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Abstract⎯The defining relations for the thermodynamic diffusion and heat f luxes in a multicomponent, par-
tially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the
kinetic theory. Generalized Stefan–Maxwell relations and algebraic equations for anisotropic transport coef-
ficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coeffi-
cients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived.
The defining second-order equations are derived by the Chapman–Enskog procedure using Sonine polyno-
mial expansions. The modified Stefan–Maxwell relations are used for the description of ambipolar diffusion
in the Earth’s ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral
particles in a strong electromagnetic field.
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INTRODUCTION

The defining transport relations (“fluxes via
forces”), i.e., the expressions for the diffusion fluxes of
various mixture components, the heat f lux, and the
viscous stress tensor linearly dependent on the gradi-
ents of hydrodynamic variables, are needed to close
the hydrodynamic equations for multicomponent
mixtures of gases and plasma (the differential mass,
momentum, and energy conservation equations).
These transport relations are currently derived by two
fundamentally different methods. The first method is
based on the classical thermodynamics of irreversible
processes—in the form in which it was developed by
Onsager, Prigogine, and other authors (see De Groot
and Mazur, 1964; Gyarmati, 1974). Despite the great
generality of the thermodynamic approach, which can
be applied for a broad class of various media, unfortu-
nately, it does not give a way of calculating the phe-
nomenological coefficients (the diffusion, thermal
diffusion, thermal conductivity, electric conductivity,
and some other coefficients appearing in the case of a
multicomponent neutral medium or a plasma with a
magnetic field) figuring in the linear defining relations
(see, e.g., Kolesnichenko, 2017a). The second
method, a statistical approach, is based on solving the
system of Boltzmann kinetic equations for a multi-

component mixture of neutral and charged particles. It
allows not only the defining relations linking the thermo-
dynamic fluxes with the particle number density and
temperature gradients but also the computational formu-
las for kinetic coefficients to be obtained (Chapman and
Cowling, 1960; Hirschfelder et al., 1961; Ferziger and
Kaper, 1976; Marov and Kolesnichenko, 1987).

In classical notation the defining relations1

obtained by both nonequilibrium thermodynamics
(see, e.g., Kolesnichenko and Tirskii, 1976; Kole-
snichenko and Marov, 2009) and gas-kinetic
(Hirschfelder et al., 1961; Ferziger and Kaper, 1976)
methods for the diffusion velocities 

 and the heat f lux q are

(1)

(2)

1 Below our analysis will concern only the diffusion-thermal part
of the transport processes in a multicomponent, partially ion-
ized gas medium.
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where  +  –

 are the thermodynamic diffu-

sion force vectors,   
     are,

respectively, the mass concentration, mean mass
velocity, diffusion velocity, molecular mass, mass den-
sity, number density, and mole fraction of component

  in the mixture;  is the partial
enthalpy per particle of component  (for an ideal gas

);   T, 

 are, respectively, the total number
density, mass density, temperature, pressure, and
hydrodynamic velocity of the gas mixture; k is the
Boltzmann constant;  is the non-electromagnetic
mass force acting on component α;    are,
respectively, the symmetric multicomponent diffu-
sion2 coefficients(  ), thermal dif-
fusion coefficients, and partial thermal conductivity
coefficient of the multicomponent mixture. The
quantity  in (2) is interpreted as the thermal conduc-
tivity coefficient of the mixture (in the absence of all
diffusive forces ). Since the phenomenological dif-
fusion and thermal diffusion coefficients are linearly
dependent in this case:

(3a)

(3b)

for an N-component mixture there are only
 independent diffusion coefficients and

 independent thermal diffusion coefficients.
Relations (1) for the diffusion velocities 

 are very difficult to use in the general
multicomponent case, because in the literature, with
rare exceptions, there is no practical information on
the multicomponent diffusion coefficients  (since

 depend on the mole fractions, they are usually not
tabulated), while the existing experimental data refer
mainly to the diffusion coefficients in binary gas mix-
tures 

The kinetic theory of gas mixtures gives the follow-
ing expressions for the kinetic transport coefficients in
any approximation  when seeking them in the form of

2 In this paper we use the symmetric multicomponent diffusion
coefficients in the Ferziger−Kaper representation, which, in
contrast to the analogous coefficients in the Hirschfelder et al.
representation, are consistent with the Onsager thermodynamic
principle of reciprocity (Curtiss, 1968).
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series in Sonine polynomials (Ferziger and Kaper,
1976):

(4)

In this case, the order of the approximation ξ with
which the coefficients  and  are deter-
mined corresponds to the number of first terms
retained in the expansion of the trial functions 
and  characterizing the first-order perturba-
tions  –  of the
distribution functions for individual components

 in series (in orthogonal Sonine poly-
nomials in the Chapman–Cowling method).
Here,

 is the velocity of a molecule of species  relative to
the rest frame;  is the dimen-

sionless thermal velocity; and  is the Maxwellian
distribution function. The coefficients (4) are ulti-
mately given as the ratios of determinants of order

 to determinants of order  The elements of
these determinants are expressed via the so-called par-
tial integral brackets  and  which, in turn, are
expressed in a well-known way via the collision inte-
grals (  integrals) dependent on the interaction
potentials between various pairs of particles, on their
mass and temperature (Hirschfelder et al., 1961; Fer-
ziger and Kaper, 1976).

