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Abstract—The problem of the motion of a particle with a negligible mass (satellite) near the equatorial plane
of a spheroidal body, in particular, an asteroid, is considered. To a first approximation, the motions can be
separated into equatorial and latitudinal components for low inclinations of the satellite orbit. The equatorial
central motion, when the force function depends only on the satellite’s distance to the coordinate origin (the
asteroid’s center of mass), is constructed by the previously proposed semianalytical method. The construc-
tion of the latitudinal motion envisages the solution of a linearized system of second-order differential equa-
tions with periodic coefficients by numerically determining the monodromy matrix on the period of the equa-
torial motion and its temporal analytic continuation. The model problems of the perturbed motion of nearly
equatorial hypothetical satellites of Ceres and Vesta are considered. The methodical accuracy has been esti-
mated by a comparison with the numerical solution.
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INTRODUCTION AND POBLEM STATEMENT
The well-known classical problem of the motion of

a test particle with a negligible mass in the attractive
field of an arbitrary rigid body (or a system of bodies)
in celestial mechanics is terminologically occasionally
called the Fatou problem named after the French sci-
entist who systematically studied it and revealed a
number of dynamical properties (Fatou, 1931;
Duboshin, 1964). In this paper we consider a special
case of this problem where the attracting body is a
homogeneous spheroid and the test particle moves
near its equatorial plane.

The attractive force function of a homogeneous
spheroid dependent on the satellite coordinates is
expressed by well-known formulas (Duboshin, 1961;
Kondrat’ev, 2007). In what follows, we will use a coor-
dinate system with the origin at the center of mass of
the attracting body O and the equatorial plane normal to
its rotation axis Oz as the principal coordinate plane xOy.
Due to the axial symmetry of the problem, the direc-
tion of the Ox axis is arbitrary, and it is natural and
convenient to use the polar coordinates instead of the
pair of rectangular coordinates x and y:

(1)

In this case, the attractive force function U(ρ, z)
does not depend on the polar angle (or longitude) θ
and the equations of particle motion in chosen cylin-
drical coordinates ρ, θ, z

(2)

admit two first integrals (Duboshin, 1964):

(3)

The constants c and h are defined by the initial val-
ues of the coordinates and their derivatives with
respect to time t at the initial t0 = 0:

The integrals (3) turn out to be useful in checking
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With the integral c Eqs. (2) and (3) take the form

(4)

(5)

Once the explicit dependence of ρ on time t has
been determined, the angle variable θ can be found by
calculating the integral

(6)

The goal of this paper is to construct an approxi-
mate semianalytical solution of the system of Eqs. (2)

for a limited change in ρ and small z0 and . The

inclination of the satellite orbit i and the modulus of its
latitude ϕ = arctan(z/ρ) are assumed to remain small
in the time interval under consideration. The pro-
posed solution can be used as the first (initial) approx-
imation to describe the orbital motion of nearly equa-
torial satellites of celestial bodies whose geometric
shapes are to a certain extent close to oblate spheroids,
including the dwarf planet Ceres and the asteroid
Vesta. Actually, the asteroids have a fairly complex
structure of the gravitational field. In particular, the
study performed during the Dawn mission begun in
September 2007 has revealed from 10 to 25 gravita-
tional field harmonics of Ceres and Vesta. It is
described in detail in Konopliv et al. (2011), which also
contains a review of the research on these celestial
bodies performed with ground-based facilities. In
addition, note that the model of a prolate ellipsoid of
revolution (Ivashkin and Lan, 2018) and a triaxial
ellipsoid (Guo and Ivashkin, 2018) is used in investi-
gating the dynamics of prospective artificial satellites
of some asteroids, in particular, Apophis.

THE ATTRACTIVE FORCE FUNCTION
OF A HOMOGENEOUS SPHEROID

AND ITS DERIVATIVES

The equation for the surface of a spheroid (ellipsoid
of revolution) has the well-known canonical form

(7)

To express the force function of its attraction on an
external point, we will use the formulas given in the
monograph by Kondrat’ev (2007). In the case of an
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oblate spheroid, its semiaxes satisfy the conditions
а1 = а2 > а3 and the force function is

(8)

Here, μ is the product of the gravitational constant
and the mass of a homogeneous spheroid,

(9)

The parameter λ is the greatest positive root of the
equation

(10)

or

i.e.,

(11)

where
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expression (8) takes the form
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and via . The first-order partial derivatives are
defined by relatively simple formulas:

(15)

It is easy to see that the sign of the derivative  is

opposite to the sign of z. As a corollary of the general
property of motion in the Fatou problem (Fatou, 1931;
Duboshin, 1964), this implies that the acceleration

component  is constantly directed to the principal

(equatorial) plane and the motion is stable with
respect to small deviations of z from zero.

