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Abstract—Gravitational instability of the dust layer formed after the aggregates of dust particles settle toward
the midplane of a protoplanetary disk under turbulence is considered. A linearized system of hydrodynamic
equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation
is solved. Turbulent diffusion and the velocity dispersion of solid particles and the perturbation of gas azi-
muthal velocity in the layer upon the transfer of angular momentum from the dust phase due to gas drag are
taken into account. Such an interaction of the particles and the gas establishes upper and lower bounds on the
perturbation wavelength that renders the instability possible. The dispersion equation for the layer in the case
when the ratio of surface densities of the dust phase and the gas in the layer is well above unity is obtained and
solved. An approximate gravitational instability criterion, which takes the size-dependent stopping time of a
particle (aggregate) in the gas into account, is derived. The following parameters of the layer instability are
calculated: the wavelength range of its subsistence and the dependence of the perturbation growth rate on the
perturbation wavelength in the circumsolar disk at a radial distance of 1 and 10 AU. It is demonstrated that at
a distance of 1 AU, the gas–dust disk should be enriched with solids by a factor of 5–10 relative to the initial
abundance as well as the particle aggregates should grow to the sizes higher than about 0.3 m in order for the
instability to emerge in the layer in the available turbulence models. Such high disk enrichment and aggregate
growth is not needed at a distance of 10 AU. The conditions under which this gravitational instability in the
layer may be examined with no allowance made for the transfer of angular momentum from the gas in the
layer to the gas in a protoplanetary disk outside the layer are discussed.

Keywords: planet formation, protoplanetary disk, gravitational instability, planetesimals
DOI: 10.1134/S0038094616060071

INTRODUCTION

The process of formation of self-gravitating plane-
tesimals (≥1 km in size) in a protoplanetary disk
remains understudied. At least two obstacles to their
formation are known. The first one is the inefficiency
of growth (by sticking) of dust particle aggregates with
boulder sizes ranging from 0.1 to 10 m (and above).
The second one consists in that such bodies have the
maximum velocity of radial drift to the disk center and
thus may fall to the Sun (or the central star) from a dis-
tance of 1 AU in just 100 years (bodies with sizes in the
decimeter to meter range) or several thousand years
(10-meter bodies) (Weidenschilling, 1977). The pres-
ence of these barriers motivates the search for other
options for the formation of self-gravitating planetesi-
mals. It is likely that the studies into gravitational
instability (GI) in the dust layer, which forms as parti-
cles settle toward the midplane of a gas–dust proto-
planetary disk and, upon reaching critical density

 =  where  is the mass of the
central star and r is the distance to it, segregates into

ring dust condensations (Safronov, 1969), were
chronologically the first to be initiated within this
research trend. At distance r = 1 AU, relation

 where  is the gas density, holds, while
 at 10 AU, and the spatial density of the

dust phase before dust deposition at any distance r is
 The term “dust layer” or “particle layer”

is misleading, since the typical size of “particles” in it
may reach 10 cm–1 m (Safronov, 1991; Cuzzi et al.,
1993). They grow this large by coalescing in collisions
while settling to the midplane (or within the layer).
Therefore, the dust phase in the layer may be denoted
as a solid coarse phase. Note that the volume fraction
of the dust phase in the layer is very small (even at the
critical density):  ∼  at distances
ranging from 1 to 10 AU, where  is the solid particle
density.

Gas turbulence hinders the process of thinning and
densifying of the dust layer to the state in which GI is
possible. Turbulence remains localized near the mid-
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lplane in the region of the dust layer even after global
turbulence in the disk subsides (Weidenschilling,
1984). It is generated by shear f low induced by the dif-
ference between the velocities of gas rotation in the
dust layer and in the remaining (upper- and lower-
lying) parts of the disk. This difference is attributed to
the fact that gas in the dust layer, the mass of which
dominated by dust, is accelerated by solid particles
through viscous drag to an almost Keplerian velocity,
while gas outside the layer f lows with a lower velocity
supported by the radial pressure gradient (Goldreich
and Ward, 1973). Considerable shear stresses are pro-
duced owing to a large vertical gradient of orbital
velocity of gas. These stresses induce turbulence,
which establishes turbulent diffusion of particles, pre-
vents their further sedimentation, and stabilizes the
layer thickness (Weidenschilling, 1984; Cuzzi et al.,
1993).

Shear stresses not only induce turbulence in the
layer, but also establish the transfer of angular
momentum from the dust layer to the surrounding
(upper- and lower-lying) gas in the disk. Conse-
quently, the particle orbital radii are reduced, leading
to radial compression of the layer. As a result, the layer
density may reach the value needed for GI (Youdin
and Chiang, 2004; Makalkin and Ziglina, 2004). At
the same time, it was noted that the efficiency of tur-
bulence may be too low to prevent its decay and the
rise of GI in a thin sublayer in the midplane of the dust
layer (Safronov, 1991), especially in the peripheral
disk regions (Makalkin and Ziglina, 2004).

Certain studies where the influence of solid parti-
cles on turbulence in the disk and in the dust layer was
taken into account analytically (Kolesnichenko, 2000;
Kolesnichenko and Marov, 2006) and (for a single
parameter set) numerically (Dobrovolskis, 1999) have
been published. The particles suppress turbulence
considerably and reduce the turbulent viscosity and
the thickness of the dust layer.

Coradini et al. (1981) were the first to analyze GI in
the dust layer of a protoplanetary disk with the inter-
action between dust (monodisperse) and gas phases
taken into account. This interaction was represented
by the viscous drag force. The system of hydrodynamic
(motion and continuity) equations for density and
velocity perturbations of each phase was solved
numerically. The key difference between these results
and the earlier single-phase models (Safronov, 1969;
Goldreich and Ward, 1973) consists in a considerable
increase in the time of GI development due to drag
between the dust particles and gas. The results of ana-
lytical evaluation of the effect of gas drag on GI in the
dust layer (Safronov, 1991) agreed with the numerical
data provided by (Coradini et al., 1981) and demon-
strated a significant increase in the characteristic time
of GI development. It was also determined that the
density corresponding to the onset of instability is sim-
ilar to the one found in the models that disregard the

gas (at  ). Although the estimate
obtained by Safronov (1991) included only the radial
perturbations of dust movement (chaotic particle
velocities were neglected), it revealed a mostly accu-
rate GI pattern, since the specific angular momentum
of matter in the dust layer was conserved with a suffi-
cient accuracy. Marov et al. (2008) presented a model
of GI in the dust layer, where a system of equations for
perturbations of radial and azimuthal velocities and
surface densities of gas and dust phases in the layer was
solved analytically. The dispersion equation of the
fifth order in complex growth rate was obtained. Its
solution for small particles with their stopping time in
gas being much shorter than the orbital Keplerian
period ( ) provided a formula for the growth
rate, which yielded a characteristic time of GI devel-
opment close to that obtained with the simplified esti-
mate (Safronov, 1991). The maximum wavelength at
which GI may emerge in the presence of gas drag
(Coradini et al., 1981; Marov et al., 2008) is close to
the wavelength derived in the model with no gas
(Safronov, 1969; Goldreich and Ward, 1973). The
point is that the maximum wavelength is related to the
condition of conservation of the total angular momen-
tum, which is governed by dust dominating the dust
layer. The minimum wavelength needed for GI is
defined differently: it is affected considerably by tur-
bulent particle diffusion. All these results were
obtained in models with different velocities of gas and
dust phases (two-fluid model). A number of studies
relying on the one-fluid model with equal velocities of
gas and dust have also been published. However, the
development of GI in this model requires an unnatu-
rally large layer density (Coradini et al., 1981;
Safronov, 1991), which corresponds to a layer thick-
ness of 1–100 m that is unrealistically small if even the
slightest turbulence is present.

