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Abstract⎯The structure, dynamical equilibrium, and evolution of Saturn’s moon Iapetus are studied. It has
been shown that, in the current epoch, the oblateness of the satellite ε2 ≈ 0.046 does not correspond to its
angular velocity of rotation, which causes the secular spherization behavior of the ice shell of Iapetus. To
study this evolution, we apply a spheroidal model, containing a rock core and an ice shell with an external
surface ε2, to Iapetus. The model is based on the equilibrium finite-difference equation of the Clairaut theory,
while the model parameters are taken from observations. The mean radius of the rock core and the oblateness
of its level surface, ε1 ≈ 0.028, were determined. It was found that Iapetus is covered with a thick ice shell,
which is 56.6% of the mean radius of the figure. We analyze a role of the core in the evolution of the shape of
a gravitating figure. It was determined that the rock core plays a key part in the settling of the ice masses of
the equatorial bulge, which finally results in the formation of a large circular equatorial ridge on the surface
of the satellite. From the known mean altitude of this ice ridge, it was found that, in the epoch of its formation,
the rotation period of Iapetus was 166 times shorter than that at present, as little as T ≈ 11h27m. This is con-
sistent with the fact that a driving force of the evolution of the satellite in our model was its substantial despin-
ning. The model also predicts that the ice ridge should be formed more intensively in the leading (dark and,
consequently, warmer) hemisphere of the satellite, where the ice is softer. This inference agrees with the
observations: in the leading hemisphere of Iapetus, the ridge is actually high and continuous everywhere,
while it degenerates into individual ice peaks in the opposite colder hemisphere.
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INTRODUCTION
Iapetus is the third largest moon of Saturn. It

moves around Saturn under the 1 : 1 spin-orbital res-
onance along a far orbit with a semimajor axis of
3560820 km and a period T = 79.3215 d. Iapetus is
axially symmetric in shape; its semiaxes are (Roatsch
et al., 2009; Thomas, 2010):

(1)

where R is the mean radius of the satellite. Its shape
exhibits the moderate oblateness ε2 ≈ 0.046 (and the
corresponding eccentricity e2); the angular velocity of
the axial rotation is

(2)

The satellite’s mass is

(3)

An important property of Iapetus is its low mean
density

(4)
This means that the portion of water ice in Iapetus

is rather high.
In 2004, it was confirmed by the Cassini mission

that the leading hemisphere of Iapetus is actually very
dark, while the opposite side of this moon is very
bright and its albedo is approximately 10 times higher
than that of the dark hemisphere (Castillo-Rogez
et al., 2007). Due to the light absorption, the differ-
ence in brightness of the hemispheres results in the
temperature of the dark and bright sides of Iapetus
being 129 and only 113 K, respectively (Spencer and
Denk, 2010).

A unique feature of the landscape of Iapetus is its
equatorial mountain ring (Porco et al., 2005). In the
literature, it is often called the Iapetus wall or the Iape-
tus equatorial ridge. In the dark hemisphere this ridge
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is more than 1600 km long; its mean altitude is 13 km,
and the width is 20 km. Some mountains reach 20 km
in altitude. In the cold bright hemisphere, the ridge is
interrupted, though high ice mountains are also
observed there.

How the ridge appeared on Iapetus is a real
enigma. To explain its origin, different hypotheses
were proposed. Kerr (2006) made an assumption that
the origin of the ridge is connected with the despin-
ning of the satellite. Denk et al. (2005) supposed that
the ridge appeared due to volcanic activity. According
to one more version (Ip, 2006), the mountain ring was
formed during the fall (more exactly, the soft landing)
of fragments of an ice ring rotating about Iapetus.
Czechowski and Leliwa-Kopystynski (2008) and Rob-
erts and Nimmo (2009) assert that the ridge appeared
as a result of convection of the material in the interior
of Iapetus. However, none of these hypotheses was
thoroughly developed and compared to the observa-
tions in detail.