Below, when analyzing the nearly equatorial orbits
and separating the motions into equatorial and latitu-
dinal ones, we will also use the simplified expressions
for the function U and its partial derivatives with
respect to ρ and z as z → 0 that directly follow from
Eqs. (14) and (15):

(16)

SEPARATION OF THE MOTIONS
AND AN APPROXIMATE CONSTRUCTION

OF THE SOLUTION
Equatorial Motion

Following the method of successive approxima-
tions, to construct the solution at small z/ρ, we will
neglect the square and the cube of this ratio in the first
and second equations (4), respectively. Let us first

consider the equatorial motion, when  

In this approximation the change in ρ defined by the
first integral (5) occurs in a central field and is found
by inverting the quadrature
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for the real motion the following condition should be
satisfied:

(19)

In what follows, without introducing any signifi-
cant restrictions, we will assume that

(20)

at t = 0.
To find the dependence ρ(t) in the case of its limited

(librational) change , we apply the
previously developed approximate semianalytical
method (Vashkov’yak, 2018) briefly described below.

The constants c and h are uniquely defined by the
following formulas by specifying the extreme values

:
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function f(ρ), it can be represented as
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main qualitative property of a restricted motion. In
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The time dependence of the distance is defined by
the formulas

(25)

where cn is the Jacobi elliptic cosine with modulus k
and the constants α, β, γ, δ, p, q depend on the coeffi-
cients of the approximating polynomial P(ρ) and the two
real (specified) roots   of the polynomial Q(ρ).

The dependence ρ(t) is a periodic function of time
with a period

(26)

where K(k) is a complete elliptic integral of the first
kind with modulus k.

The time dependence of the polar angle θ is deter-
mined by finding the integral in Eq. (6). Substituting
the dependence ρ(τ) into its integrand, according to
Eqs. (25), gives

(27)

where

The integrals Il are expressed via trigonometric
functions and incomplete elliptic integrals of the first,
second, and third kinds.

Latitudinal Motion

When  is nonzero, there will be deviations
related to the change in the z coordinate or latitude

 in the satellite motion. By analogy
with an unperturbed Keplerian motion, we will specify
the initial conditions for the latitudinal motion at the
orbital pericenter by the formulas

(28)
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At small z the change in this coordinate is defined
by a linear second-order differential equation:

(29)

Here, according to the last formula (16) for the

derivative , the function

(30)

It originally depends on the distance ρ via ξ and is
actually a function of time, because, to a first approx-
imation, ρ(t) is defined by the periodic dependence
(25), so that

(31)
while the period of this function is given by Eq. (26).

The differential equation (29), known as Hill’s
equation, in a vector form is

(32)

where

(33)
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Malkin, 1966, Ch. V), the differential equation (32)
with periodic coefficients can be solved by calculating
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Table 1. Parameters of the asteroids and the satellite orbits

Parameter Ceres Vesta

μ, km3 s–2 62.6 17.8

RH, km 223500 125500

D1 = 2a1, km 964.4 572.6

D2 = 2a2, km 964.2 557.2

D3 = 2a3, km 891.8 446.4

Trot, h 9.074 5.342

i, deg 3 3
ρmin, km 800 400

ρmax, km 1583.64 700.85
The properties of the latitudinal motion depend
significantly on the eigenvalues σ of the monodromy
matrix M (multipliers) satisfying the equation

(37)

and on the characteristic exponents  The

general solution of Eq. (32) can be represented as a
product of Tρ-periodic functions by exp(αt) and σ are
defined by very simple formulas:

(38)

where  is half the trace of the monodromy

matrix.
If B > 1, then the multipliers and characteristic

exponents are positive. In this case, the latitudinal
motion is described by oscillations of the period Tρ
with an exponentially growing amplitude, so that z is
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ρ
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σ = ± −2
1,2 1,B B
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Fig. 1. Time dependences of the distance ρ for Ceres’ satellite (t
are the numerical solution). 
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outside the range of applicability of the linear approx-
imation (29).

If B < 1, then the complex conjugate multipliers lie
on the unit circumference  and the char-
acteristic exponents are purely imaginary. The latitu-
dinal motion is restricted and is described by a super-
position of oscillations with limited amplitudes and
periods Tρ and Tα = 2π/α.

