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INTRODUCTION AND FORMULATION
OF THE PROBLEM

This paper is a continuation of our investigation of
the integrable cases for the problem of the orbital evo�
lution of a satellite with a negligible mass under the
action of the joint gravitational perturbations from the
oblateness of the central planet and the attraction by
its main satellites and the Sun (Vashkov’yak et al.,
2015). Some of the described cases may turn out to be
useful in considering one interesting feature of the sat�
ellite systems of all giant planets. This feature is asso�
ciated with the existence of zones of “avoidance” by
small celestial bodies or zones separating the families
of orbits of regular and irregular satellites in circum�
planetary space. In these zones, the influence of the
above perturbations is pairwise or, in aggregate, is
comparable in magnitude.

The so�called secular equations provide a mathe�
matical basis for the investigation. In the first approx�
imation of the perturbation theory, these are the differ�
ential equations for the changes of orbital elements in
which the full perturbing function R is replaced by its
secular part W. In the presumed absence of mutual
orbital resonances, it is found by an independent aver�
aging of R over the mean planetocentric longitudes of
the Sun, the main satellites, and the (test or hypothet�
ical) satellite being investigated. The function W
depends on five planetocentric Keplerian orbital ele�
ments: the semimajor axis a, eccentricity e, inclina�
tion i, pericenter argument ω, and ascending�node
longitude Ω. It is convenient to refer the angular ele�
ments in the problem under consideration to the plane

of the planetary equator and the line of its intersection
with the plane of the planet’s heliocentric orbit (or the
Sun’s planetocentric orbit). For coherence, we will
permit ourselves to repeat a number of formulas and
designations from the above�mentioned paper, which
we will call the original one for short.

The function W consists of three terms corre�
sponding to different named perturbing factors, while
the two first integrals of the evolution problem are

a = const, W = W0 + W1 + W2 = const. (1)

Apart from the elements of the satellite orbit, we
use the following notation:

 are the products of the gravitational con�
stant by the masses of the planet, its jth main satellite,
and the Sun, respectively;

 are, respectively, the mean equatorial radius
of the planet and the semimajor axes of the orbit of its
jth main satellite and the planetocentric orbit of the
Sun;

с20 is the coefficient at the second zonal harmonic
of the planet’s gravitational field;

 are, respectively, the inclination and peri�
center argument of the orbit of the test satellite
referred to the planet’s orbital plane.

In this paper (just as in the original one), the evolu�
tion problem is considered by taking into account the
principal terms of the secular parts of the perturbing
functions the expressions for which are given below.
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The function

(2)

describes the secular influence of the second zonal
harmonic of the planet’s gravitational field.

The function

(3)

describes the influence of the secular solar perturba�
tions in the quadratic approximation in  or in the
Hill approximation (the parameter I is the angle
between the equatorial plane of the planet and its
orbital plane).

The function W2 describes the secular perturba�
tions from the planet’s main satellites, which are
assumed in our analysis to be noninteracting between
themselves. This function is defined by the formula

(4)

where E is the eccentric anomaly of the test satellite,
and V in the dynamical interpretation is the force
function of a system of a finite number J of Gaussian
rings with masses equal to the masses of the satellites.
In our simplified model, we assume that the orbits of
all main satellites lie in the planet’s equatorial plane
and have zero eccentricities. In this case, the function V
can be represented by a hypergeometric series,

(5)
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Bn are the constant numerical coefficients defined by
the general or recurrence formulas

(7)

It can be shown that the function W2 depends on e, i,
and ω, respectively, only via the combinations e2, sin2i,
and e2sin2icos2ω. These properties are valid for any
orbital eccentricity and inclination of the test satellite,
while the expression for the function W2 can be repre�
sented in general form as

(8)

where  are some rational functions of their
arguments.

In the original paper, we used a simplification that,
for moderate eccentricity and sine of inclination,
allowed us to restrict ourselves to the partial sum of the
series in powers of these small parameters in Eq. (8).
Therefore, two of the seven integrable cases specified
in this paper (IV and VI) could not be legitimately
considered, because sin i = 1 for both of them.