It should be noted that the often arising need for
taking into account the far approximations  or
more) when calculating the kinetic coefficients in an
investigation of f lows of partially ionized gas mixtures
due to the slow convergence of the orthogonal expan-
sions of the perturbed electron distribution function
(when the electron-neutral particle cross sections
increase rapidly with electron velocity) leads to the
inversion of high-order matrices in the case of a mul-
ticomponent mixture and, thus, to a huge amount of
calculations (see Devoto, 1966, 1967, 1968; Tirskii,
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1974). The expression for the true thermal conductiv-
ity coefficient λ turns out to be even more cumber-
some. To calculate it, the vectors  should be elimi-
nated from (2) using the diffusion relations (1). A for-
mal solution of the latter for  gives

, (5)

where  are the elements of the matrix inverse to the
matrix with elements  Substituting (5) into (2), we
will find

(6)

where the true thermal conductivity coefficient is
given by the expression

(7)

The double sums in Eqs. (6) and (7) are also very
complex expressions in the case of a multicomponent
mixture of partially ionized gases, because the coeffi-
cients  are the elements of the matrix inverse to the
matrix  where, in turn, the elements are the ratios
of determinants of order  and  Further-
more, the system of equations obtained after the sub-
stitution of  from (1) into the system of mass con-
servation equations for the individual mixture compo-
nents turns out to be unsolved for the higher
derivatives. A numerical realization of such systems is
known to involve great difficulties (see, e.g., Tirskii,
1974).

For these reasons, to describe the diffusion-ther-
mal processes in a multicomponent mixture, it is con-
venient to have the defining relations (1) in the form of
the so-called Stefan–Maxwell relations (i.e., in the
form of relations solved for the thermodynamic diffu-
sion forces  via the f luxes —“forces via
fluxes”, but obtained by some special method – with-
out inverting the matrices ), with the binary diffu-
sion coefficients  entering into them instead of the
multicomponent diffusion coefficients . Such an
inverse transformation has the following form:

(8)
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An advantage of relations (8) is that the coefficients
 in them at a low density of the gas mixture are

almost independent of the concentrations of individ-
ual components (see, Chapman and Cowling, 1960).

A historical overview. Historically, relations (8)
(without thermal diffusion, ) were derived
phenomenologically by Stefan (1871) and Maxwell
(1868) under the assumption that the force acting on
particles of species α from particles of species β is pro-
portional to the difference of their diffusion velocities,
while the total force of resistance to the motion of par-
ticles of species α in the mixture is equal to the sum of
the independent forces of resistance from all the
remaining particles (of other species). Generalized
Stefan–Maxwell relations (including the thermal dif-
fusion and the influence of external mass forces) were
first obtained in the monograph by Hirschfelder et al.
(1961) by the methods of the kinetic theory of mono-
atomic gases in the first approximation of the Chap-
man–Enskog theory for the multicomponent diffu-
sion coefficients  and in the second approxima-
tion for the thermal diffusion coefficients 
Muckenfuss and Curtiss (1958) and Muckenfuss
(1973) derived these relations in the full second
approximation of the kinetic coefficients. Subse-
quently, unsuccessful attempts to obtain relations (8)
from the gas-kinetic theory in any approximation of
the transport coefficients were made in a number of
works. Therefore, Truesdell (1984) suggested that
relations (8) are not universal but are an approximate
result of the kinetic theory. Nevertheless, based on the
methodology of solving the system of Boltzmann
equations for partially ionized gases developed in the
monograph by Ferziger and Kaper (1976), this author
managed to derive the Stefan–Maxwell relation in
higher-order approximations of the diffusion coeffi-
cients (Kolesnichenko, 1979, 1981, 1982). This result
was also obtained by Kolesnikov and Tirskii (1982)
based on the methodology developed in the mono-
graph by Hirschfelder et al. (1961) and the paper by
Zhadov and Tirskii (2003)—when using the symmet-
ric multicomponent diffusion coefficients.