In this study, we are focused on the structure of
Iapetus and its evolution in connection with the fact
that its figure deviates from the equilibrium one. In the
next section, we formulate the problem and derive the
equilibrium finite-difference equation from the
Clairaut theory for the model parameters. Further, we
construct the “rock core + ice shell” model that is
applied to Iapetus. This method has allowed us to cal-
culate the size of the rock core and the thickness of the
ice shell and to ascertain that the present oblateness of
the satellite’s surface does not correspond to the value
of the angular velocity of its spin rotation. Because of
this, the relaxation of Iapetus to the equilibrium figure
of smaller oblateness was considered. At the qualita-
tive level, it was shown how the equatorial mountain
ring is formed in the process of spherization of the ice
shell of the satellite to the equilibrium state. A key role
of the rock core in the formation of this ridge was
demonstrated. The developed mechanism of relax-
ation also allowed us to explain why the ridge is more
massive in the dark (leading) hemisphere of Iapetus
and becomes hardly noticeable on the equator in the
opposite (trailing) hemisphere.

PROBLEM FORMULATION
We suppose that Iapetus’ figure consists of two

subsystems: an internal homogeneous spheroidal rock
core covered with a homogenous spheroidal shell
composed of ice. The density of the core is ρ1, and its
surface is described by

(5)

while the external surface of the shell is described by

(6)
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with semiaxes , and its density is ρ2.
Let us consider the equilibrium equation for the

liquid mass, rotating about axis Ox3 with the angular
velocity of solid-body rotation Ω

(7)

Here, p(x) is the pressure in the liquid and Φ(x) is
the total potential, which is a sum of the gravitational
ϕ(x) and centrifugal potentials

(8)

According to Eq. (7), to provide for the equilibrium
of the rotating system, the surfaces of constant pres-
sure p(x) = const and constant density ρ(x) = const
should coincide with the reference surfaces Φ(x) =
const.

It is also known from the theory (see, e.g., Kon-
dratyev (1989)) that the spheroidal reference surfaces
for nonhomogeneous equilibrium figures may exist
only under the weak-oblateness approximation. It is
precisely the approximation under which Clairaut
derived the differential equation connecting the den-
sity distribution ρ(r) with the oblateness profile of the
isosurfaces ε(r)

(9)
Here, r is the mean radius of the intermediate

spheroid, and  is the mean den-

sity of its interior. It is important that, for the two-layer
model of the satellite, which is a system, consisting of
a core and a shell with the densities ρ1 and ρ2 and the
mean radii r1 and r2, respectively, the oblateness values
for the core ε1 and the shell ε2 will be connected by the
Clairaut finite-difference equation (9) (see, e.g., Kon-
dratyev (1989; 2003))

(10)

As is seen from this equation, the inequality for the
oblateness values ε1 < ε2 will be satisfied, if ρ1 > ρ2.
Moreover, Eq. (10) will also make it possible to deter-
mine the oblateness of the spheroidal reference surface
of the rock core itself (see below).

CALCULATIONS FOR THE MODEL
OF THE SATELLITE IAPETUS
Iapetus’ Figure Is Not in Equilibrium

First of all, we know the mean radius of the exter-
nal surface of the shell r2 = 734.49 km (see Eq. (1)) and
its oblateness ε2 ≈ 0.0046. It is important that we also
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know from observations the mean density of the body

Then, from the equation

(11)

we derive the ratio of the radii of the core and the shell

 From the usual values of the densities of

rock and water ice, ρ1 ≈ 3 g/cm3 and ρ2 ≈ 0.92 g/cm3,

respectively, we obtain  Consequently, the

mean radius of the rock core inside Iapetus is r1 ≈
318.75 km. Thus, the satellite Iapetus has a thick ice
shell; its thickness is τ ≈ 415.74 km, which is larger
than the core radius and amounts to 56.6% of the total
radius of the figure. It is interesting that the mass of
Iapetus is distributed almost equally between the rock
core and the ice shell

By substituting the known values into the right-

hand side of Eq. (10), we find the ratio 

which yields the equilibrium oblateness of the surface
of the rock core of the satellite ε1 ≈ 0.0028. This result
is consistent with the equilibrium figure theory: the
denser core of the satellite turns out to be actually
rounder than the external surface of the ice shell of
Iapetus, the oblateness of which is ε2 ≈ 0.0046.

With the use of one more formula of the theory

(12)

we obtain the rotation parameter of the model m:

(13)

Since  formula (13) yields the normal-

ized squared angular velocity of the equilibrium model
of Iapetus

(14)

On the other hand, the present value of the squared
angular velocity of Iapetus is only

(15)

which leads us to the conclusion that Iapetus rotates
very slowly and it is in the nonequilibrium state even
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now. This fact should be taken into account in the
study of the evolution of Iapetus.