The goal of this paper is to derive an analytical
expression for the function W2 for i = 90° and moder�
ate eccentricities and to perform a qualitative analysis
of the above two integrable cases, i.e., the system of
Lagrange differential equations in elements with the
full averaged perturbing function W, based on this
expression.

EXPRESSION FOR THE FUNCTION W 
FOR POLAR ORBITS

To derive an analytical expression for the function W2,
it is necessary to perform integration in Eq. (4) by set�
ting sini = 1 in Eq. (6) and by taking into account, just
as in the original paper, only the terms of order е2 and
е4. Note that its expression for arbitrary i, which is also
valid, in particular, for i = 90°, was derived by Vash�
kovjak (1976), but only to within е2 inclusive.

Making the necessary standard but somewhat cum�
bersome transformations leads to the expression
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Series in powers of the “unified” parameter

(10)

which remains less than unity for any relation between
the semimajor axes a and aj, is used to represent the

functions . This parameter was introduced to
derive a single analytical expression for the secular part
of the perturbing function in Vashkov’yak et al. (2013).
Such a representation itself requires introducing some
auxiliary functions acting as the Laplace coefficients
in classical expansions. For the polar orbits considered
here, we use the functions

(11)

where  and the constant numerical

coefficients Gn are defined by the general or recurrence
formulas

(12)

The general expression for the functions  is

(13)

The functions  are polynomials of degree Sk,

(14)

for the dimensionless quantity (a function of the semi�
major axes a and aj)

(15)

The quantities Mk, Sk, and  are integers, while 
can also be fractions. In order not to overload the text,
the entire tabular material is given in the Appendix.
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In the original paper, we introduced several con�
stant parameters,

(16)

(17)

and a new independent variable,

(18)

where  is the mean motion of the test satel�
lite, t0 and t are the initial and current instants of time,
respectively. In what follows, we will use these param�
eters and the normalized perturbing function

. (19)

After the preliminary transformations performed to
find the function W2 and the substitution of sini = 1
into Eqs. (2) and (3), the full normalized perturbing
function for polar orbits takes the form

(20)

Here, the constant in the part proportional to γ0 and
the terms of order е6 or higher were discarded. In the
next section, we will separately consider two cases of
different mutually orthogonal orientations of polar
orbits with cos i = 0:

(1) sinΩ = 0 at cosI = 0 (the equatorial plane of the
planet is orthogonal to the plane of its heliocentric
orbit, and the satellite moves in this plane, siniorb = 0).

(2) cosΩ = 0 at an arbitrary angle I (the plane of the
satellite orbit is orthogonal to the line of their intersec�
tion).

In the original paper, these cases are numbered IV
and VI, respectively. This numbering of integrable
cases was initially introduced by Lidov and Yarskaya
(1974), who considered the evolution problem by tak�
ing into account the oblateness of the central planet
and the attraction by the Sun, i.e., without allowance
for the attraction by its massive satellites or at γk = 0
(1 ≤ k ≤ 5).
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The evolution system of the problem is simplified,
because the right�hand sides of the two equations
become zero for polar orbits at cosi = 0 in both cases:

(21)

The simplified system is reduced to two differential
equations,

(22)

with the first integral (20), whose presence allows us to
perform its qualitative analysis and, in principle, to
obtain the necessary quadratures.

Since the problem is a multiparameter one, its
investigation for arbitrary I and γk (0 ≤ k ≤ 5) seems
difficult and not too justified. Therefore, just as in our
original paper, below we will consider mainly the sat�
ellite system of Uranus with its specific physical
parameters. As has already been pointed out in the
Introduction, studying the region of circumplanetary
space where the influence of the above perturbations
on the satellite is pairwise or, in aggregate, is compara�
ble in magnitude is of greatest interest. Figure 1 shows
the dependences of coefficients γk on the semimajor
axis of Uranus’s satellite orbit. The numbers near the
lines correspond to six values of the index k. No real
satellites are observed in the presented range of semi�
major axes; therefore, we can only talk about hypo�
thetical satellites. All curves γk(a), except γ0(a), go to
minus infinity when а tends to а5 ≈ 0.6 million km, the
semimajor axis of Uranus’s most distant main satellite.

