°. In the elliptic problem for
this example, flips where the inclination passes
through 90° (its maximum values are about 147°) and
the eccentricity reaches a value very close to one begin to
manifest themselves starting from i, = 76°. Interestingly,
as our calculations show, there are no flips for the slightly
smaller i, = 75°, at least in an interval of 5 Myr.

Thus, for the chosen values of the parameters q,
and e, the data in Table 1 allow us to trace the qualita-
tive changes of the “asteroid” orbit as its initial incli-
nation changes. This orbit ultimately turns into a
highly evolving one in eccentricity and inclination
with its passage through 90° starting from the station-
ary position in the plane of motion of the perturbing
body at a low eccentricity.

SOLAR SYSTEM RESEARCH Vol.54 No.1 2020

On the Evolution of Some Special Asteroid Orbits

In the problem of the evolution of asteroid orbits
the influence of Jupiter’s orbital eccentricity is usually
a secondary factor, as is the influence of the terms of
the perturbing function with an order higher than o?.
Nevertheless, there exist orbits of real asteroids that
absolutely require taking into account these factors for
a proper description of their evolution. These include
the asteroids with orbital elements satisfying some spe-
cial conditions. These are primarily the orbits for
which the constants of the first integrals of the doubly
averaged Hill problem (Lidov, 1961; 1962)

= (1 - ez)coszi, c, = e’ (% - sinzisinzo)) (35)

satisfy the Lidov—Kozai resonance conditions ¢; < 3/5
and ¢, < 0. Skripnichenko and Kuznetsov (2018) pro-
vided a sample of 52 such numbered asteroids with ®-
libration orbits. Interestingly, for three of them
(143219, 159518, and 417444) the corresponding con-
stants ¢, are less than 1073 in absolute value. This
means that in the (®w—e) plane the phase point is very
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Fig. 12. Variations of the orbital eccentricity and the argument of perihelion for asteroid 417444 in the simplified model ~o,
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Fig. 13. Same as Fig. 12, but for the model ~ot

close to the separatrix separating the libration and cir-
culation regions of the argument of perihelion. For
such asteroids the simplified evolution model that dis-
regards the terms ~o* in the averaged perturbing func-
tion generally leads to incorrect quantitative and even
qualitative results.

Table 2 gives the evolution characteristics of these
orbits (along with the orbit of asteroid 1866) calculated
by numerically integrating system (8) in a time interval
of 1 Myr for two main cases: B = 0 (model ~o*) and
B> 0 (model ~0*). The symbols characterizing the
type of evolution of the argument of pericenter are

given together with the extreme values of the eccen-
tricity: C for circulation and L for libration. For aster-
oid 143219 including the terms ~o* refines only the
range of eccentricities compared to the model ~o.
However, for the remaining asteroids neglecting the
terms ~o* additionally also leads to qualitative
changes in the pattern of evolution of .

As an illustration, Figs. 12 and 13 show the varia-
tions in the orbital eccentricity and the argument of
perihelion for the last asteroid 417444 in the models
~0o? and ~0%, respectively.
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In the plane of these elements in Fig. 12 the initial
point marked in the figure by the filled circle initially
passes from the regime of  libration relative to 90° to
the regime of its circulation (along the arrow) and then
returns to the regime of libration, but already relative
to 270°. In the more accurate model (Fig. 13) o liber-
ates relative to 90° in the entire time interval under
consideration.

In conclusion, note some possibilities for the
development of this study. Apart from tracing the spa-
tial transformation of planar equilibrium satellite
orbits, a numerical search for so-called periodically
evolving orbits with equal (commensurable) periods of
variations in all elements could be of interest. An
examination of the outer version of the restricted ellip-
tic doubly averaged three-body problem will also serve
as a supplement to this study.
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