In addition, the Stefan–Maxwell relations were
derived by one of us by nonequilibrium thermody-
namics methods (Dissertation, 1973), which actually
proves that they are absolutely universal, i.e., their
application in modeling any mutually diffusing con-
tinuous media is justified. Kolesnichenko and Tirskii
(1976) applied the developed thermodynamic
approach to the description of nonideal (moderately
dense) mixtures of gases and liquids.

It is important to note that, by analogy with the
kinetic theory of transport processes in gases pre-
sented in the monograph by Ferziger and Kaper
(1976), and also in the thermodynamic approach, it is
convenient (see Kolesnichenko, 1994) to introduce
new transport coefficients for the description of ther-
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1[ ]Dαβ

2[ ] .TD α



SOLAR SYSTEM RESEARCH  Vol. 52  No. 1  2018

STEFAN-MAXWELL RELATIONS AND HEAT FLUX 47

mal diffusion effects − the so-called thermal diffusion
ratios 

 (9a)

 (9b)

In this case, Eq. (1) for the diffusion velocity  can
be written as a generalized Fick law:

(10)

while Eq. (2) for the heat f lux takes the form

(11)

Furthermore, the thermodynamic approach (Kole-
snichenko, 1994; 2017a) makes it possible to obtain the
following important relations that are identical to the
analogous relations of the kinetic theory (Curtiss,
1968; Ferziger and Kaper, 1976):

—the Stefan–Maxwell relations in a form conve-
nient for a practical solution of hydrodynamic prob-
lems,

(12)

—the expressions for the thermal diffusion ratios

(13)

which relate  to the coefficients  and 
—the expression for the true thermal conductivity

coefficient of a multicomponent mixture

(14)

—the system of equations to find the multicompo-
nent diffusion coefficients of a mixture  via the
binary (tabulated) diffusion coefficients 

(15)

Note that Eqs. (15) in the case of a binary mixture
make it possible to obtain the following expressions for
the coefficients 

(16)

For a three-component mixture from (15) we can
find

(17)

The remaining coefficients  are derived from
(17) by an appropriate permutation of indices.

We emphasize once again that, in contrast to the
gas-kinetic approach, the thermodynamic derivation
of all the above relations is not associated with the pos-
tulation of a specific form of intermolecular interac-
tion. That is why they are universal, i.e., suitable in
modeling diffusion-thermal processes for a broad class
of continuous media (polyatomic mixtures of gases,
dense gases, liquid solutions, etc.).

In addition to the above results, generalized Ste-
fan–Maxwell relations for a heterogeneous medium
and an expression for the total heat f lux associated
with them were derived thermodynamically (Kole-
snichenko and Maksimov, 1997, 2001). Based on

them, the filtering motions of a multiphase mixture in
a porous solid (with capillary properties), when the
mismatch between the pressures in the phases is taken
into account, and a generalized Darcy filtering law
extending the classical filtering theory to multiphase
media was obtained. These relations were also used in
constructing turbulent cosmic media that underlie the
statements and numerical simulations of the problems
of the formation, spatial structure, and evolution of
various astrophysical objects (in particular, gas-dust
protoplanetary disks (Marov and Kolesnichenko,
2013; Kolesnichenko, 2017b)).

Recently, based on the formalism of extended non-
equilibrium thermodynamics (Jou et al., 1993),
Zhdanov and Tirskii (2007) obtained a new (relax-
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ation) modification of the Stefan–Maxwell relations
that, given the contribution from the time and space
derivatives of the thermodynamic f luxes to these rela-
tions, removes the paradox of the classical approach
related to an infinite propagation speed of small com-
ponent concentration and temperature perturbations
(the result of using the “ordinary” linear dependences
of nonequilibrium thermodynamics for the corre-
sponding f luxes).

Finally, in a large series of works (Kolesnichenko,
1980, 1995, 1998, 2002, 2003, 2014a, 2014b, 2015,
2017a; Kolesnichenko and Marov, 1999, 2009; Marov
and Kolesnichenko, 2001, 2013) devoted to studying
the evolution of turbulent gas mixtures (partially ion-
ized plasma) and turbulent gas-dust media for various
natural and cosmic objects, the Onsager formalism of
nonequilibrium thermodynamics made it possible to
obtain various modifications of the Stefan–Maxwell
relations for the turbulent diffusion f luxes and turbu-
lent heat f luxes, which describe most completely the
turbulent heat and mass transport processes at the first
level of closing the averaged hydrodynamic-type
equations.