A term representing turbulent diffusion of solid
particles in the radial direction was introduced into the
continuity equation for the dust layer in (Goodman
and Pindor, 2000; Youdin, 2011; Shariff and Cuzzi,
2011). In earlier calculations, only the vertical turbu-
lent particle diffusion, which defines the layer thick-
ness, was taken into account (Cuzzi et al., 1993). In
common with vertical particle diffusion, the radial one
inhibits GI, since it prevents densification and induces
the dispersion of forming annular condensations in
the layer if the wavelength of density perturbations is
insufficiently long. As a result, both the minimum per-
turbation wavelength needed for GI and the wave-
length with the highest rate of perturbation growth
increase considerably. This is essential to estimating
the characteristic sizes and masses of forming dust
clusters (precursors of planetesimals). However, the
gas f low along circular orbits was assumed to be unper-
turbed in these studies. Therefore, the equations for
gas perturbations were lacking, and azimuthal pertur-
bations of gas velocity, which govern the angular
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momentum transfer, were neglected. Thus, the angu-
lar momentum in unit volume of the disk medium
enriched with dust was not conserved in the indicated
studies, which led to excess transfer of the angular
momentum from the dust phase to gas. As a result, the
upper bound on the wavelength enabling the growth of
density perturbations in the dust phase was removed
without a reasonable basis, and the perturbation
growth rate was distorted. The results of this analysis of
GI imply that it may emerge at dust continuum densi-
ties being 2–3 orders of magnitude lower than ρcr and
that the perturbation wavelengths are bounded from
the above only by the radial disk size.

In addition to turbulent diffusion, the perturba-
tions of gas velocity and density were taken into
account in the study of GI in (Takahashi and Inutsuka,
2014). The corresponding equations were introduced
into the system, which was then analyzed and solved
numerically for the peripheral protoplanetary disk
region (r = 100 AU) that is located at a great distance
from the region of planet formation. At 100 AU, the
gas–dust disk as a whole (gas included) is close to the
GI state: GI parameter Q (Toomre, 1964) was close to
3 in (Takahashi and Inutsuka, 2014) even in the case of
10-fold disk depletion with gas, while Q ~ 10 at a dis-
tance of 10 AU (instability emerges at ). The
solution was obtained only for small particles with
Stokes number  Parameter  is the
dimensionless particle stopping time in gas and serves
as the measure of dynamic influence of gas drag on the
particle movement.

The solution obtained in (Takahashi and Inutsuka,
2014) yields the maximum growth rate at a wavelength
shorter than the disk thickness and, at the same time,
relies on the two-dimensional (thickness-averaged)
model. Therefore, the validity of these results is debat-
able. Most significantly, this model does not take the
sedimentation of particles into account and is thus not
suitable for the analysis of GI in the region of planet
formation.

It was proposed in recent years that streaming
instability, which may emerge before GI and take its
place, is more probable in the process of formation of
planetesimals (Johansen et al., 2014). Streaming insta-
bility is caused by the fact that dust particles, which
move faster along an orbit than the gas, accelerate this
gas and decelerate themselves due to gas drag. Since
the angular momentum is conserved, particles drift
radially inward, and gas f lows outward. The linear per-
turbation of these two opposite radial f lows has a sin-
gle growing mode corresponding to the dust phase
compaction (Youdin and Goodman, 2005). Numeri-
cal modeling demonstrates that the dust phase density
may exceed the gas density in the midplane by a factor
of 100–300 in the case of large dust aggregates with
Stokes number St ~ 0.3 in a disk with mass fraction of
solids Z = 0.02 (higher than the protosolar value Z =
0.015) and with mutual collisions taken into account

1Q (

St 0.01.= sSt t≡ Ω

(Johansen et al., 2012). The density then exceeds the
critical density for GI, and the gravitational collapse of
particle clumps ensues. However, the theory of
streaming instability is not without its problems. Spe-
cifically, the equations of hydrodynamics of a two-
phase medium do not include turbulent viscosity (the
gas f low equation) and turbulent diffusion (continuity
equations of both phases), although even a slight tur-
bulence may stir particles and prevent them from
clumping (Bai and Stone, 2010). This should be appli-
cable not only to turbulence generated by external
sources, but also to turbulence induced by the stream-
ing instability itself. The results of our calculations
reported below also speak in favor of this: they demon-
strate that GI in a layer with turbulence in it being
induced by the Kelvin–Helmholtz instability is sup-
pressed markedly by turbulent diffusion of particles in
the radial direction. In addition, it is still not clear why
a hundred-fold increase in the dust phase density in
condensations (from  ≈ 10 to 103) is triggered by
just a slight change (by a factor of 1.5–2) with mass
fraction of solids Z, which increases from 0.02 to 0.03
(Bai and Stone, 2010) or from Z = 0.01 to Z = 0.02
(Johansen et al., 2014). Lastly, the mass fraction of
solids is Z = 0.005 in the inner ice-free region of a pro-
toplanetary disk prior to the onset of gas loss from the
disk (Lodders, 2003); therefore, the gas abundance
needs to be reduced by a factor of 4–5 in order for
streaming instability to become efficient here. At the
same time, if a sufficient amount of solid matter is
accumulated in the inner (along r) region of the dust
layer, GI is possible (Youdin and Chiang, 2004;
Makalkin and Ziglina, 2004). Thus, it is still early to
say that the problem of gravitational instability of the
dust phase in the disk as a mechanism of formation of
planetesimals has lost its relevance.

In the present study, GI in the dust layer of a pro-
toplanetary disk is analyzed in the context of linear
dynamics, which characterizes radial perturbations of
parameters of solid (monodisperse) and gas phases of
an axially symmetric thickness-averaged layer on the
assumption that the perturbation wavelength is much
shorter than the disk radius. The incompressible gas
approximation is substantiated and applied; as a
result, the variables to be determined are the perturba-
tions of radial velocity and surface density of the dust
phase and the perturbations of azimuthal velocities of
both phases. The equations contain terms representing
the influence of gas drag on solid bodies (dust particles
aggregates), turbulent gas viscosity, turbulent diffusion
of bodies, and root-mean-square (rms) velocities of
bodies in turbulent gas. The transfer of angular
momentum from the dust phase to the gas in the layer
is taken into account, while the transfer of angular
momentum to the remaining gas lying above and
below the layer in the disk is neglected. This approxi-
mation is justified if GI in the layer develops faster
than the transfer of its angular momentum to the
remaining gas. Parameter perturbations are related to

p gρ ρ
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the perturbation of the self-gravity of the layer, which
is calculated with the layer thickness taken into
account. The thickness itself also depends on self-
gravity, solar gravity, and vertical turbulent particle
diffusion.

The formulation of the problem is discussed in the
next section. The incompressible gas approximation is
also substantiated there, and the basic equations are
given. The fourth-degree dispersion equation is then
derived, and it is demonstrated that this equation may
be simplified and reduced to a cubic one, which is
solved in the present study, in the dust layer at the
characteristic distances of planet formation, where

. It is also shown that the cubic equa-
tion may be reduced to a quadratic one in the case of
sufficiently small particles. The solution of this qua-
dratic equation is used to derive the modified GI cri-
terion incorporating the particle Stokes number. The
results of calculations (critical values of surface density
of the dust phase at different values of parameter St,
the wavelength range where GI is possible, and the
perturbation development rate for various wavelengths
and particle parameters) are presented in the subse-
quent section. The characteristic equation is solved
numerically with the parameters of the circumsolar
protoplanetary disk for two radial distances in the
region of planet formation: r = 1 and 10 AU. The
results (specifically, the surface density of the dust
phase, the sizes of dust aggregates, and the turbulent
viscosity enabling GI at various radial distances) are
then discussed. The conditions under which the trans-
fer of angular momentum from gas in the layer to gas
outside the layer may be neglected are estimated.
Conclusions regarding the emergence of GI at various
radial distances are made. The prospects for further
study of GI in a protoplanetary disk are considered.

DUST LAYER PARAMETERS
Let us consider the GI condition in a layer where its

mass is dominated by the dust phase. It is thus called
the dust layer, although it would be more accurate to
call it the dust–gas layer, since gas, which dominates
the layer volume, influences the dynamics of solid
particles. These particles (aggregates of dust particles)
form such a layer by settling toward the disk midplane
along with the particle growth in collisions and/or tur-
bulence decay in a protoplanetary disk. The layer
thickness is several orders of magnitude smaller than
the protoplanetary disk thickness defined by the gas.

When the sound speed in the gas remains constant
throughout the disk thickness, the vertical profile of
gas density is Gaussian:  ∝  The
gas density scale height of the protoplanetary disk is

(1)

Here,  is the isothermal sound speed, Ω is the
Keplerian angular velocity defined by the gravity of the

p g 1ε = ρ ρ @

g( )zρ 2 2
gexp( 2 ).z h−

g s .h c= Ω

sс

central star, and  where T is temperature
and Rg is the gas constant. The mean molar mass  is
2.34 for the gas with a protosolar composition (Lod-
ders, 2003). The following relation is valid in the case
of a Gaussian vertical density profile:

(2)

where  is the gas surface density in the disk, and 
is the gas density in the disk midplane (all parameters
are functions of radial coordinate r).