For greater detail, the same dependences are pre�
sented in Fig. 2 on a logarithmic scale. They give an
idea of the orders of the perturbations from the oblate�
ness and massive satellites compared to the solar ones,
the horizontal straight line corresponding to zero
value of the logarithm. The perturbing influence of
Uranus’s massive satellites is seen to exceed consider�
ably the influence of its oblateness in this range of
semimajor axes.
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Since the terms of order е6 or higher are disre�
garded in Eq. (9), the need for estimating whether the
derived expression for the function W2 is suitable for
high eccentricities inevitably arises. Such an estimate
was made through comparative calculations of this
function by two methods: the proposed analytical one
(Wa) and by numerically finding the quadrature (4)
(Wc), which can be performed in principle for arbi�
trary е < 1. Figure 3 presents the results of such a com�
parison in the same range of semimajor axes. The
numbers above the lines correspond to two boundary
values of ω in degrees. The solid and dashed lines cor�
respond to the analytical and numerical methods,
respectively. For the comparison to be proper, the
terms independent of e were discarded in the function
Wc (just as in Wa). For our comparison, we chose the
eccentricity е = 0.4, which differs markedly from zero.
In this case, the discarded terms of the perturbing
function of order е6 are approximately 0.0041 in mag�
nitude. It seems to us that an accuracy of even ~0.01 is
quite acceptable for the investigation of the evolution
problem, while the qualitative features of the evolution
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of the satellite orbit will also be adequate at slightly
higher e ~ 0.5–0.7.

Table 1 lists the maximum (in a and ω) absolute
values of the differences obtained by the analytical and
numerical methods, giving numerical estimates for the
absolute error of finding the function W for various
eccentricities. Based on the data from this table and
Fig. 3, the maximum in a and ω of the relative error in
W for е = 0.4 can be estimated to be ~0.05.

QUALITATIVE ANALYSIS OF CASE IV

At cosI = 0, cosi = 0, and sinΩ = 0, the function
WN (and the first integral) is

(23)

where

(24)

From integral (23) it is easy to find the dependence of
е on ω and the constant of the integral с defined by the
initial values е0 and ω0 at τ = 0,

 (25)

Of course, apart from ω, the functions А and В depend
on the semimajor axis а via γk. The changes in the
eccentricity and pericenter argument are described by
the equations
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The existence of the first integral (23), in principle,
allows the solution of the problem to be obtained in
quadratures. This requires finding the dependence
ω(е) from it and substituting it into the first of
Eqs. (26). Thereafter, a nonlinear first�order differen�
tial equation is obtained for the variable x = е2.
However, here we perform only a qualitative analysis of
the evolution system.
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Stationary solutions of system (26) exist only at
sin2ω* = 0 or ω* = ±π/2, 0, π, because it follows from
Fig. 1 that γk < 0 for all 1 ≤ k ≤ 5 and γ3 ± 4γ4 < 0. The
stationary values of the eccentricity in the (ω, е) phase
plane are defined by the formula

(28)

In contrast to the case of γk = 0 (1 ≤ k ≤ 5), there
exist relatively small ranges of semimajor axes in which
(e*)2 > 0 and 0 < e* < 1 both for ω* = ±π/2 and for
ω* = 0, π. Figure 4 shows the dependences of the sta�
tionary eccentricities on the semimajor axis in the
range of their existence (the numbers near the lines
correspond to two values of ω* in degrees). Four spe�
cial values of the semimajor axis corresponding to the
change in the structures of the families of phase trajec�
tories in the (ω, е) plane are marked on the horizontal
axis. It can be shown that the singular point is a saddle
at ω* = 0, π(cos2ω* = 1) and a center at
ω* = ±π/2(cos2ω* = –1). The following values of the
constant of the integral correspond to the saddle
points:
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while the equations for one or two branches of the sep�
aratrices are obtained from (23) at с = сs:

(30)

At а < a(1) ≈ 1.625 million km, no singular points
exist in the (ω, е) plane, while the orbital evolution is
reduced to a monotonic (circulational) decrease in the
pericenter argument at insignificant eccentricity oscil�
lations (Fig. 5).