At the same time, it should be noted that until
recently a kinetic analysis of the diffusion-thermal
processes in a partially ionized medium based on the
generalized Stefan–Maxwell relations and the corre-
sponding expression for the heat f lux has been per-
formed in the literature without allowance for the
anisotropy of transport coefficients arising in the pres-
ence of an external magnetic field. However, these
effects often become significant when adequately
modeling the magnetized plasma of the ionosphere
and especially the magnetosphere of the planet. In
contrast to neutral gases that are characterized by
three spatial parameters, namely the range of intermo-
lecular forces, the mean free path, and the scale length
for changes in macroscopic characteristics, at least
three more spatial parameters—the Debye length and
two cyclotron radii (one for electrons and the other for
ions), play a significant role in plasma physics. For this
reason, one of the difficult problems of the kinetic
plasma theory is to derive the computational formulas
for anisotropic transport coefficients. In this paper,
based on the rigorous kinetic approach to modeling
partially or fully ionized gas mixtures (composed of
electrons, ions, and neutral atoms (molecules) of var-
ious types and satisfying the quasi-neutrality condi-
tion) developed in the monograph by Ferziger and
Kaper (1976), we derive the generalized Stefan–Max-
well relations for the diffusion fluxes in both longitu-
dinal and perpendicular and transverse directions to
the magnetic field . We also derive the algebraic
equations associated with diffusion-thermal processes
to determine various anisotropic transport coefficients
in a plasma under the influence of an external electro-
magnetic field: the multicomponent diffusion, thermal
conductivity, electric conductivity coefficients etc.

B

As an example, the new form of the Stefan–Max-
well relations with anisotropic transport coefficients
obtained here is used for the description of ambipolar
diffusion in the Earth’s ionospheric plasma (in the F
region). It generalizes the well-known information on
the ambipolar diffusion of a ternary mixture (elec-
trons, ions, neutral particles) to a multicomponent
plasma composed of electrons, ions of many species,
and various neutral particles in a strong magnetic field.

DEFINING EQUATIONS AND ANISOTROPIC 
MULTICOMPONENT DIFFUSION 

COEFFICIENTS
Under the main assumption that the gradients of

hydrodynamic quantities and the external forces cause
a small deviation of the distribution functions from the
equilibrium Maxwellian distribution  the modi-
fied Chapman–Enskog method of solving the system
of Boltzmann equations for an ionized quasi-neutral
N-component mixture of unexcited moderate-density
monoatomic gases in the isothermal case leads to the
following macroscopic first-order relations for the dif-
fusion velocities   of various compo-
nents and the total heat f lux  (Ferziger and Kaper,
1976):
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important to keep in mind that particle f luxes perpen-
dicular to both B and the directions of ordinary diffu-
sion and thermal diffusion exist in the case of an ion-
ized gas in the presence of a magnetic field. These
transverse particle f luxes are characterized by the
transverse diffusion, , and thermal diffusion, ,
coefficients. The symmetric3 multicomponent diffu-
sion coefficients  (  

 the thermal diffusion coefficients

( ), and the partial thermal conduc-

tivity coefficient  (in the absence of all diffusion
forces) appearing in relations (19) and (20) are
expressed via the coefficients   of the expan-

sion of the perturbation functionse  of the equilib-

rium Maxwell distributions  in series in orthogonal
Sonine polynomials as follows (see Ferziger and
Kaper, 1976; Kolesnichenko, 1982):

 (21a)

(21b)

 (21c)

The order of the approximation with
which the transport coefficients are determined corre-
sponds to the number of first terms retained in the
expansion of the coefficients of the perturbed distribu-
tion functions for the components in series in orthog-
onal polynomials. Thus,  and  are expressed
only via the zeroth coefficients, while  are expressed
only via the first expansion coefficient irrespective of
the number of approximations. However, these coeffi-
cients will depend on the number of retained expan-
sion terms, because they must be found from the sys-
tem of linear algebraic equations

3 The symmetric multicomponent diffusion coefficients in com-
plete agreement with the Onsager reciprocity relations in non-
equilibrium thermodynamics (De Groot and Mazur, 1964; Fer-
ziger and Kaper, 1976) are used in relations (18) and (19).
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Here,  is the Kronecker symbol;  is the

Gamma function;  are the coefficients (linear
combinations of reduced —integrals for simple
types of ions) expressed via the partial integral brackets
of Sonine polynomials of orders m and p as (see
Hirschfelder et al., 1961)

and possessing (according to the momentum conser-
vation law) the properties

(24)
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independent, which is easy to make sure by summing
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the equations for the perturbations  between the
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Much work was done in the literature to calculate
the —integrals as functions of the temperature for
several specific intermolecular interaction potentials
(see, e.g., Hirschfelder et al., 1961). The quantities

 for  appearing in the expressions for the
diffusion coefficients in the first and second approxi-
mations as well as for the thermal diffusion and ther-
mal conductivity coefficients in the first approxima-
tion4 written via the binary diffusion coefficients in the
first approximation (Ferziger and Kaper, 1976)

have the following form:

where  is the self-diffusion coefficient; the com-

binations of reduced integrals 

 
are close to unity (Chapman and Cowling, 1960; Fer-
ziger and Kaper, 1976).