The vertical density profile of the dust phase in the
dust layer is defined by the turbulent diffusion coeffi-
cient for particles, which remains constant in the ver-
tical direction (Dubrulle et al., 1995) when particles
are sufficiently small (St ≤ 1). If this is the case, the
vertical density profile of the dust phase is, in common
with that of gas, Gaussian:  = .
Therefore, relation  =  =  holds
true. Here,  is the surface density of the dust phase
in the layer,  is the spatial density of the dust phase
(distributed density of solids) in the disk midplane, 
is the density scale height of the dust layer, and  is
its effective thickness (homogeneous layer thickness).
Since  the gas density throughout the entire
layer thickness is almost equal to the density in the
midplane; therefore, gas surface density  in the
layer may be defined as  =  Using the last
two equalities, one may derive a relation for parameter
ε, which characterizes the degree of enrichment of the
layer with dust matter:

(3)

The  equality is satisfied prior to the onset of
sedimentation of solid particles. In addition, the initial
surface density of dust matter  is related to the sur-
face density of gas as  where Z is the mass
fraction of the solid (dust) phase in the disk. The value
of Z varies from ≈0.005 at radial distance r = 1 AU,
where ice had evaporated, to ≈0.015 at r = 10 AU
(Lodders, 2003). Following sedimentation and large-
scale radial transfer of dust matter, its surface density
in the layer  deviates from the initial value:

 The sedimentation of dust should yield
 since small dust particles are not involved in this

process and in the layer formation; they remain dis-
tributed throughout the entire disk thickness even
under a very weak turbulence. At the same time, the
radial drift of particles in the layer may be accompa-
nied by radial compaction of the layer with an increase
in its surface density  (Youdin and Chiang, 2004;
Makalkin and Ziglina, 2004), which gives 
Owing to the fact that the value of β is uncertain, ratio

 also remains ill-defined; therefore,

2
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parameter ε is calculated using the specified values of
 and ; height  which depends on temperature

in accordance with (1); and height  which is defined
by Eqs. (11) and (18) given below. Relying on Eq. (2),
a similar relation for dust matter below Eq. (2), and
Eq. (3), one obtains the following expression for ε,
which is needed to calculate GI parameters in the
layer:

(4)

The surface densities in (4) are set parameters,
height  is determined from (1) for a given tempera-
ture T, and height  is defined below.

The scale height hp of the dust layer with a Gauss-
ian vertical density distribution was obtained with par-
ticle turbulent diffusion, gas drag (Dubrulle et al.,
1995), and self-gravity of the dust layer (Youdin, 2011)
taken into consideration:

(5)

It is taken into account here that the turbulent diffusiv-
ity for solid particles in the vertical direction, Dz, is
almost equal to the gas turbulent diffusion coefficient
(Dubrulle et al., 1995; Youdin and Lithwick, 2007),
which matches its kinematic turbulent viscosity ν;
thus,  Diffusivity Dz differs from the particle
turbulent diffusivity in the radial direction (Youdin
and Lithwick, 2007). Parameter ψ in Eq. (5) rep-
resents additional compression of the dust layer in the
vertical direction due to an increase in the vertical
component of the gravitational force caused by self-
gravity of the layer (Youdin, 2011). Length scale

 related to viscosity and rotation, is dis-
cussed below. Particle Stokes number  is also
found at the right-hand side of relation (5).

Relation (5) and the Stokes number include char-
acteristic particle stopping time  in gas. In the case of
small particles with their radius a satisfying the
inequality  (  is the mean free path of mol-
ecules), time  depends on the molecule mean ther-
mal velocity close to cs (Epstein f low regime). Time 
for larger particles ( ) depends on the mean
velocity of particles relative to gas, and the drag force
is defined by the Stokes formula (Stokes f low regime).
Time  for both regimes may be expressed in terms of
gas density ρg (Cuzzi et al., 1993; Dubrulle et al., 1995)
or gas surface density  in the disk (Youdin, 2011). In
order to do that, one should use the above formulas
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that relate the following quantities: ρg →  → Hg →
hg =  As a result, the following is obtained for :

(6)

Here,  is the density of material of a solid particle
(body) that is a highly porous, loose aggregate of dust
particles. The mean free path of molecules  may be
written as

(7)

where  is the proton mass, and Qμ ≈  ≈ 3 × 10−15 cm2

is the mean collision cross section of molecules. In the
circumsolar disk,  cm at distance r = 1 AU, and

 m at distance r = 10 AU. Therefore, decimeter-
sized bodies should be in the Stokes deceleration
regime at 1 AU and in the Epstein regime at 10 AU.

The initial formula for stopping time in the Stokes
flow regime (  in (6)) is as follows:

Drag coefficient  depends on Reynolds number
 where  is the

kinematic molecular viscosity of gas, and V and U are
the particle and gas velocities. At , coefficient

 which yields the second formula in (6).
According to our calculations, the condition  is
satisfied within the dust layer in a wide range of proto-
planetary disk parameters for particle sizes  0.8–1 m
at distance r = 1 AU and  6–10 m at distance 10 AU.
The particle size ranges depend mainly on density 
of the material of solid bodies and gas density .

Dimensionless parameter ψ in Eq. (5) (Youdin,
2011) is given by

(8)

The ratio of vertical accelerations of the forces of
the layer self-gravity and the gravity of the central star
is found at the right-hand side of Eq. (8). Self-gravity
has already been taken into account in earlier studies
of GI in the dust layer (Safronov, 1969), although the
dependence of the layer thickness on gas drag and ver-
tical turbulent particle diffusion, which is present in
Eq. (5), was neglected.

In the case when turbulence extends to a consider-
able part of the protoplanetary disk thickness, the
kinematic turbulent viscosity ν in (5) may be written
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using α-parameterization (Shakura and Sunyaev,
1973):  where  The mean velocity of
the largest turbulent eddies is  and their
characteristic turnover time is  (Shakura et al.,
1978; Dubrulle et al., 1995; Youdin, 2011). The fol-
lowing relation between the above-indicated turbu-
lence parameters is then obtained with (1) taken into
account: 

However, the effect of the dust phase (mass and
heat transfer) on the coefficient of turbulent viscosity
should also be taken into account, and the following
correction factor thus needs to be introduced into the
formula for ν (Kolesnichenko and Marov, 2006):

(9)

where Ri is the Richardson number, K is the Kolmog-
orov number, and Sc is the Schmidt number, which is
written as  =  (Youdin and Lithwick,
2007) for the dust layer and shear f low U = U(z). Using
the expressions for Ri and K (see (Kolesnichenko and
Marov, 2006), formulas (201) and (202)) and the
parameter values for a protoplanetary disk and the
dust layer found in the present study, we have obtained
an approximate estimate  A close value

 is provided by the numerical model of
(Dobrovolskis et al., 1999), as one can see from com-
paring turbulent viscosities on Figs. 5 and 6 found in
the indicated paper.

The following expression for the coefficient of tur-
bulent viscosity is obtained within the α-model:

(10)

where

(11)

is the rms turbulent velocity of gas (the largest eddies)
in the dust layer. Coefficient θ is introduced into (10)
and (11) in order to include additional attenuation of
turbulence by particles. Inserting expression (10) for
the kinematic viscosity into (5) with (8) taken into
account, we obtain

(12)

where

(13)

is the gravitational length scale that is  times smaller
than the maximum perturbation wavelength at which
GI in the dust layer is possible (Safronov, 1991). Rela-
tion (12) for  (without θ) was obtained in (Youdin,
2011). It was also demonstrated there that this relation
holds true both at  (small particles) and at
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Even if global turbulence characterized by the α-
model of viscosity decays to a very low level of α <
10−6–10−7, “local” turbulence generated by shear
stresses between the gas in the layer and the gas above
and below the layer persists. The dust layer resides in
this turbulent layer, which is similar to an Ekman
boundary layer. Ekman length scale  for the
shear turbulent layer in the disk is (Goldreich and
Ward, 1973)

(14)

Turbulent layer thickness  may not be smaller
than the Ekman one ( ), but may be larger
than homogeneous layer height  at large particle
sizes (St ~ 1) (Cuzzi et al., 1993; Dobrovolskis et al.,
1999). We assume that the turbulent layer thickness
may be larger than the Ekman one at small particle
sizes, when turbulence is associated with the Kelvin–
Helmholtz instability (Youdin and Chiang, 2004). It
may then be assumed that the thicknesses of the turbu-
lent layer and the dust layer are equal.