At the first bifurcation value of а = a(1), a pair of
singular points arises in the lower right corner of the
displayed rectangle. In view of the double symmetry of
the phase trajectories and the possibility of their natu�
ral extension, only the range 0 ≤ ω ≤ 90° is shown. The
value a(1) is the solution of the equation B(±π/2) = 0 or

(31)

At a a(1) < а < a(2) ≈ 1.652 million km, two singular
points (one of them is marked by the circle) exist in the
phase plane, and a libration region of the pericenter
argument appears (Fig. 6).

The value ωs corresponding to the intersection of
the separatrix with the е = 0 axis is determined from
the formula B(ωs) = 0 or

(32)

The value of е corresponding to the intersection of the
separatrix with the ω = 90° axis is determined from the
formula

(33)

At the second bifurcation value of а = a(2), the separa�
trix at е = 0 “enters” the lower left corner. The value
a(2) is the solution of the equation B(0) = 0 or

(34)

At a a(2) < а < a(3) ≈ 2.08 million km, two singular
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ment also exist in the phase plane. However, in con�
trast to Fig. 6, the second branch appears in the sepa�
ratrix, while the saddle point is located on the ω = 0
axis (Fig. 7).

The maximum (in eccentricity) width of the libra�
tion zone is determined using Eq. (30), in which we
should set ω = ±π/2.

Apart from the phase trajectories and singular
points, the special horizontal straight line correspond�
ing to the so�called critical eccentricity is marked by
the larger crosses. For the external variant of the prob�
lem, it is determined by the condition for equality
between the pericenter distance of the orbit of the test
satellite and either the orbital radius of one of the
planet’s massive satellites (1 ≤ j ≤ J) or its own radius
(j = 0). For polar orbits, such a condition is met only
at ω = 0 and π. At , the investigation of the evo�
lution problem is only of formal interest, because the
regularity of the orbit of the test satellite breaks down
due to the possibility of its intersection either with the
orbits of massive satellites or with the planet’s surface.

The “cross” straight line (not shown in Figs. 5 and 6)
in Fig. 7 corresponds to j = 5, i.e., to the contact at the
pericenter of the orbit of the test satellite and the orbit
of Oberon, the most distant main satellite of Uranus.
Clearly, the straight lines corresponding to the critical
eccentricities for 0 ≤ j ≤ 4 are also implicitly present in
the (ω, е) phase plane. For a fixed semimajor axis, they
are located above the “cross” straight line, but they are
not shown in the figure.

As the semimajor axis increases, both singular
points move into the region of high eccentricities
(Fig. 8). As the semimajor axis increases further, qual�
itative changes in the structures of the families of phase
trajectories occur in the region  Therefore,
we give а = a(4) ≈ 2.12 million km (which formally fol�
lows from the model) and note that only circulational
trajectories with a monotonic increase in the peri�
center argument exist in the phase plane at а > a(4). In
addition, since our analysis is limited to moderate
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Fig. 5. Family of phase trajectories for case IV in the (ω, е)
plane for a = 1.62 million km.
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Fig. 6. Same as Fig. 5 for a = 1.64 million km.
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eccentricities, we will end our analysis of the integra�
ble case IV here.

It is interesting only to note that the revealed struc�
tures of the families of phase trajectories presented in
Figs. 6–8 (the libration zones of the pericenter argu�
ment) owe their existence exclusively to the perturbing
influence of the massive satellites. At γk = 0 for 1 ≤ k ≤ 5,
i.e., in their absence, the orbital eccentricity of the test
satellite remains constant, while the pericenter argu�
ment decreases or increases monotonically with a
constant rate dependent on the semimajor axis (Lidov
and Yarskaya, 1974).