Thermal diffusion ratios. Thus, if the quantities 

are assumed to be known, then the coefficients 

, and  can be calculated with any accuracy via
the solutions of system (22)–(24). It should be noted,

4 Here, as in the monograph by Ferziger and Kaper (1976), by the
first approximation to the coefficients  and  we mean the
first nonzero approximation.
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however, that, as in the case of a neutral gas, the coef-
ficients  are not the true thermal conductivity coef-
ficients. To obtain the true thermal conductivity coef-
ficients (calculated at ), the vectors  should
be eliminated from (19) using the diffusion relations
(18). This can be done if, respectively, the parallel,
perpendicular, and transverse thermal diffusion ratios

 are introduced for each mixture com-
ponent using the definitions

(26)

It should be noted that since the thermal diffusion
ratios relate the diffusion coefficients describing the
first-order transport effects to the thermal diffusion
coefficients describing the second-order effects, the

 approximation for the thermal diffusion ratio is
defined as

(27)

Given (26), the defining relations (18) and (19)
take the form

where  are the true thermal conductivity coeffi-
cients:
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tions of the thermal conductivity coefficients 
because the corresponding procedure leads to a two-
fold inversion of the matrices. One inversion is related
to finding the coefficients  and  from systems
(22), (23), and (25), and the other inversion is related
to the resolution of system (27) (Devoto, 1966, 1967).
The monograph by Ferziger and Kaper (1976) pro-
vides expressions for the coefficients  and  for
mixtures of neutral gases, which allow them to be cal-
culated in the first approximation directly via the coef-
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ficients  This result was generalized by Kole-
snichenko (1982) to the case of partially ionized mix-
tures of gases in a magnetic field:

(30)

(31)

This makes it possible to calculate the thermal con-
ductivity coefficients  and the thermal diffusion
ratios in the first approximation directly via 
i.e., without any precalculation of the coefficients 

, and  and subsequent solution of the system of

equations (26). Here,  is the th element of

the matrix inverse to  

 
Electric current density. Given (28a), the expres-

sion for the electric current density  (Ohm’s law for a
partially ionized gas) will be written as

(32)

where the quantity  is related to the thermodynamic
force  (3) by the formula
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while the coefficients  and  are expressed via the
diffusion and thermal diffusion coefficients, respec-
tively:

(34а)

(34b)

Here,   are the partial electric and thermo-
electric conductivity coefficients, respectively. The
elements of the complete electric conductivity, , and
thermoelectric conductivity, , tensors are obtained
by summing the partial coefficients over the indices.

Multicomponent diffusion coefficients. The system
of equations (22) can be rewritten is a clearer form that
allows us to determine the diffusion coefficients 
needed to calculate the diffusion velocities  For
simplicity, let  then,
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Solving system (36) for  and substituting the
result into Eqs. (35), we will obtain the following sys-
tem of algebraic equations that allow the anisotropic
multicomponent diffusion coefficients  to be
found via the binary diffusion coefficients  (Kole-
snichenko, 1982):
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(39)

where  are the binary diffusion
coefficients in the  approximation (“parallel” at

 and “perpendicular” at );  are the
correction factors taking into account the higher
approximations in the coefficients 

(40)

Transport coefficients  Systems (37) and (40a)
can be combined into the following algebraic relations
analogous to (15):
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where  is the mean inverse fre-
quency of collisions (along the magnetic field )
between particles of species α and β ( );

 is the reduced mass of a pair
of particles; 

Transport coefficients  and  It is convenient
to calculate the coefficients  and  jointly. Intro-
ducing the complex quantities  we
will rewrite (38) and (39) as follows:

(43)

Hence, given (40b), (40c), we will obtain the rela-
tions linking the multicomponent diffusion coeffi-
cients  with the diffusion coefficients of binary
mixtures in the second approximation:
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where  The correction  to the coeffi-
cients  can be easily inferred from (43) (Kole-
snichenko, 1979).

Let us also write out the formulas for the coeffi-
cients  in the case of a quasi-neutral gas formed by

electrons (α = 1), neutral atoms , and ions
(singly ionized atoms of the same species). Using then
the notation for the degree of ionization

 and neglecting the terms of order
, from (45) we will obtain

(49)
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In these formulas:  
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Finally, here we will give the expressions for the
partial anisotropic electric conductivity coefficients in
the case of a three-component mixture of a partially
ionized gas. According to (32), for the coefficients 
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(ν is the repulsion index) are deduced strictly analytically
and have the following form (Hirschfelder et al., 1961):

(57)

Here,   is the
deflection angle of the molecules in the center-of-
gravity coordinate system; for a given value of the
parameter ν the angle  does not depend on the rel-
ative velocity of the molecules g and the impact
parameter b separately, but is a function of the variable z.
Below the integral over z in (57) will be denoted by the
symbol  The difficulties of calculating (57) arise,
because the Coulomb potential is a long-range one.