Formation of the Mountain Equatorial Ring on Iapetus

A unique feature of Iapetus’ landscape—the large
equatorial mountain ring (Fig. 1)—has been already
mentioned in the Introduction. In the dark hemi-
sphere, the mean altitude h and the width of the ridge
are 13 and 20 km, respectively. Its arc extends over
1600 km, which is more than 70% of half the length of
the satellite’s equator. It is also worth noting that, in
the cold bright hemisphere of the satellite, the ridge is
broken: there are individual high ice mountains there.

In our opinion, it is the abovementioned deviation
of Iapetus’ figure from equilibrium (at present, the
satellite rotates too slowly) that activates the formation
of the ridge on the surface. This statement is drawn on
the above-substantiated conclusion that the deviation
of Iapetus’ figure from equilibrium will inevitably
result in the rounding of the satellite’s shape. We will
stress straight away that, due to a higher plasticity of
ice than that of rock, the evolution of the shape of the
external ice shell will evidently proceed faster than the
spherization of the rock core (Fig. 2). Because of this,
a subject of our further discussion is the evolution of
the ice shell of the satellite.

Spherization, i.e., decreasing the oblateness of the
ice shell of Iapetus under relaxation, leads to the con-
tinuous and, above all, differential-in-latitude lower-
ing of the ice masses into the prior surface. In this pro-
cess, on the equator itself, the mechanical resistance
of the core makes the movement of the incompressible
ice masses toward the satellite’s center impossible;
however, off the equator, the resistance of the core
weakens: the normal to the core surface does not coin-
cide any more with the direction of the columns’ gen-
eratrices, which will lead to the bending of the ice col-
umns. Thus, in the evolution of the shell’s shape near
the equatorial bulge, a strongly pronounced latitudinal
variation in the subsidence degree of ice manifests
itself: the out-of-equator masses of ice move under the
action of gravity and deform the satellite’s surface,
while the ice masses on the equator are retarded by the
pressure of the core and remain almost at the same
distance from it. In this process, the neighboring
masses of ice subside relative to the equatorial ring on
the surface of Iapetus (Fig. 2). It is the subsiding of the
ice masses neighboring the equator that resulted in the
formation of the equatorial ridge on Iapetus.

Let us also pay attention to a subtle effect of the
temperature difference between the leading and trail-
ing hemispheres of the satellite. As the observations
show (Spencer and Denk, 2010), due to light absorp-
tion, the temperature in the dark hemisphere of the
satellite is somewhat higher (by 16 K) than that in the
opposite (bright) side of Iapetus. Consequently, the
ice in the dark hemisphere will be softer than that in
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Fig. 1. An image of the equatorial ridge on Iapetus taken from the distance of 5620 km by the Cassini spacecraft on September 10,
2007 (https://saturn.jpl.nasa.gov/raw_images/154732/). Source: NASA/JPL-Caltech/Space Science Institute.
the bright hemisphere. Note that the blackening of the
leading hemisphere of Iapetus exhibits a mosaic char-
acter and does not entirely cover the hemisphere. In
the map of Iapetus’ surface built from the Cassini
observations (Roatsch et al., 2009), it is seen that the
low-albedo blackened area in the leading hemisphere
is elliptic in shape.

It should be expected that, since the darker hemi-
sphere of the satellite is warmer, the ice will be moving
more actively and the ridge will be formed more inten-
sively there than in the colder bright hemisphere. This
inference agrees with the observations. In point of
fact, the equatorial ridge in the leading dark hemi-
sphere is more massive and continuous everywhere.
However, in the cold bright hemisphere, the ridge is
broken up into individual ice peaks.

The sizes of the dirty dark spot along the equator in
the leading hemisphere of the satellite are somewhat
smaller than half the equator. This explains the fact
that the length of the ridge on Iapetus is approximately
70% of half the equator of this satellite.

Moreover, from the observational data on the alti-
tude of the ridge, h ≈ 13 km, some conclusions on the
history of the evolution of Iapetus’ figure can be made.
If we assume that the volume remains constant during
the changes in the satellite’s figure, we may show that
the oblateness of Iapetus at the beginning of the ridge
formation ε' will be related to its current oblateness
ε2 ≈ 0.0046 by the formula

(16)

which yields ε' ≈ 0.0954. Consequently, the axial rota-
tion period of Iapetus in the epoch of the ridge forma-
tion was

 , (17)

which is close to the rotation period of Saturn itself.