QUALITATIVE ANALYSIS OF CASE VI

At cos i = 0, cosΩ = 0, and an arbitrary angle I, the
function WN (and the first integral) is

(35)

where A(ω) is defined by the first of Eqs. (24),

(36)

From integral (35) it is easy to find the dependence of
е on ω and the constant of the integral с defined by the
initial values е0 and ω0 at τ = 0,

(37)

Apart from ω, the function D (just as А and В) depends
on the semimajor axis а via γk. The changes in the
eccentricity and pericenter argument are described by
the equations

(38)
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where

(39)

Just as in case IV, the existence of the first integral (35),
in principle, allows the solution of the problem to be
obtained in quadratures. This requires finding the
dependence ω(е) from it and substituting it into the
first of Eqs. (38). Thereafter, a nonlinear first�order
differential equation is obtained for the variable x = е2.

To find stationary solutions of system (38), it is
necessary to solve the equations

(40)

Let us first consider the two simplest model cases
where sin2I = 0:

(а) I = 90°(cos2I = –1) and (b) I = 0 (cos2I = 1).

Whereas case (a) is fairly close to the actual orien�
tation of Uranus’s equatorial and orbital planes, case
(b) seems hypothetical. Nevertheless, the formal solu�
tion of Eqs. (40) in both these cases is defined by sim�
ple formulas:

(41)

It follows from these formulas and our calculations
that only the solution ω* = ±π/2 in the narrow range
of semimajor axes

а(1)(I = 90°) ≈ 1.40 million km 

≤ а ≤ 1.80 million km ≈ а(2)(I = 90°), 
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Fig. 8. Same as Fig. 5 for a = 2.00 million km.
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Fig. 7. Same as Fig. 5 for a = 1.67 million km.
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exists in case (a) and only the solution ω* = 0, π in the
range

а(1)( I = 0) ≈ 1.43 million km 

≤ а ≤ 1.84 million km ≈ а(2)(I = 0).

exists in case (b).
For an arbitrary angle I, the dependence ω(е) can

be approximately found by taking into account the
simplifying assumption of γ4 = 0. In particular, it is jus�
tified for Uranus’s system of main satellites, because,
as can be seen from Fig. 1, the inequality |γ4|  |γk| (k =
0, 1, 2, 3, 5) is valid for this system. At γ4 = 0, from the
first of Eqs. (40) we will obtain the following approxi�
mate expression:

(42)

Substituting sin2ω and cos2ω into the second of
Eqs. (40), we will obtain a quartic equation for е2.
Neglecting the terms of order е6 and е8, in accordance
with the adopted accuracy of representing the perturb�
ing function W, we will obtain a biquadratic equation
for the eccentricity

(43)

where

(44)

The solution of Eq. (43) gives stationary values of
the eccentricity (0 ≤ е* ≤ 1) for various angles I that
exist only in a fairly narrow range of semimajor axes,
a(1)(I) ≤ а ≤ a(2) )(I). For I = 97.86° corresponding to the
inclination of Uranus’s equator to its orbit, a(1)≈
1.4 million km and a(2) ≈ 1.8 million km. In this range
of semimajor axes, naturally, there also exists a libra�

�
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tion zone of the pericenter argument in the (ω, е)
phase plane, with the separatrix defined by Eq. (35) at
с = 0 serving as its boundary:

(45)

In contrast to case IV, the succeeding figures for
case VI show the structure of the families of π�periodic
and naturally extended phase trajectories in the wider
range 0 ≤ ω ≤ 180°. Just as in case IV, the trajectories
located above the critical “cross” straight line are only
of formal interest.