Nevertheless, the -integrals can be calculated for
point centers of repulsion (this requires setting

 and ). For an unscreened Coulomb
potential with the cutoff radius5 at 

(58)

(where  is the Debye
screening length) the factor  can then be approx-
imated by the following quantity (Ferziger and Kaper,
1976):

(59)

where  In this case, the integral
(57) is calculated trivially, and we have the following

result:  =  ×

Given this expression, the binary diffusion coeffi-
cient (in the first approximation) and the mean
inverse collision frequency are defined as follows:

(60)

5 The cutoff means that when the impact parameter  exceeds the
Debye length no collisions occur ( ), while the upper limit
of integration in the integral (57) should be replaced by  This
replacement does not change noticeably the integral, except for the
case where the impact parameter  is very close to 
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“FORCES VIA FLUXES” RELATIONS. 
GENERALIZED STEFAN–MAXWELL 

RELATIONS
The system of equations (37)–(40), which relates

the multicomponent diffusion coefficients to the dif-
fusion coefficients of binary mixtures for various pairs
of mixture components, is often difficult to use in
solving specific problems. Furthermore, as has already
been noted, substituting Eqs. (18) and (19) for the
fluxes into the magnetohydrodynamic equations leads to
a system of equations that are unsolved for the higher
derivatives, which, in view of the absence of general
methods, leads to some difficulties in numerically solving
such equations. Therefore, it is convenient to have rela-
tions (18) solved for the thermodynamic diffusion forces

 via the fluxes  and written in the form of Stefan–
Maxwell relations that include the diffusion coefficients
in binary mixtures of gases  instead of the multi-

component diffusion coefficients .
Let us multiply both sides of Eqs. (37)–(39) by

 ( ) and sum the result over
the index β. Taking into account (28a), we will obtain
the following generalized Stefan–Maxwell relations
with anisotropic kinetic coefficients for multicompo-
nent diffusion in a strong magnetic field:

(61а)

(61b)

(61c)

Relations (61a) (along with (61b), (61c)) are not inde-
pendent: their sum over  gives an identity. An advantage
of these equations is that the coefficients  in them are
almost independent of the composition of gas mixtures at
a low density (i.e.,  (Braginskii, 1963).

In the case of a weak magnetic field, where it can be
assumed that   and 
summing relations (61) over  leads to Ste-
fan–Maxwell relations in the following standard form:
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where  –

  – 

is the mean mass velocity for particles of species α.
On the other hand, using the complete equation of

motion

for the continuum modeling an ionized gas as a whole
and the relation  for the partial pressure of
the α component, relations (61) can be written as the
equations of motion for the individual mixture com-
ponents. In the case of a quasi-neutral plasma, they
take the form

(63)

(64)

Here,  and
 are, respectively, the mean

longitudinal and mean transverse velocities of a parti-
cle of species α.

Anisotropic electric conductivity coefficients for a
multicomponent plasma in a strong magnetic field.
When using relations (42) for the multicomponent dif-
fusion coefficients  and formulas (34а) for the

electric conductivity coefficients ,

it is easy to obtain the following algebraic equations
relating the longitudinal electric conductivity coeffi-
cients  for a quasi-neutral multicomponent plasma
to the diffusion coefficients of binary mixtures:
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 we can obtain algebraic equations
convenient for determining the perpendicular and
transverse electric conductivity coefficients for a mul-
ticomponent plasma:

(66)

where

(67)

Analogous relations can be derived for the partial ther-
moelectric conductivity coefficients  

AMBIPOLAR IONOSPHERIC DIFFUSION
IN THE PRESENCE OF AN EXTERNAL 

ELECTROMAGNETIC FIELD
An important factor in ionospheric aeronomy is the

transport of charged particles by diffusion, which,
along with the photochemical processes, controls the
vertical distribution of ionization (Ratcliff, 1975). The
role of transport processes is particularly great in the F
region, where the mean free path and the lifetime of
charged particles increase rapidly with height (John-
son, 1951; Gershman, 1974). A number of additional
factors should be taken into account when describing
the diffusion of charged particles in a partially ionized
ionospheric plasma compared to the diffusion of
minor components under neutral atmosphere condi-
tions (Ferraro, 1945). First, these include the influ-
ence of the electric field of ambipolar diffusion that
arises upon the diffusion separation of lighter and
“faster” electrons (whose scale height is great) and
considerably “slower” ions hindering the relative dif-
fusion of these charged particles. Second, these
include the electrostatic forces arising during the col-
lisions of not only charged particles between them-
selves but also charged and neutral particles, when an
electric dipole moment is induced in the latter. One
peculiarity of the diffusion of charged particles is the
anisotropy due to the action of a magnetic field
(Spitzer, 1957; Goland, 1963; Rose and Clark, 1963).