DISCUSSION
In recent years, there has been an upsurge in inter-

est in the evolution of rock–ice celestial bodies of the
Solar System (see, e.g., the review by Schubert et al.
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Fig. 2. A scheme of the initial (dashed ellipse) and present (solid circle) shapes of Iapetus. The ice shell and the rock core are
shown gray and black, respectively. The deformation of some ice columns during the shell relaxation to a sphere is shown by black
dashes. Under bending, the upper parts of the columns will sink (in the direction of arrows) relative to the column on the equator.
A profile of the ridge formed on the surface is shown by triangles.
(2010) and the papers by Kondratyev (2016a; 2016b)).
Iapetus, the moon of Saturn, is also among these bod-
ies. To study the evolution of Iapetus, the spheroidal
model of a rock core plus an ice shell has been pro-
posed here. This model is based on the finite-differ-
ence equation that follows from the Clairaut theory.
The model parameters were taken from observations.
We showed that the oblateness of Iapetus ε2 ≈ 0.046
does not correspond to the current value of the angular
velocity of its rotation, which results in the evolution
and spherization of the figure of this satellite. Our
method allowed us to determine the mean radius of
the rock core r1 ≈ 318.75 km and the oblateness of its
reference surface ε1 ≈ 0.028. It was shown that Iapetus
has a thick shell of ice; its thickness is τ ≈ 415.74 km,
which is 56.6% of the total mean radius of the figure.
It is interesting to note that the mass of Iapetus is
SOLAR SYSTEM RESEARCH  Vol. 52  No. 2  2018
almost equally distributed between the core and the

shell: 

Note that the present method fundamentally dif-
fers from the evolution mechanism that we developed
earlier for the dwarf planet Haumea, which is also
composed of a rock core and an ice shell (Kondratyev,
2016a). The cause is that the planet Haumea rotates
very quickly, its shape is a distinctly expressed triaxial
one, and it strongly differs from Iapetus in dynamics.
Conversely, Iapetus is an oblate spheroid in shape; and
its dynamical characteristics are completely different.
For this very reason, the evolution of Iapetus is com-
pletely different from that of the trans-Neptunian
object Haumea.

We have also ascertained that the deviation of Iape-
tus from dynamical equilibrium and the spherization
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of its shell lead to the settling of the ice masses of the
equatorial bulge. Important corrections to the process
of the mass subsidence are introduced by the internal
rock core of Iapetus. The core most strongly hampers
the ice mass subsiding on the satellite’s equator itself;
however, off the equator, the resistance of the core
quickly decreases. Finally, the ice subsides nonuni-
formly, which results in the formation of a massive cir-
cular equatorial ridge on Iapetus. Our model also pre-
dicts that the ridge will be more actively formed
exactly in the leading (dark and, consequently,
wormer) hemisphere of the satellite, where the ice is
softer. This conclusion agrees with the observations: in
the colder opposite hemisphere of Iapetus, the ridge
actually degrades into individual high peaks.

The strong cratering of the ridge observed in the
images means that the ridge on Iapetus is a very
ancient formation. Because of this, from the observa-
tional data on the altitude of the ridge h ≈ 13 km, one
may ascertain that the oblateness of Iapetus was rather
noticeable in the early epoch, ε' ≈ 0.1, while the period
of its axial rotation was 166 times shorter than the pres-
ent one, as little as T ≈ 11h27m. This confirms our
inference that an actual driving force of the evolution
of the satellite was its substantial despinning.

In sum, we note that the ridge-forming process is
analyzed here at a qualitative level. Such a consider-
ation is needed at the first stage of the study of a chal-
lenging problem, when one hypothesis should be cho-
sen from many others and developed in its main
aspects. Naturally, for the further analysis of this prob-
lem in more detail, one should use differential equa-
tions of motion of the inhomogeneous gravitating
spheroidal figure taking account of the high viscosity of
the medium. It will not be easy to take into account all of
the features of this problem even in the framework of the
mathematical scheme (primarily, this refers to the differ-
ent temperatures of Iapetus’ hemispheres known from
observations). Nevertheless, the fundamental solution of
this problem is of great importance for answering many
questions about the origin and evolution of rock–ice
bodies of the Solar System.
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