Re* in Eq. (14) is the critical Reynolds number, the
value of which for protoplanetary disks has not been
determined reliably. It was assumed in (Goldreich and
Ward, 1973) that Re* = 500, Cuzzi et al. (1993) varied
Re* within the range of 45–180, and Re* = 20 was
adopted in (Dobrovolskis et al., 1999). The value of
Re* in our GI modeling is varied from 20 to 200.

Parameter  in (14) is the difference between
azimuthal gas velocities within the dust layer and out-
side of it. Since this velocity within the layer is close to
the Keplerian circular velocity, it was assumed in the
majority of studies that these velocities are equal.
However, the difference may be as large as 10% if the
ratio of densities of the dust phase and the gas in the
layer is ε = 10 (ε is defined by formula (3)) and 
This follows from the relation derived by (Makalkin
and Ziglina, 2004) with the use of formulas for regular
velocities of solid particles relative to gas (Nakagawa
et al., 1986):

(15)

Parameter  in (15) is the difference between the
Keplerian circular velocity and the gas orbital velocity
outside the layer:

(16)

where P is the gas pressure. A relation equivalent to
(15) was also derived in (Youdin and Chiang, 2004),
but parameter C was left out (i.e., the relation held true
for small particles). At  and , velocity dif-
ference  is as large as 40–50 m/s at distance r = 1 AU
and may be somewhat lower at r = 10 AU (depending
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on temperature distribution ). In the case of tur-
bulence in an Ekman-like layer, the kinematic viscos-
ity is defined, with (14) taken into account, by the fol-
lowing equation:

(17)

where  just as in (11), is the rms turbulent gas veloc-
ity in the largest eddies:

(18)
Equations (17) and (18) differ from the relations

found in (Goldreich and Ward, 1973; Dobrovolskis et
al., 1999) only in the additional factor θ, which char-
acterizes the attenuation of turbulence by solid parti-
cles. Inserting viscosity ν from Eq. (17) into Eq. (5)
with regard to (8), we obtain the following expression
for the scale height of the dust layer in the case of local
shear turbulence with gas drag, attenuation of turbu-
lence by particles, and self-gravity of the layer taken
into account:

(19)

where  is defined by (13). In common with the layer
scale height  the semithickness of the homogeneous
layer, which is equal to  may be both lower and
higher (depending on the sizes of particles governing
gas drag at ) than the Ekman layer thickness,
while turbulent layer thickness  may not be smaller
than the Ekman one  It follows that the turbulent
viscosity, the rms turbulent gas velocity, and the scale
height of the dust layer, which are defined by relations
(10)–(12) and (17)–(19) that include parameter θ,
may be overstated at  (when ), since
the attenuation of turbulence at such a ratio of thick-
nesses should not occur in the upper part of the turbu-
lent layer where the particle abundance is reduced
greatly.

The particle turbulent diffusivity in radial direc-
tion, Dr, is also important for the analysis of GI in the
layer. Youdin and Lithwick (2007) have demonstrated
that Dr differs from the corresponding diffusivity in the
vertical direction (Dz) found in Eq. (5). This difference
becomes significant at large dimensionless stopping
times  (i.e., at large particle sizes). The follow-
ing approximate relation (Youdin, 2011) containing
Schmidt number Sc may be written for coefficient Dr,
which is hereinafter referred to as D:

(20)
The rms velocity of solid particles in the turbulent

layer is defined approximately (Youdin, 2011; Völk
et al., 1980) as

(21)

( )T r

2 2
2g g
E2 ,

Re*
V V

l
θΔ

ν = = θ Ω =
ΩΩ

g,V

g g Re*.V V= θΔ

2 2
p E ,

StG Gh l l lθ= + −

Gl
p,h

p2 ,hπ

St ~ 1
th

E.l

St 1,≥ t E p,h l h≥ ≥

S t 1)

ν = = + = ν +2 2Sc 1 St 4 or (1 St 4).D D

p g 1 St ,V V= +

where rms gas velocity  is defined by equalities (11)
or (18) depending on the turbulence type.

GRAVITATIONAL INSTABILITY IN THE DUST 
LAYER: PROBLEM FORMULATION

AND BASIC EQUATIONS
Turbulence stabilizes the dust layer thickness; as a

result, the mean particle velocity in the vertical direc-
tion is zero. Therefore, scale height hp and parameter
ε, which characterizes the dust phase density in the
layer and is tied to hp by relation (3), may be taken to
be constant in the analysis of GI.

The initial system of equations includes the equa-
tions of motion and continuity for solid and gas phases
in the protoplanetary disk conditions. This system was
considered in a number of studies on hydrodynamics
of protoplanetary and other astrophysical disks and GI
in them, specifically, in (Coradini et al., 1981;
Gor’kavyi and Fridman, 1994; Goodman and Pindor,
2000; Kolesnichenko and Marov, 2006; Takahashi
and Inutsuka, 2014).

We consider this system of equations in the cylin-
drical coordinate system for the dust layer in a proto-
planetary disk under the assumption of axial symme-
try . The system in this approximation
includes six equations: radial and azimuthal compo-
nents of the equations of motion of the solid phase and
gas and continuity equations for both phases. The sur-
face densities of dust and gas phases in the dust layer
(Σp and Σg,l) and two velocity components for each of
the two phases are the unknown functions of the radial
coordinate and time. The circular Keplerian motion of
gas and dust is regarded as the unperturbed one.

Let us examine radial perturbations of an axisym-
metric dust layer under the following assumptions: the
perturbation wavelength is (1) much smaller than the
current radial coordinate value  and (2) larger
than the dust layer thickness, while the characteristic
perturbation growth time is (3) much shorter than the
time of layer thickness variation and (4) longer than
turbulence timescale Ω−1. The first restriction allows
one to use the local approximation and neglect radial
variations of unperturbed parameters. The second one
provides an opportunity to consider the layer in the
thin disk approximation and use the density integrated
over z (i.e., surface density) and radial and azimuthal
velocities averaged over z (Goodman and Pindor,
2000). The third restriction allows one to ignore the
reduction in layer scale height hp and the associated
increase in the density ratio of dust and gas phases ε in
the process of development of GI in the layer. The
fourth restriction enables the use of averaged parame-
ters of turbulent motion: rms turbulent velocity and
turbulent diffusivity.

Let us solve the system of equations for the pertur-
bations of surface densities and radial and azimuthal

gV

( 0)∂ ∂ϕ =

( ),rλ !
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components of velocity of gas and dust phases in the
linear approximation under the assumption of gas
incompressibility. The latter assumption simplifies the
solution considerably. However, its applicability
should be substantiated.

In the case of a nonstationary f low of gas, it may be
considered incompressible if the following two condi-
tions are satisfied (Landau and Lifshitz, 1986): (1) the
gas f low speed is low compared to sound speed сs; (2)
characteristic time τ and characteristic distance l of
the gas velocity variation satisfy inequality 
The first condition is satisfied in a protoplanetary disk
due to the fact that the velocities of turbulent gas f lows
are much lower than the sound speed. Let us check
whether the second condition is satisfied.

The gas surface density perturbation in a proto-
planetary disk may be written as a monochromatic
wave

(22)

where complex parameter n is related to complex fre-
quency ω as 

If the real part of n is positive, it has the meaning of
the perturbation growth rate. The  inequality
for perturbations (22) takes the form

(23)

It is sometimes preferable to use dimensionless
parameter  The following condition of valid-
ity of incompressible gas approximation is derived
from (23) with Eq. (1) and the definition of wave num-
ber  taken into account:

(24)

According to (Safronov, 1991), GI of the dust layer
in gas is established at wavelength  while the
calculations in the present study (performed for differ-
ent sets of parameters) yield the following wavelength
of the earliest onset of GI with the higher growth rate:

 Let us recall that, in contrast to
(Safronov, 1991), we take turbulent particle diffusion
into account. The following is derived from (24) with
the use of these estimates:  In view of
relation (4), the condition under which the gas may be
considered incompressible takes the form

(25)

Densities  were obtained in our calcula-
tions for the GI onset. These values agree with the
results presented in (Coradini et al., 1981; Safronov,
1991) and correspond to ε > 100 at a distance of 1 AU
and ε > 20 at 10 AU. The minimum ratio used in these
calculations was  at 1 AU and ~25 at 10 AU.
Thus, the minimum value at the right-hand side of
inequality (25) was ~50. As for the left-hand side of
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(25), it was determined in our calculations that  is of
the same order of magnitude as the Stokes number for
particles in the layer (i.e., ). This relation is
obtained due to the fact that  = 
in addition,  The maximum value of
St used in calculations was two. Therefore, inequality
(25) and the condition of gas incompressibility were
well satisfied in our calculations. According to our
estimates, the assumption of gas incompressibility is a
fine approximation for the analysis of GI in the entire
region of planet formation, although it may be violated
at r  100 AU. Inequality (25) is not satisfied under
the parameter values used for GI analysis at a distance
of 100 AU in (Takahashi and Inutsuka, 2014); there-
fore, all six hydrodynamic equations of the system
should be solved, and the authors of the indicated
study did just that.