In the case of a three-component plasma (e, i, m),
its electron and ion components under the polariza-
tion electric field arising in the gravitational field are
known (Dougherty, 1961; Rishbeth, 1964; Whitten
and Popov, 1977) to diffuse jointly (ambipolar diffu-
sion) with a common diffusion coefficient and a com-
mon hydrodynamic velocity. For an ionospheric
plasma composed of electrons, ions of many species,
and neutral particles the diffusion velocities of the
individual charged components are unequal, espe-
cially in the presence of concentration gradients and a
strong electromagnetic field, and must be determined
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by taking into account the condition for the longitudi-
nal electric field be approximately equal to zero (Fer-
raro, 1964; Schunk and Walker, 1972, 1973).

As an example of the approach proposed here, con-
sider the case where the interaction only between the
charged (indices  and ) and neutral (index m) plasma
components is taken into account and the collisions of
electrons and ions (of all species) between themselves6

are disregarded. In this case, we will assume the hydrody-
namic velocity  to be coincident with the neutral wind
velocity. We will use Eqs. (63) and (64) that (for a singly
ionized quasi-neutral plasma and with the above con-
straints) can be rewritten as

(68)

(69)

where

(70)

Here, for the purposes of simplification, we will
restrict ourselves to the first approximation for the
kinetic equations and will neglect the inertia of
charged particles and assume that 

Introducing the mobility coefficients for particles
of species β

(71)
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(where ), we will rewrite (68) and
(69) as

(73)

(74)

6 A generalization of the theory of ambipolar diffusion to the case
where the collisions of electrons with ions are taken into account
can be found, for example, in the monograph by Gershman
(1974).

α β

v

(1) , ( 1,2,..., ),m

mm

x xp n e Nα
α α α α

α

= − α =∑ w E G
D

� � �

α
α⊥ α∧ α α ⊥

α
−

α α α⊥ α∧ α⊥

+ =

+ + × −

∑ (1)

1

'( )

( ) ,

m

mm

x xp n e

с n e

w w E
D

B w w b G

(d d ) ln ,
( , , ).

s
s s s s T sp t pk T

s
α α α α α α≡ ∇ − ρ + ρ + ∇

= ⊥ ∧
G F v

�

.α ≡F g

−
β

β
β

−
− −

β β β β

⎡ ⎤
≡ ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= τ = γ⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑

�

1

1
1 1,

m

mm

m m

m

e xb
kT

ce m

D

B

2 22 2

1 2

2 22 2

,
11

1 ,
11

b cb
c b

c b cb
c b

β β
β⊥ −

ββ
−

β
β∧ −

ββ

γ
≡ =

+ γ+

≡ =
+ γ+

BB

B
BB

�

�

�

�

1( )m mm

−
β β βγ = ω τ∑

( ),b n eβ β β β β= −w E G� � � �

β⊥ β∧ β⊥ ⊥ β⊥ β β

β∧ ⊥ β⊥ β β

+ = −

+ − ×

'( )

'( ) ;

b n e

b n e

w w E G

E G b

hence it follows that

(75)

In this case, according to (73) and (74), Ohm’s law
for the current density vector  takes the form
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Any electric field produced by the tendency for the
electrons to rise above the ions will be vertical, because
the ionosphere is stratified horizontally. Let us now
choose the origin of a Cartesian coordinate system at
some point of the ionosphere in such a way that the 
and  axes are directed to the magnetic south and
east, respectively, and the  axis is directed upward.
Let us introduce the following notation: I is the coor-
dinate-independent (by our assumption) magnetic
inclination (dip); , and  are unit vectors in the 
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while the variable polarization field 
resulting from a partial compensation of positive and
negative charges should be excluded from consider-
ation for a quasi-neutral plasma (here,  is the
charge of ions of species α).

Considering below the ionosphere as a thin shell
with a current-nonconducting lower boundary, we
may set  (in view of the electric charge conser-
vation). It then follows from (76) that

(79)

Let us numerically estimate the conductivity coeffi-
cients  in the  region:  

 , where  is

the hydrogen atomic mass), mem ≈ 

   =

, and the inequalities 
hold in a wide range of heights. Then, 

 , and
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If the small terms are neglected, then relation (79),
given (80), turns into
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Let us now consider a region far from the magnetic
equator (when  in this case, the terms

 small compared to unity, may also be
neglected in Eq. (81); it then follows from (81) that
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cal electric field component  from Eqs. (75) written
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velocities of ions of species  and electrons we will
then obtain the following expressions:
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the electrostatic polarization field  (but without the
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expressions for the diffusion velocities  derived in
this approach do not give an accurate approximation
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when discarding the terms in them. At the same
time, in this paper, refined expressions for  were
derived using relations (75) and (79).