METHODICAL EXAMPLES OF SOLVING 
MODEL PROBLEMS

In this section we compare the results obtained by
two fundamentally different methods. The initial
motion parameters are defined by Eqs. (20) and (28),
and this complete set of initial data serves to calculate
the restricted motion near the equatorial plane of an
asteroid both by the semianalytical method and by
numerically integrating Eqs. (2) with a check of the
constancy of c and h along the solution. As examples,
we consider the motion of nearly equatorial hypothet-
ical satellites of the asteroids Ceres and Vesta that are
assumed to be oblate spheroids. Table 1 gives their physical
characteristics: the gravitational parameters μ, the radii of
Hill’s spheres RH, the geometrical sizes D1 ≈ D2 > D3, the
axial rotation periods Trot, the initial inclinations of the
satellite orbits, and their apsidal distances.

In the adopted spheroid model it is assumed that
D1 = D2 (a1 = a2) for both asteroids and their axial
rotations occur around the smaller semiaxes a3.

The minimum distances of the satellites of Ceres
and Vesta are assumed to be specified and the pericen-
ter heights are about 318 and 114 km, respectively. The
maximum distances are taken to be such that they cor-
respond to the Keplerian orbits of satellites with revo-

σ = σ =1 2 1
SOLAR SYSTEM RESEARCH  Vol. 53  No. 2  2019

he solid curves are the semianalytical solution, the dotted curves
 days

1.951.901.851.80 2.00
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Fig. 2. Same as Fig. 1 for the polar angle θ. 
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Fig. 3. Same as Fig. 1 for the z coordinate. 
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lution periods equal to Trot, i.e., synchronous to the

satellites of the asteroids. The initial low inclination of

the satellite orbits is taken to be 3°. The computational

time interval is two days or approximately from 5–9

orbital periods of the satellites.

First, for each of the examples we approximated the

function g(ρ) defined by Eq. (23) by a quadratic polyno-

mial P(ρ) in the segment ρmin = ρ3 ≤ ρ ≤ ρ4 = ρmax by the

least-squares method and calculated its discriminant D
and roots ρ1, ρ2.

The comparative results of our calculations of the

time dependences of the distance, polar angle, and

z coordinate for Ceres’ satellite are shown in Figs. 1–3.
SOLAR SYSTEM RESEARCH  Vol. 53  No. 2  2019
Panels (a) and (b) of these figures present a time

interval of two days and a considerably shorter interval

corresponding to the last revolution of the satellite.

Panels (b) provide a clear quantitative estimate of the

methodical error in the proposed approximate solu-

tion due to the approximation of the function g(ρ) (23)

by a quadratic polynomial Р(ρ) (24). A minor and

seemingly secular change in the mean and extreme

values of z can be noticed in Fig. 3a. Actually, this is a

long-period variation with a period Tα that is about

22.5 days here and modulates a short period variation

of z with a period Tρ ≈ Trot = 9.074 h.

Similar dependences for Vesta’s satellite are shown

in Figs. 4–6.
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Fig. 4. Same as Fig. 1 for Vesta’s satellite. 
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Fig. 5. Same as Fig. 2 for Vesta’s satellite. 
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A long-period variation with a period Tα that is

about 2.6 days here and modulates a short-period vari-

ation of z with a period Tρ ≈ Trot = 5.034 h can be seen

in Fig. 6a more clearly than in Fig. 3a.

CONCLUSIONS

We proposed a semianalytical method and

described its potential for finding an approximate

solution of the problem of the motion of a satellite

near the equatorial plane of a homogeneous oblate

spheroid in the form of time dependences of the coor-

dinates. In general, when constructing the equatorial
motion of the satellite for the adopted dynamical and

geometrical characteristics of the spheroid, using the

method envisages either predetermining the extreme

(apsidal) distances by numerically solving the rigorous

equations or specifying these parameters a priori. The

analytical time dependences of the distance and polar

angle are derived using the previously developed tech-

nique for constructing the motion in a central gravita-

tional field. To solve the equation describing the lati-

tudinal motion requires its numerical integration in a

relatively short time interval, the period of the distance

change in the equatorial motion. This solution is con-
SOLAR SYSTEM RESEARCH  Vol. 53  No. 2  2019
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Fig. 6. Same as Fig. 3 for Vesta’s satellite. 
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tinued for an arbitrary time using the monodromy

matrix.

Using the orbits of hypothetical satellites of Ceres

and Vesta as special examples, we showed qualitative

and approximately quantitative agreement between

the results of our calculations performed by the pro-

posed method and the method for numerically inte-

grating the equations of motion in the attractive field

of a homogeneous oblate spheroid.
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