Let us decompose all functions into unperturbed
and perturbed parts in order to proceed to the system
of equations for perturbations. In contrast to the com-
plete function and its unperturbed part, the perturbed
part is denoted by lower-case characters.

Let us proceed to the system of equations for the
surface density and velocity perturbations in the
incompressible gas approximation. Since the gas sur-
face density perturbation is zero in this approximation,
it follows from the continuity equation for gas that the
perturbation of the radial gas velocity component is
also zero. As a result, the continuity equation for gas
and the equation for the radial component of per-
turbed gas f low in the radial direction are excluded
from the system, while three equations for the dust
phase and one for gas (the equation for the azimuthal
gas velocity perturbation) remain. The perturbation of
surface density of the dust phase σp and perturbations
for two particle velocity components (  and ) and
azimuthal gas velocity uϕ are the unknown parameters.
The system of equations for perturbations is as follows:

(26)

(27)

(28)

(29)

Φ1 in (26) is the perturbed gravitational potential of
an infinitely thin layer satisfying the Poisson equation

The equation of motion of the dust phase includes
gas drag, which equals (for unit mass) the difference
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between gas and dust velocities divided by particle
stopping time (6):  The same force (acting
in the opposite direction) is found in the equation of
motion of the gas. Since  in an incompressible
gas, only  is present in Eq. (26). The use of expres-
sion (6) for time ts implies that the dust phase is mon-
odisperse.

Since the gas f low in the layer is turbulent, turbu-
lent diffusion of solid particles in the radial direction
should be included into the continuity equation
(Monin and Yaglom, 1965; Goodman and Pindor,
2000; Kolesnichenko and Marov, 2006).

Equation (26) is also written with consideration for
the radial gradient of pressure of solid particles with
rms velocitiy Vp, which is defined by turbulent gas

velocity in accordance with Eq. (21). The term with 
is written in the form that was used in the studies into
GI in protoplanetary disks (Сoradini et al., 1981; You-
din, 2011; Takahashi and Inutsuka, 2014).

Equation (28) includes the term with turbulent gas
viscosity ν, which characterizes turbulent stress and
the transfer of angular momentum in turbulent gas in
a layer with Keplerian rotation (Lynden-Bell and
Pringle, 1974).

The system of Eqs. (26)–(29) differs from a similar
one in (Сoradini et al., 1981) in that turbulent diffu-
sion and viscosity (the terms with D and ν) are taken
into account; it also features more equations than the
system in (Goodman and Pindor, 2000; Youdin,
2011), which lacks Eq. (28) that characterizes quanti-
tatively the transfer of angular momentum from the
solid phase to gas. At the same time, the incompress-
ible gas approximation, which is valid at  pro-
vides an opportunity to examine GI (specifically,
study it analytically) in the region of planet formation
in more detail.

Assuming that small perturbations of all parame-
ters have the form of a monochromatic wave (22), we
derive the system for amplitudes (Fourier coefficients)
of all perturbations. The following is obtained for the
amplitude of perturbation of the gravitational force:

(30)

Here, an additional reducing factor 
(Genkin and Safronov, 1975; Shu, 1984) was intro-
duced into the perturbed gravitational force
(Gor’kavyi and Fridman, 1994) in order to take the
nonzero layer thickness into account. The value of hp
is defined by Eqs. (12) or (19) depending on the type
of turbulence in the layer. The thin disk approximation
implies that  As a result, the following system
of equations for amplitudes is obtained:

(31)
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(34)

DERIVATION AND ANALYSIS
OF THE DISPERSION EQUATION

Let us first examine system (31)–(34) with no
restrictions on n, ts, and ε. It follows from Eqs. (32)–
(33) that

(35)

where

(36)

Inserting Eqs. (34) and (35) into Eq. (31), we
obtain the dispersion relation

(37)

Taking the A(n) dependence in relation (36) into
account, one may write Eq. (37) as an equation of the
fourth order in n.

If inequality  is satisfied, term  in the
numerator and the denominator of expression (36) for
parameter A may be omitted; the dispersion equation
of the third order is then obtained. It was already noted
that the results of our calculations revealed that the
imaginary part of n is larger than the real part and

 ≡  where St is the particle Stokes
number, which is the dimensionless stopping time.
Therefore, inequality  (or ) may be
satisfied for sufficiently large particle aggregates with

 if  In the case of smaller particles (at
), inequality  is also satisfied at smaller

values of 
The results reported in (Coradini et al., 1981;

Marov et al., 2008) and in the present study demon-
strate that inequality  is satisfied under GI in the
entire region of planet formation. This is confirmed by
a simple estimate for the circumsolar disk:  ∼

Thus, inequality  is satisfied at r < 40 AU
even in the case of large particle aggregates ( ).
Therefore, term  may be removed from expression
(36), and this expression the takes the form
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(38)

Inserting expression (38) into Eq. (37), we obtain
the following cubic dispersion equation for complex
parameter n:

(39)
The coefficients of this equation are as follows:

(40)

(41)

(42)

(43)

where letter B denotes the parameter with the dimen-
sion of frequency:

(44)

The results obtained by solving Eq. (39) with coef-
ficients (40)–(43) numerically are detailed below in
the relevant section.

Let us use the Routh–Hurwitz theorem for equa-
tions with real coefficients to derive an analytical cri-
terion for GI in the dust layer. It follows from this the-
orem that the number of roots of Eq. (39) with a posi-
tive real part equals the number of sign changes in the
sequence     where   and

 According to Eqs. (40) and (41),
quantities  and T1 are positive. Equation (39) was
solved for a protoplanetary disk at a distance of 1 and
10 AU with independent variables ts, Σp, and ν varied
in wide ranges, and either two complex conjugate
roots (with a negative real part or a positive one) or two
real positive roots (the third root was negative) were
always obtained. In the case of complex conjugate
roots, the ones with a positive real part corresponded
to instability. According to the theorem mentioned
above, such a result at positive  and T1 is possible
only if  

Let us make certain simplifying assumptions (rest-
ing on the parameter values in the region of planet for-
mation) in order to derive an analytical GI criterion
based on the last two inequalities. According to the
numerical results,  (at α ≤ 10−5); therefore,
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 Consequently, the following
inequalities should be satisfied at ε  1:

(45)

The second inequality in (45) was obtained with
the fact that  at St  1 is taken into account (this
follows from (21)). The minimum value of ε ≈ 19 at the
maximum St = 2 (at 10 AU) was determined in our
calculations; therefore, inequalities (44) are satisfied.
It then follows that the terms with parameters B and ν,
which are small relative to the other terms, may be
neglected in the derivation of the expression for T2
with the use of relations (40)–(43). As a result, the
expression obtained for T2 is the same as the one
derived if  and, consequently, B = 0 are set in Eq.
(39) with coefficients (40)–(43). It can be seen from
(43) that inequality a3 > 0 is satisfied in this case.
Therefore, as follows from the Routh–Hurwitz theo-
rem, inequality T2 < 0 is the gravitational instability
condition. Considering that , this inequality may
be written as

(46)

SIMPLIFIED GRAVITATIONAL INSTABILITY 
CONDITION IN THE LAYER

Expression (46) of the fourth order in k is still too
complex to derive an analytical GI criterion. If
inequality  +  which holds true at small
values of the particle Stokes number (St  1), is satis-
fied, Eq. (39) is reduced to the following quadratic
equation:

(47)

where coefficients   and  are defined by Eqs.
(41)–(43). The satisfaction of the a2 < 0 inequality is
then necessary and sufficient for the unstable solutions
to exist, since  and inequality a3 > 0 also holds
true if inequality  and conditions (45) are satis-
fied. The GI criterion then takes the following form:

(48)
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be satisfied. It is equivalent to the condition that was
obtained earlier (Safronov, 1987) and placed a lower
bound on the critical density for GI onset:

(49)

Another prerequisite for instability also follows
from (48):

(50)
where f is the coefficient representing the reduction in
self-gravity of the disk due to the inclusion of its thick-
ness:

(51)
In our calculations performed in a fairly wide range

of parameter variation, f varied within the relatively
narrow interval of 0.76–0.83.