At а < a(1), no singular points exist in the (ω, е)
plane. The orbital evolution is reduced to a monotonic
(circulational) decrease in the pericenter argument at
restricted eccentricity oscillations (Fig. 9). It can be
seen that at е = 0 and ω ≈ I, there is a tendency for the
formation of a singular point that occurs at the bifur�
cation value а(1).

At a(1) < а < a(2), there exists center� and saddle�
type singular points in the (ω, е) plane. A situation
where  is realized for the intermediate value
of a = 1.6 million km (Fig. 10). All of the phase points
moving along the family’s trajectories cross the
straight line of the critical eccentricity in a finite time.
In the evolution problem under consideration, this
serves as a qualitative analog of the well�known
Lidov–Kozai effect in the twice�averaged Hill prob�
lem (Lidov, 1961; Kozai, 1962).

We do not provide here the obvious structure of the
family for  At а > a(2), all of the phase points
moving along the family’s trajectories also cross the
straight line of the critical eccentricity in a finite time,
but no center�type singular point exists in the (ω, е)
plane (Fig. 11).

The integrable case VI considered in this section
can also reflect the qualitative features of the orbital
evolution of a test satellite in Jupiter’s system. To
obtain results similar to those obtained in Uranus’s
system, it is necessary to specify the parameters μj, aj,
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Fig. 9. Family of phase trajectories for case VI in the (ω, е)
plane for a = 1.2 million km (Uranus’s system).
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Fig. 10. Same as Fig. 9 for a = 1.6 million km.
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а0, с20, I = 3.13°, J = 4 corresponding to Jupiter and its
main (Galilean) satellites. Our calculations showed
that the qualitative behavior of the dependences of
coefficients γk on the semimajor axis is retained, with
|γ4|  |γk| (k = 0, 1, 2, 3, 5). The families of phase tra�
jectories are modified in approximately the same way
as those for Uranus’s system. The difference lies in the
numerical values of the parameters, in particular, a
a(1)≈ 2.09  million km and a(2) ≈ ≈ 2.69 million km. For
а < a(1), the families are qualitatively similar to those
shown in Fig. 9, with the “generation” of a singular
point also occurring at е = 0 and ω ≈ I. At a(1) < а < a(2),
the stationary value е* changes from 0 to 1. Figure 12,
which is qualitatively similar to Fig. 10, shows the fam�
ilies of phase trajectories for а = 2.3 million km. It pre�
sents not one but two critical cross straight lines, 
(the contact with Callisto’s orbit) and  (the con�
tact with Jupiter’s “surface”). Note that the massive
satellites of Jupiter (just as those of Uranus and, subse�
quently, Saturn) are numbered in order of increasing
semimajor axes of their orbits.

All of what has been said about Jupiter’s system
also fully applies to Saturn’s system. The parameters
μj, aj, а0, с20, I = 25.33°, J  = 7 corresponding to Sat�
urn and its main satellites are specified. The families of
phase trajectories are modified in approximately the
same way as those for Uranus’s system. The difference
lies in the numerical values of the parameters, in par�
ticular, a(1) ≈ 2.4 million km and a(2) ≈ 3.1 million km.
For а < a(1), the families are qualitatively similar to
those shown in Fig. 9, with the “generation” of a sin�
gular point also occurring at е = 0 and ω≈ I. At a(1) <
а < a(2), the stationary value е* changes from 0 to 1.
Figure 13, which is also qualitatively similar to Fig. 10,
shows the families of phase trajectories for а = 2.5 mil�
lion km.

Apart from the two “cross” straight lines reflecting
the critical eccentricity for the external variant of the
problem, the triangles in Fig. 13 indicate one more
straight line reflecting the critical eccentricity, but for

�

= 4e e
= 0e e

the internal variant of the problem, when the orbit of
the test satellite at its apocenter touches the orbit of the
massive one (in our case, Iapetus, j = 7). The latter fig�
ure is also characteristic in that not all of the phase tra�
jectories intersect the straight lines of the critical
eccentricity (j = 6 and 0), and regular trajectories with

 also exist in a small neighborhood of the singular
point.

