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INTRODUCTION 
AND FORMULATION OF THE PROBLEM

This paper is a natural continuation of the research
on the evolution of orbits under the action of gravita�
tional perturbations performed by Lidov (1961) and
Kozai (1962), who revealed the main features of the
orbital evolution of satellites and asteroids under the
influence of secular perturbations from an external
attracting mass point. These, in particular, include the
effect of a dramatic increase in the orbital eccentricity
at a constant semimajor axis with a simultaneous
decrease in the pericenter distance, up to the fall of the
satellite to the surface of a planet with a finite radius.
This effect, called the Lidov–Kozai mechanism (and
resonance), arises when the satellite (or asteroid) orbit
is inclined to the plane where the perturbing point
moves by an angle close to 90°. Since the orbits of the
overwhelming majority of known satellites are fairly
far from the orthogonal orientation relative to the
ecliptic plane, the fall effect cannot manifest itself for
them. The main and inner satellites of Uranus could
be an exception. The nearly equatorial (and nearly cir�
cular) orbits of these satellites are inclined to the eclip�
tic plane by angles differing from the right one only by
about 8°. As was shown by Lidov (1963), the influence
of Uranus’s oblateness, which more than compensates
for the secular solar perturbations, is an explanation
for the real existence of the most distant main satellite,
Oberon (and, of course, all of the closer satellites).

The papers of Vashkov’yak (2001) and Vashkov’yak
and Teslenko (2002) are also devoted to some of the
peculiarities of Uranus’s satellite system. The evolu�
tion models used in the above papers did not include
the attraction by the main satellites in the perturbing
factors. At the same time, the influence of this factor
on the orbital evolution may turn out to be fairly
noticeable—it is the subject of our study.

In the first four sections of this paper, we derive the
evolution equations for the problem of the secular per�
turbations of the orbit of a satellite with a negligible
mass under the joint influence of three perturbing fac�
tors (the oblateness of the central planet, the attraction
by its main satellites, and the attraction by the Sun),
describe the integrable cases, and map out the possible
ways of their investigation. Studying the region of cir�
cumplanetary space where the influence of these per�
turbations on the satellite is pairwise or, in aggregate,
is comparable in magnitude is of greatest interest in
this new restricted evolution problem.

In the last fifth section, we consider the satellite
system of Uranus. Using the derived approximate ana�
lytical dependences and numerical estimates, we
revealed the influence of Uranus’s main satellites on
the orbital evolution of some of its real and hypotheti�
cal satellites for a wide range of orbital semimajor axes.

The secular part W of the full perturbing function
provides a basis for obtaining the evolution system. It
is found by its independent averaging over all “fast”
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variables: the mean planetocentric longitudes of the
Sun, the main satellites, and the test (real or hypothet�
ical) satellite, i.e., by eliminating the short�period
part. Thus, the function W depends only on five plan�
etocentric Keplerian orbital elements: the semimajor
axis a, eccentricity e, inclination i, pericenter argu�
ment ω, and ascending�node longitude Ω. The angu�
lar elements are referred to the equatorial plane of the
planet and the line of its intersection with the plane of
the heliocentric orbit (or the planetocentric orbit of
the Sun). As follows from the Lagrange equations in
elements, since W does not depend on the mean lon�
gitude of the test satellite, the semimajor axis of its
orbit remains constant, while this function itself gives
the first integral of the evolution system W = const.

The function W consists of three terms corre�
sponding to the three above�mentioned perturbing
factors, while the first integral takes the form

W = W0 + W1 + W2 = const. (1)

In the subsequent formulas, apart from the orbital ele�
ments, we use the following notation:

μ0, μj, and μ' are the products of the gravitational
constant by the masses of the planet, its jth main satel�
lite, and the Sun, respectively;

a0, aj, and a' are, respectively, the mean equatorial
radius of the planet and the semimajor axes of the orbit
of its jth main satellite and the planetocentric orbit of
the Sun;

с20 is the coefficient at the second zonal harmonic
of the planet’s gravitational field;

iorb and ωorb are, respectively, the inclination and
pericenter argument of the orbit of the test satellite
referred to the planet’s orbital plane.

In this paper, the evolution problem is considered
by taking into account the principal terms of the secu�
lar parts of the perturbing functions the expressions for
which are given below.