At St  1 (i.e., ), the relation is

derived from relation  (Eqs. (10) and (17))
and Eqs. (20) and (21). It then follows that

(52)
In view of relations (52), the GI condition

expressed by inequality (50) yields a lower bound on
wavelength λ enabling the growth of perturbations:

(53)

At such values of λ that satisfy inequality (53), the
diffuse spreading of the annular condensation of the
layer is slower that its gravitational contraction. It fol-
lows from (49) and (53) that if surface density  of
solid matter in the layer is not sufficiently high, GI is
not established at any wavelength.

It follows from the comparison of (46) and (48)
that if inequality (48) is satisfied, inequality (46) is also
satisfied, while the reverse is not true (i.e., the region
of parameters satisfying the GI condition for the third-
order equation is wider than that for the second-order
one). This is one of the reasons why the cubic equation
yielded critical (for GI onset) surface densities 
that were considerably (by a factor of up to 1.5) smaller
than the ones obtained by solving the quadratic equa-
tion.

Assuming the constancy of the parameter f defined
by Eq. (51), inequality (48) may be written as 
where  is the quadratic polynomial in wave num-
ber k with a positive coefficient  at the
highest degree. This new inequality is satisfied when
the discrete of quadratic equation  = 0 is positive;
i.e.,
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We then rewrite the GI criterion using the equiva-
lent of the Toomre stability parameter (Toomre, 1964)
for disk Q < 1 with sound speed cs and gas surface den-
sity Σg replaced by rms velocity Vp and surface density
Σp of solid particles:

(55)

In view of relations (52) obtained with St ! 1, GI
condition (54) may be written as

 (56)
All parameters in relations (48)–(56) (except for

gravitational constant G) depend on radial coordinate
r. It can be seen from relation (52) that particle diffu-
sion, which, as indicated by inequality (56), inhibits
GI in the layer, is of paramount importance for the GI
condition in the dust layer containing small particles
with St  1. At a given turbulence in the layer (i.e., at
given ν and  which are tied to D and  by relations
(20) and (21)), the instability condition, as follows
from (55) and (56), is defined just by parameter prod-
uct  It follows from (6) that the GI condition
depends (through Stokes number St = tsΩ) both on the
size and density (a and ) of a solid particle (aggre-
gate) and on the temperature and density (or surface
density) of the gas.

Although this analysis of GI was performed based
on simplified formulas obtained by solving the qua-
dratic dispersion equation at St  1, it still provides a
fairly accurate description of the onset of GI in the St
~ 1 case. This is demonstrated in the next section,
where the results of solving a more accurate cubic dis-
persion relation (39) are reported.

NUMERICAL RESULTS AND DISCUSSION
The analysis of GI was performed for the condi-

tions established in the circumsolar protoplanetary

disk  =  where  is
the solar mass. Lower index 1 denotes the values of
parameters at .

The following distribution was adopted for the sur-
face gas density:

(57)

The basic values of Σ1 and p were Σ1 = 2000 g/cm2

and p = 1. The temperature distribution was as follows:

(58)
where T1 = 300 K, and index q varied within the range
of 0.5−0.8. The value of q = 0.78 corresponds to tem-
perature T = 50 K at 10 AU, which agrees with the geo-
chemical constraints and theoretical models
(Makalkin and Dorofeeva, 2009).
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The radial dependence of the other parameters is
determined in consideration of the  equal-
ity at  = 2.34. Specifically, the value of  deter-
mined by formula (16) with (57) and (58) taken into
account is

where  When the adopted parameter values
are used,  varies from 40 to 47 m/s. Parameter θ
defined by Eq. (9) was set to be equal to 0.7.

All GI calculations were performed by solving dis-
persion equation (39) with coefficients (40)–(43) for
radial distances r = 1 and 10 AU.

Surface density  of the dust phase and the Stokes
parameter for a solid particle (aggregate of solid parti-
cles) were used as the input variable parameters. As
was explained above, these parameters are governed by
the little studied processes of transfer and growth of
solid particles and may vary widely.

Let us take a look at the results of calculation of
critical surface density  at which a positive real

2
s gс R T= μ

μ VΔ

0.52
s,1

K,1

( 2 1.5)
,

2 1 AU

q
p q c rV

V

−
⎛ ⎞+ +

Δ = ⎜ ⎟
⎝ ⎠

K,1 1 1.V r= Ω
1VΔ

pΣ

p,cr,Σ

part emerges in two complex conjugate roots of
Eq. (39) solved with respect to n. Complex parameter
n is used to characterize perturbations (22) of the sur-
face density and velocities. With , parameter

 has the meaning of the perturbation growth rate.
With , the real part of complex conjugate
roots is negative (i.e., GI is lacking).

Figures 1 and 2 show the relations between the
Stokes number and the surface density of particles (St
and ) corresponding to the onset of GI. Lower val-
ues of St at a set  (and lower values of  at a set St)
correspond to a stable layer. Thus, the set of parame-
ters St and  assumes a critical value at the given
parameters of the protoplanetary disk and turbulence
within it. The demonstrated results agree well with
approximate criterion (56), where product  ≈
const at the given parameters of turbulence in the disk
at set radial distance r. The critical pairs of values 
and St in both figures are given for two mechanisms of
generation of turbulence: the “global” one, which is
characterized using the α-parameterization of turbu-
lent viscosity under turbulence generated in a consid-
erable part of the disk, and a more local one with tur-
bulence limited to the equatorial part of the disk with
shear f low generated by the dust layer.

Since the value of the turbulent viscosity found in
Eqs. (10) and (17) is fairly uncertain in both turbulence
models, parameters α and Re* were varied by a factor
of 100 and 8, respectively, in calculations presented in
Figs. 1 and 2. The eight-fold variation of Re* leads to
a 64-fold turbulent viscosity variation (see Eq. (17)).
These parameters were varied so that GI at the dis-
tances of 1 and 10 AU was established at such param-
eter values that, in our view, remained within reason-
able bounds. At  and r = 1 AU, critical value

 310 g/cm2 was obtained at St = 1, while even
larger values corresponded to St < 1. Such  values
appear improbable, although they should not be
excluded. The range of variation of parameter θ, which
represents the effect of the dust phase on turbulence,
is, according to our estimates, narrower than that of α
and  Since θ appears in Eqs. (10) and (17) for
the viscosity coefficient in combinations  or

 Figs. 1 and 2 provide an opportunity to esti-
mate the effect of variation of θ on GI.

It can be seen from Fig. 1 that  should be consid-
erably higher than  g/cm2 (the value corre-
sponding to the standard model of a “minimum-
mass” protoplanetary disk) in order for GI to emerge
at 1 AU. The sole exception is the case when 
or  with St ≥ 1. Thus, our results agree with
those obtained in (Cuzzi et al., 1993; Dobrovolskis
et al., 1999) by numerical modeling with a very low
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pΣ pΣ
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2
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Fig. 1. Relation between the critical values of parameters
Σp and St of the dust layer at distance r = 1 AU. A pair of
Σp and St values corresponding to the onset of GI in the
layer is assigned to each point of curves. Dashed curves
correspond to different values of parameter α in the turbu-
lent viscosity defined by Eq. (10). Solid curves correspond
to the turbulent viscosity, which is expressed in terms of the
critical Reynolds number Re* (see Eq. (17)), at different
values of Re*. 
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value of  g/cm2. The maximum value St = 2

demonstrated in the figures and covered by our calcu-

lations still satisfies condition  when the GI
development time is longer than the turnover time of
the largest turbulent eddy. At higher values of St,

inequality  holds, and the use of averaged char-

acteristics of turbulent velocity and the turbulent dif-
fusivity becomes unfounded. At the same time, sur-

face density  of solid matter may become fairly large

as solid particles accumulate in the process of their
radial drift in the dust layer with the accompanying
radial contraction and compaction of the layer (You-
din and Chiang, 2004; Makalkin and Ziglina, 2004).
However, a ten-fold enrichment of the inner disk
region with solid matter produces the problem of
“eliminating” it so that only ~10% of its mass goes to
form terrestrial planets later.