If the production rate of particles of species  in
the ionosphere through all aeronomic reactions is
denoted by  (see, e.g., Stubbe, 1970), then the fol-
lowing equation can serve as a good approximation of
the continuity equation for the α ion component:

(86)

where  is

the effective ambipolar diffusion coefficient. This
equation confirms the conclusions about the necessity
of modifying the classical theory of ambipolar diffu-
sion when a magnetic field is present.

CONCLUSIONS
The derivation of the closed systems of hydrody-

namic equations for multicomponent, partially or fully
ionized gas mixtures also necessarily includes the der-
ivation of the heat and mass transport relations that
link the thermodynamic mass and energy f luxes with
the gradients of the main hydrodynamic variables and
external forces (gravitational and electromagnetic)
acting on the individual components of the medium. A
general form of such defining relations derived on the
basis of both thermodynamic and rigorous gas-kinetic
approaches is presented in many known monographs
(De Groot and Mazur, 1964; Chapman and Cowling,
1960; Hirschfelder et al., 1961; Ferziger and Kaper,
1976; Sedov, 1984; Frank-Kamenetskii, 1987). How-
ever, so far in the literature there is still no consensus
on the efficiency and appropriateness of using a spe-
cific form of the transport relations in the case of mul-
ticomponent gas mixtures and plasma derived using
different approaches. The classical transport relations
derived in both nonequilibrium thermodynamics and
gas-kinetic theory correspond to linear relations
between the thermodynamic diffusion and heat f luxes
on the one hand and the thermodynamic diffusion
forces and the temperature gradient on the other (this
method of description may be called “fluxes via
forces”). In this case, the standard Chapman–Enskog
method of solving the system of Boltzmann equations
for N-component mixtures of monoatomic molecules
leads to fairly complex formulas for calculating the
transport coefficients (in particular, the multicompo-
nent diffusion and thermal diffusion coefficients) in
the form of the ratios of determinants of order 
to determinants of order  (where  is the order of
the approximation with which these coefficients are

determined). 
1
At the same time, another representation

of the transport relations is also possible, where the inter-
related thermodynamic fluxes and forces change places,
so that we can write the equations for the diffusion fluxes
in the form of the so-called Stefan –Maxwell relations
(“forces via f luxes”) and the expression for the heat
flux in a form resolved for the temperature gradient. In
this case, it is important to note that only the binary
diffusion coefficients for multicomponent mixtures of
gases and plasma (given the correction factors for the
higher approximations) enter into this new form of the
transport relations.

Until recently, a kinetic analysis of the diffusion-
thermal processes in a partially ionized medium based
on the generalized Stefan–Maxwell relations and the
corresponding expression for the heat f lux has been
performed in the literature without allowance for the
anisotropy of transport coefficients arising in the pres-
ence of an external magnetic field. In this paper, based
on the rigorous kinetic approach to modeling partially
ionized gases developed in the monograph by Ferziger
and Kaper (1976), we have derived the generalized
Stefan–Maxwell relations for the diffusion f luxes in
the longitudinal, perpendicular, and transverse direc-
tions to the magnetic field and the system of algebraic
equations associated with the diffusion-thermal pro-
cesses in a plasma with an external magnetic field to
determine various anisotropic transport coefficients.
It is important to note that allowance for the anisot-
ropy of transport coefficients caused by the action of a
magnetic field still remains a key problem in multi-
component plasma physics (Spitzer, 1957; Goland,
1963; Rose and Clarke, 1963; Gershman, 1974). The
system of anisotropic Stefan–Maxwell relations
derived here, which is convenient for the solution of
MHD equations, allows these equations to be written
in a normal Cauchy form, i.e., in a form resolved for
the first coordinate derivatives of the temperature,
concentrations, and fluxes. The continuum-kinetic
models and efficient numerical algorithms for solving
heat and mass transport problems in a wide range of
Knudsen numbers (see, e.g., Zhdanov and Tirskii
2007) are known to have been developed precisely for
such cases.

The results obtained here are used to for the
description of ambipolar diffusion in the ionospheric
plasma of the planet (in the  region), which general-
izes the known information on the ambipolar diffu-
sion of a ternary mixture (composed of electrons, ions,
and neutral particles) to a multicomponent plasma in
a strong electromagnetic field.
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