Note that the abscissas of the equilibrium points in
Figs. 10, 12, and 13 are defined by the equality ω* = I,

which corresponds to the condition 

In addition, we will point out that at γk = 0 for 1 ≤ k ≤ 5,
i.e., in the absence of massive satellites, the ranges of
existence of singular points are shifted. The corre�
sponding values a(1) and a(2) are reduced approximately
by 0.4–0.7 million km. However, in contrast to case IV,
the structures of the families of phase trajectories
shown in Figs. 9–13 are qualitatively retained (Lidov
and Yarskaya, 1974). To be precise, note that Figs. 2b
and 2c in the above paper should be interchanged
(while retaining the captions to them).
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Fig. 11. Same as Fig. 9 for a = 1.9 million km.
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Fig. 12. Same as Fig. 10 for a = 2.3 million km (Jupiter’s
system).
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Fig. 13. Same as Fig. 10 for a = 2.5 million km (Saturn’s
system).
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CONCLUSIONS

This paper supplements our investigation of the
integrable cases for the general problem of the evolu�
tion of a satellite orbit under the joint influence of
three different perturbing factors: the noncentrality of
the planet’s gravitational field and the attraction by its
main satellites and the Sun. For two special integrable
cases, we performed a qualitative analysis of the secu�
lar equations that, to a first approximation, define the
evolution of the eccentricity and pericenter argument
of polar orbits. The investigation was carried out for
various inclinations of the orbital plane of a remote
perturbing point to the planet’s equatorial plane, in
particular, for the orthogonal orientation of these
planes (case IV) that roughly corresponds to the posi�
tion of Uranus’s equator relative to its heliocentric
orbit (I = 97°.86). For hypothetical and relatively dis�
tant polar satellite orbits that, in principle, could be
located in the orbital plane of Uranus, the perturbing
influence of its massive satellites leads (along with the
circulational one) to the possibility of a librational
variation in the pericenter argument. However, this

can be realized only in a fairly narrow range of semi�
major axes, approximately from 1.6 to 2.1 million km.
The polar orbits of Uranus’s hypothetical satellites,
the orthogonal lines of intersection between both prin�
cipal planes (case IV), could in principle exist only
near а smaller than or approximately equal to 1.6 mil�
lion km. For the same integrable case, we investigated
the behavior of the polar orbits of Jupiter’s and Sat�
urn’s hypothetical satellites. The integrable cases of
the evolution problem considered here cannot be
applied to the satellite system of Neptune due to the
peculiarity of the orbits of its main satellites: either a
significant eccentricity or a significant inclination.

Our analysis establishes the threshold values of the
constant semimajor axes for satellite orbits starting
from which singular points appear in the phase (peri�
center argument–eccentricity) plane, i.e., the stability
of circular orbits with respect to the eccentricity is lost.
As the semimajor axes increase further, the families of
phase trajectories acquire a peculiar feature associated
with the manifestation of the Lidov–Kozai effect. The
attainment of a critical eccentricity for various “effec�
tive” radii of contact of the orbits leads to their inter�

Table 2. Values of  Mk, Sk, , and 

k Mk Sk m

1 3 2 0 3/4 0 –1 1

1 1/4 2 –19 19

2 1/2 3 –1 1

3 1 1 –4 4

2 5 4 0 15/64 0 0 3 –10 7

1 1/64 4 –4 393 –1190 809
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3 1/16 –5 –42 462 –992 600

4 1 0 –4 21 –36 20

5 1/4 1 –8 24 –32 16
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sections. Under these conditions, the probability of
the collision of hypothetical satellites with real (mas�
sive) satellites or with the “surfaces” of the giant plan�
ets increases sharply.

The revealed qualitative features of the evolution
can help in explaining the existence of “empty” zones
separating the families of orbits of regular and irregular
satellites in circumplanetary space.

APPENDIX

Table 2 gives the numerical values of all the quanti�
ties needed to calculate the function W2 from
Eqs. (9)–(15).
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