The results also indicate that GI becomes possible
when dust aggregates reach a certain size. It can be
seen from Fig. 1 that if particles within the layer had
St ≥ 1 at a distance of 1 AU, which yields dust aggre-

gate radii a  30 cm at matter density  g/cm3, GI

may emerge only at a relatively low level of turbulence,

which corresponds to  or  and at

moderate dust matter accumulation (  g/cm2)

owing to radial transfer. Since the Stokes f low regime
is established at 1 AU, it follows from Eqs. (6) that the
estimate depends only slightly on the surface density of

gas in the disk ( ).

At distance r = 10 AU (Fig. 2), the GI conditions
are less stringent. Instability emerges at a relatively low

surface density of the solid phase  3–10 g/cm2,

which corresponds to a just (1–3)-fold enrichment

with respect to protosolar abundance 

where Z ≈ 0.015, and  is defined by relation (57). GI

is possible even under fairly strong turbulence with

parameter α = 10−5, but only at a sufficiently large Stokes
number St = 0.3–1, which corresponds to dust aggregate

radii of 0.4–1.5 m at density  0.5–0.7 g/cm3. Insta-
bility may also emerge without any enrichment with

solid matter if α = 3 × 10−6 or Re* = 25 (at the St val-

ues given above) or if α = 10−6 or Re* = 50 (at St >
0.1); in other words, it is feasible in the case of decime-
ter-sized bodies. Lastly, GI is possible even in a layer

of centimeter-sized particles with St  0.01 in the case

of turbulent viscosity with α = 10−7 (without enrich-

ment with dust) or α = 10−6 or Re* = 50 (with three-
fold enrichment with dust material).

In addition to affecting turbulent diffusivity and
rms velocity of particles, D and Vp, turbulent gas vis-

cosity ν appears, owing to differential Keplerian rota-
tion of the dust layer, in perturbation equation (28) as
a coefficient in the right term for viscous drag. How-
ever, our calculations showed that the influence of this
term on the critical values of parameters Σp and St was

p,1 8Σ ≈

Re[ ] ,n < Ω

> Ωn

pΣ

* s 2ρ =

6
10

−α ≤ Re* 50,≥
p 100Σ ≤

gΣ
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p,i g,ZΣ = Σ
gΣ

s ~ρ

)

very weak (less than 1%) in the majority of examined
cases; the exception was provided by cases with the
maximum considered values of turbulent viscosity

(α = 10−5) and parameter St at 10 AU. The critical
value of Σp was reduced by 3% at St = 1 and by 7% at

St = 2.

We have also compared the critical values of Σp and

St from solution of cubic dispersion equation (39) with
their values obtained from solution of quadratic equa-
tion (47). It follows from the above analysis that the
difference grows with particle Stokes number. At St =
1, the difference is ≈20%; at St = 2, it is as large as 41%.

Spatial density  of the dust phase in the layer at

the onset of GI under the limiting values of parameters
Σp and St was typically close in our calculations to the

critical density for GI , which was obtained
earlier by Safronov (1969). At distance r = 1 AU and

St = 1, density  at St = 2, it is reduced to

 at St = 0.2,  reaches  regardless of

the turbulent viscosity parameters (α or Re*). At

10 AU, the minimum ratio  is approximately

20% higher than that at 1 AU, although the maximum
ratio is below three even at St = 0.01. The value of
parameter ε defined by relation (3) is proportional to

 at a constant gas density  Parameter ε was varied

in our calculations, the results of which are presented
in Figs. 1 and 2, from 290 to 510 at distance r = 1 AU

ρp,0

cr 2 *ρ ≈ ρ
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Fig. 2. Relation between the critical values of parameters
Σp and St of the dust layer at distance r = 10 AU. See Fig. 1
for notation. 
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and from 19 to 51 at r = 10 AU. Thus, condition

 which is a requirement for dispersion rela-

tion (39) to be applicable, was fulfilled in all cases.
Parameter ψ, which characterizes the contribution of
the self-gravity of the disk to its thickness, also,
according to Eqs. (5) and (8), grows with the variation

of ratio ; as a result, ψ varies from ≈6 to 10, thus

illustrating the importance of the self-gravity of the
layer in the process of its thinning, which facilitates
GI. At St ≥ 0.05, scale height hp of the dust layer

becomes smaller than Ekman length scale lE, yielding

a ratio of  at St = 1. The value of hp varies

from ≈400 to 4000 km at 1 AU and from 3 × 104 to 2 ×

105 km at 10 AU.

Our calculations showed that the GI growth factor
and the wavelength interval in which GI may develop
both get considerably bigger if surface density Σp of the

dust phase deviates even slightly from its critical value
and when Stokes number St of particles increases. Fig-
ure 3 shows dimensionless perturbation growth rate

 at distances r = 1 and 10 AU as a function
of perturbation wavelength λ at two values of St with a

St ,γ ε!

ρ ρp,0 *

p E 0.3h l ≈

Re[ ]Γ = γ

twofold difference between them. Calculations were
performed for the following parameter values at radial
distances of 1 and 10 AU, respectively: surface density

of the dust phase Σp = 60 and 5 g/cm2, temperature

T = 300 and 50 K, and turbulent viscosity parameter

α = 10−7 and 10−6.

Figure 3 demonstrates strong dependences
Γmax(St) and Δλ(St), where Δλ = λmax − λmin is the dif-

ference between the maximum and the minimum
wavelengths at which perturbations may grow. It fol-

lows from Fig. 3 that Γmax ∝ Sta, where a ~ 2–3, and

Δλ ∝ Stb, where b ~ 0.5–0.8. Dependence  shown

in Fig. 3a is plotted for two St values at  = 60 g/cm2;

at St = 0.5, critical value  = 48.6 g/cm2, while

= 31.0 g/cm2 corresponds to St = 1. Dependences

 in Fig. 3b are plotted for  = 5 g/cm2; at St = 0.1,

critical value  = 4.50 g/cm2, while  = 3.22 g/cm2

corresponds to St = 0.2. It follows that at 

1.5–2, dimensionless growth factor Γ increases from
zero to Γ ≈ St/2. The case of an even larger ratio of sur-

face densities ( ) is not discussed here,
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Fig. 3. Dependence of the dimensionless growth rate of surface density and velocity perturbations of the dust phase ( =

) on perturbation wavelength ( ) at radial distance r = 1 AU (a) and 10 AU (b). The results of calculations for

two particle Stokes numbers (St) with a twofold difference between them are shown in each panel. The values of surface density

of solids Σp, temperature T, and turbulence parameter α used in calculations are given in the text. 
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since we assume it to be unlikely due to the fact that GI
should develop earlier.

It follows from the comparison of Figs. 3a and 3b that
the wavelengths at which GI may be established increase

by a factor of approximately 100 (from ~10−2 million km
to ~1 million km) as radial distance r is varied by a fac-
tor of 10 (from 1 to 10 AU). This difference in λ values
at r = 1 and 10 AU also corresponds to a two orders of
magnitude difference in the dust layer thicknesses and
scale heights hp. Our calculations and the estimates pre-

sented in (Safronov, 1991) indicate that the latter value

satisfies relation  =  

Here,  is the wavelength corresponding to the
maximum perturbation growth rate. It can be seen

from Fig. 3 that the values of  are approximately
two times higher than λmin (the wavelength at which

GI is possible).

At St  1,  is defined by relation (53). In view
of formula (11), which is applicable under the α-
parameterization of turbulent viscosity, it follows from

(53) that  The results of calcula-

tions for  (and for ) presented in Fig. 3 satisfy

the indicated relation even at St  1. If the parameter

values given above are used, this relation yields an
approximately two orders of magnitude difference in
the indicated wavelengths at r = 1 and 10 AU.

INTERACTION OF THE DUST LAYER
WITH THE DISK

In the present study, gravitational instability in the
dust layer was examined without considering its inter-
action with gas outside the layer. Let us show that this
approximation is justified (i.e., determine when the
transfer of angular momentum from the dust layer to
the surrounding disk gas may be neglected in the anal-
ysis of GI in the layer).

The equation for variation of the angular momen-
tum of a layer rotating with Keplerian circular velocity
VK and affected by drag, which is produced by gas

rotating with a velocity reduced by  (see

Eq. (16)), may be written as  = 

where S is the shear stress acting on each of the two

surfaces of the layer,  ≈  and 

Characteristic time tl(r) of momentum transfer from

the layer to the disk is then obtained:

(59)

Approximate equality  holds true

for S, where h is the thickness of the shear layer.
Defining viscosity through parameter α using Eq.