The function W0 describes the secular influence of
only the second zonal harmonic of the planet’s gravi�
tational field,

The function W1 describes the influence of secular
solar perturbations in the quadratic approximation in

 or in the Hill approximation,

The elements iorb and ωorb can be expressed in terms of
i, ω, Ω, and the angle between the equatorial plane of
the planet and its orbital plane denoted by I in a known
way. The function W1 is defined by the expression

The function W2 describes the secular perturba�
tions from the planet’s main satellites, which are
assumed in our analysis to be noninteracting between
themselves. This function is defined by the formula

(2)

where E is the eccentric anomaly of the test satellite,
and V in the dynamical interpretation is the force
function of a system of a finite number J of Gaussian
rings with masses equal to the masses of the satellites.
We use a nontraditional form of the function W2 pro�
posed previously (Vashkov’yak et al., 2013a). Its uni�
fied representation for both internal and external vari�
ants of the problem, i.e., for  and , is a
peculiarity. In our simplified model, we will assume

that the orbits of all main satellites lie in the equatorial
plane of the planet and have zero eccentricities. In this
case, V is expressed in terms of the Gauss hypergeo�
metric function (Vashkovjak, 1976),

(3)

and depends on Е only via the squares of the planeto�
centric coordinates of the test satellite,

(4)

Using Eqs. (2)–(4), it can be shown that the func�
tion W2 depends on e, i, and ω, respectively, only via
the combinations e2, sin2i, and e2sin2icos2ω. These
properties are valid for any orbital eccentricity and
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inclination of the test satellite, while the expression for
the function W2 can be represented in general form as

(5)

where  and  are some rational functions of
their arguments. However, the explicit analytical
expression (5) for arbitrary е and i is fairly cumber�
some. For this reason, for the purposes of an
approximate analysis, we will use a simplified for�
mula,

(6)

Of course, it is valid only for moderate eccentricity
and inclination and disregards the terms of the sixth
and higher even degrees in e and sini. In general, the

constant coefficients,  (1≤ j ≤ J; 1 ≤ k ≤ 5),
can be calculated using the known Laplace coeffi�
cients. We use a nonstandard method of calculation
(Vashkov’yak et al., 2013a; 2013b; 2015), where the

coefficients  are found with the help of power
series in the parameters

 or 

which do not depend on the relations between the
semimajor axes a and aj. In addition to positive pow�
ers, singularities of the form 1/ηj and lnηj appear in the
expansion of the function W2 in terms of the parameter ηj.
They are related to the possible closeness of the orbits
of the perturbed and perturbing satellites. However,
the application of such a series allows the number of its
terms needed to achieve a specified accuracy of calcu�
lating W2 to be reduced considerably. Our goal is an
analytical study and a numerical solution of the new
evolution problem or the system of differential
Lagrange equations in elements with an averaged per�
turbing function W. It should be noted that the results
obtained from the averaged perturbing function do not
exhaust the description of the orbital evolution of
planetary satellites. The secular and long�period vari�
ations in orbital elements are also obtained when the
short�period perturbations of the second order in per�
turbing factors are calculated. This occurs when mul�
tiplying the trigonometric series containing fast vari�
ables of the same multiplicity in the cofactors in the
arguments of the trigonometric functions. Such terms
are discarded immediately in our analysis when aver�

aging the perturbing function. We assume that the pat�
tern of orbital evolution is determined mainly by the
averaged part of the perturbing function.

THE EVOLUTION SYSTEM 
IN KEPLERIAN ELEMENTS

For the subsequent analysis, we introduce several
constant parameters:

(7)

In addition, it is convenient to introduce a new inde�

pendent variable, τ =  where n =  is
the mean motion of the test satellite, t0 and t are the
initial and current instants of time, respectively, and to
normalize the function W by assuming that WN =
W/β/n2/a2 = Wa/β/μ0. In order of magnitude, α0 char�
acterizes the absolute value of the ratio of the averaged
perturbing function of the planet’s oblateness to the
force function of the central attracting point (i.e.,
μ0/a). The parameters αk > 0  characterize the
same ratio but for the perturbing function of the sys�
tem of Gaussian rings modeling the attraction by the
main satellites Sk. The parameter β characterizes the
ratio of the twice�averaged perturbing function of solar
attraction to μ0/a. Finally, the absolute values of γk for

 are of the order of the ratios of the averaged
perturbing functions of the oblateness and the system
of Gaussian rings to the perturbing function of solar
attraction.
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The evolution system for the problem is obtained
by substituting into the Lagrange equations

(8)

the partial derivatives of the normalized function

(9)

In this case, WN = const is the first integral of system (8).
This system of four averaged differential equations in
elements has the following explicit form:

(10)

(11)

 (12)

(13)

At arbitrary angles I, this system with only one first
integral WN = const is apparently nonintegrable. Nev�
ertheless, it seems interesting and useful to us to reveal
its main properties, integrable cases, and particular
solutions, possibly also periodic ones, with the invariance
of the system with respect to the change of variables

pointing to their existence.
For arbitrary I and initial conditions e0, i0, ω0, and

Ω0, in particular, those corresponding to the orbits of
real (or hypothetical) satellites of a planet, we will use

Everhart’s 19th�order numerical method to solve the
evolution system and will check the calculations using
the integral WN = const. The code for numerical inte�
gration by this method was adapted for a system of four
first�order equations.