(10), we obtain . In the case of viscosity in the

shear layer (17), we get , where lE is given by Eq.

max pk hΓ p max2 h Γπ λ 0.2 0.3.≈ −
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≈ −ρ ν ΔgS V h

ph h=
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(14). Since inequality  is satisfied at St ~ 1, we

may write  where 

As a result, we obtain from relation (59) under the α-

parameterization of viscosity that  It

follows that the denser the dust layer and the higher
the turbulent viscosity are, the faster is the angular
momentum transfer; the lower the gas fraction in a
protoplanetary disk or the greater the layer enrichment
with dust matter (characterized by parameter β) are,
the slower is the transfer. The angular momentum
transfer from the particle layer to the disk may be
neglected only if the characteristic perturbation devel-
opment time is significantly shorter than the charac-
teristic time of momentum transfer:

 or 

The values needed for layer GI were determined in
our calculations. At r = 1 AU, they are as follows: ε ≥
145, Z ≈ 0.005, and β ≈ 1−10; at a distance of 10 AU,
ε ≥ 19, Z ≈ 0.015, and β ≈ 1−3. Using these parameters
and θ = 0.7, κ = 1, we obtain

α  3 × 10–7 β2Γ at 1 AU 

and α  2 × 10–5 β2Γ at 10 AU.

It can be seen that in the case of global turbulence,
the model of GI in the layer with no angular momen-
tum transfer to the disk is applicable at a much higher
turbulent viscosity at r = 10 AU than at 1 AU. At the
same time, under moderate enrichment with dust
material, β ≈ 5, and Re[γ] ~ 0.1−0.3, the conditions
for the development of GI “isolated” from the rest of
the disk are improved at 1 AU.

If global turbulence is lacking (or negligibly weak),
shear turbulence in the Ekman layer occurs, and from

relation (59) one can obtain  This

implies that  Parameter κ at St ~ 1 is as large

as κ ~ 3. As a result, the following condition is
obtained:

Γ  10–2 at 1 AU and Γ  10–1 at 10 AU.

Thus, the opposite is true for shear turbulence in
the Ekman layer: the constructed model with no angu-
lar momentum transfer to the disk is applicable at
1 AU better than at 10 AU.

It may then be concluded that under certain condi-
tions stated above, GI may develop in the dust layer
and induce the formation of annular condensations
before the angular momentum is transferred to gas
outside the layer. In the case of global α-turbulence,
this scenario becomes more likely as radial distance is
increased and may come true at r = 10 AU under mod-
erate enrichment with dust matter. When global turbu-
lence is very weak, the mechanism of local turbulence,
which is induced by shear stresses between gas within
the layer and outside of it, is in action. If this is the
case, the angular momentum transfer from the layer to
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the disk proceeds slower at shorter radial distances; as a
result, GI in the layer may emerge at r = 1 AU before the
development of interaction with the surrounding gas.

Naturally, this interaction of the layer with the sur-
rounding gas should be taken into account in more
detailed formulations of the problem of GI in the layer.
The preliminary solution of the problem of GI in the
layer with the transfer of angular momentum from the
layer to the surrounding disk gas taken into account
demonstrates that the inclusion of this transfer leads to
the development of a longer-wavelength and slower-
growing GI mode. In a first approximation, it is super-
imposed on the shorter-wavelength and higher-ampli-
tude mode obtained in the present study, but does not
remove it.

CONCLUSIONS

The problem of gravitational instability of the dust
layer in the midplane of a protoplanetary disk with tur-
bulence was analyzed. The layer forms as dust particle
aggregates settle toward the midplane of a protoplane-
tary disk in the process of growth of particles, which
stick in mutual collisions, and/or in the process of
decay of global turbulence in the disk. We have contin-
ued earlier research into GI in the region of planet for-
mation and the estimation of its significance in the
process of planet formation.

The linearized system of hydrodynamic equations
for perturbations of the dust (monodisperse) and gas
phases was solved. The incompressible gas approxima-
tion was used. The system was solved in the thin-disk
approximation (i.e., the perturbations of parameters
averaged over the dust layer thickness were consid-
ered). The perturbations of surface density and radial
and azimuthal velocities of the solid phase and the azi-
muthal velocity of gas were the unknown variables.
The equations included turbulent diffusion, the root-
mean-square velocity of solid particles in turbulent
gas, and the term with turbulent gas viscosity, which
characterizes shear stress in a disk with differential
Keplerian rotation. The present study differs from the
earlier analytical investigations of GI in the layer in
that we took into account the perturbation of azi-
muthal gas velocity in the layer induced by the transfer
of angular momentum from the dust phase. The con-
servation of the total angular momentum of the dust
and gas phases in the dust layer places an upper bound
on the perturbation wavelength at which instability is
possible. Turbulent particle diffusion defines the lower
bound on the wavelength of such perturbations.

The system of equations for perturbations was
solved, and the cubic dispersion equation, which is
valid for the dust layer in the case when the ratio of
surface densities of the dust phase and gas in the layer
is much higher than unity, was then derived and
solved. The dispersion relation was also reduced to a
quadratic equation in the case of small dust particle

aggregates with their characteristic stopping time in
gas being considerably shorter than the orbital period.
As a result, the approximate GI criterion, which takes
the deceleration of dust particles by gas into account,
was obtained. It is similar to the known criterion
derived by Toomre (parameter Q < 1), but the sound
speed and the gas surface density in it are replaced by
the root-mean-square particle velocity and the surface
dust density. In addition, the new criterion differs
from the common one in that it features particle
Stokes number St (the dimensionless size-dependent
stopping time of an individual particle (aggregate) in
gas). The relation between surface layer density Σp and

the particle Stokes number corresponding to the onset
of instability was obtained. The approximate form of

this relation is  where parameter А depends

on the radial distance and the turbulence intensity
(turbulent velocity Vg). The numerical solution of the

third-order dispersion equation (see Figs. 1 and 2)
confirmed that this relation is approximately satisfied
in the case of small particle sizes (St  1) and revealed
a moderate deviation from this relation at St ~ 1.

The parameters corresponding to the onset of grav-
itational instability, the wavelength interval in which
this instability emerges, and the dependence of the
perturbation growth rate on the perturbation wave-
length were determined by solving the dispersion
equation. Calculations were performed for two radial
distances in the circumsolar disk: 1 and 10 AU. An

instability development time of 10–102 Keplerian
periods and characteristic unstable wavelengths of ~10
layer thicknesses follow from the obtained values of
the perturbation growth rate.

It was demonstrated that GI at a distance of 10 AU
may emerge at the protosolar abundance of solids, Z ≈
0.015, or their slight enrichment at a turbulence level

corresponding to parameter α ≤ 10−5 and decimeter
particle sizes. At a distance of 1 AU, a 5–10-fold
enrichment with solids relative to the initial (protoso-
lar) abundance Z ≈ 0.005 is required in order for the
instability to emerge in the turbulent dust layer. How-
ever, this conclusion remains valid only if the assumed
level of turbulence, which is generated by shear
stresses in the process of interaction of gas in the layer
and above the layer, is sufficiently high. If the assumed
critical Reynolds number Re* ≈ 20 is replaced by a
value that is ten times higher, no enrichment with solid

matter is needed. The values of Re*  200 were used

in certain studies. This problem likely requires further
examination.

In view of the obtained results, the conclusions
made in certain studies regarding the inefficiency of
GI in the formation of planetesimals seem hasty and
insufficiently substantiated.

In the present study, GI in the layer was analyzed
with no consideration for the transfer of angular
momentum from gas in the layer to gas in a protoplan-
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etary disk outside the layer. However, our estimate of
the conditions under which this transfer may be
neglected demonstrates that, under certain condi-
tions, GI in the dust layer may develop and lead to the
formation of annular condensations before the angular
momentum is transferred to gas outside the layer.

Naturally, the more complete formulation of the
problem of GI in the dust layer with the transfer of
angular momentum from the layer to the surrounding
gas should also be examined. The preliminary solution
of the problem in this formulation demonstrates that
the inclusion of this transfer leads to the development
of a long-wavelength and slower-growing GI mode. In
a rough approximation, it is superimposed on the
shorter-wavelength and higher-amplitude mode
obtained in the present study, but does not remove it.
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