TRABSFORMATION OF THE EVOLUTION 
SYSTEM TO POINCARE ELEMENTS

In some analytical studies of the evolution of nearly
circular satellite orbits with low inclinations to the
equatorial plane of the planet, it turns out to be useful
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to also apply special regular elements, along with the
Keplerian elements having a clear geometrical mean�
ing.

Below, we introduce the elements of the second
canonical Poincare system normalized to (μ0a)1/4:

Here, g is the pericenter longitude, the variables ξ and
η are of the order of e when e → 0, and the variable
p and q are of the order of sini when sini → 0. The main
combinations of Keplerian elements appearing in
function (9) are expressed in terms of these elements,
common for both prograde and retrograde satellite
orbits.

In new variables, the nonlinear evolution equations
are written in a standard canonical form,

(14)

while integral (1) takes the form

where the nonzero values of the coefficients 
are defined by the formulas
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In the linear approximation, system (14) splits up
into two pairs of equations for (ξ, η) and (p, q):

(15)

The roots of the characteristic equation for the first
pair of linear homogeneous equations (15) are defined

by the formula  =  It is
easy to show that the coefficients in the formula for b
are positive. Indeed, γ0 is defined by the formula γ0 =

 and is greater than zero in the case of an

oblate planet. It follows from the paper of Vashkov’yak
et al. (2013a) that the coefficient γ1 is also positive.
Therefore, the coefficient b will also take only positive
values. The condition for the stability of the zero solu�
tion in the linear approximation in eccentricity (or ξ, η)
then follows from the expression for λ1, 2:

The critical semimajor axis of a circular equatorial
orbit at which it becomes unstable with respect to the
eccentricity can be found from this inequality for an
arbitrary satellite system, in particular, for the system
of Uranus (I ≈ 90°; see the section “The Satellite Sys�
tem of Uranus”).

As follows from the second pair of linear but inho�
mogeneous equations (15), their zero solution turns
out to be unstable in inclination at an arbitrary angle I.
Only in the integrable cases I–V considered below,
where either sinI = 0 or cosI = 0, i.e., where  does
it make sense to talk about the conditions for the sta�
bility of the solution in the linear approximation in
inclination (or p, q). These conditions follow from the
formula for the characteristic roots of the second pair
of homogeneous equations (15)  =
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the linear approximation at any b, because
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In the case where cosI = 0, = 
the solution is stable in the linear approximation either
at b < 2 or at b > 4. The corresponding critical semima�
jor axes of the satellite orbit at which it becomes unsta�
ble with respect to the inclination can be found from
these inequalities.

THE CASES OF INTEGRABILITY 
OF THE EVOLUTION SYSTEM

First of all, note that the system of differential
equations (10)–(13) at γk = 0  describes the
evolution of a satellite orbit under the joint influence
of the planet’s oblateness and a remote attracting
point. The integrable cases of this problem were inves�
tigated in Lidov and Yarskaya (1974). When describing
the cases of integrability of the more general system
with γk ≠ 0, we will adhere to the numbering estab�
lished in the above paper. Note at once that no new
cases of integrability in the problem under consider�
ation have been found. This is natural, because only a
coplanar system of rings located in the equatorial
plane of the planet was added to the model.

Case I. The orbit evolves only under the action of
solar attraction, i.e., c20 = 0 and μj = 0 (1 ≤ j ≤ J) or, as
a consequence, γk = 0  Setting the arbitrary
angle I in this case equal to zero and assuming the
angular elements i, ω, and Ω to be referred to the
orbital plane of the planet, we will obtain the equations
of the twice�averaged Hill problem. Using the addi�
tional first integral

(16)

existing in this case and the transformation of the
function WN, M.L. Lidov obtained a considerably
simpler integral,

(17)

A comprehensive qualitative analysis of this evolution
problem was performed in the already mentioned
papers (Lidov, 1961; Kozai, 1962). A general solution
of the problem for arbitrary elements of the satellite
orbit was obtained by Vashkov’yak (1999) and Kinosh�
ita and Nakai (1999, 2007), while its geometrically
clear study was performed in a series of papers starting
from 2001 (Prokhorenko, 2001).

Case II. The orbit evolves under the action of the
planet’s oblateness and attraction by its main satel�
lites, i.e.,  Since the problem is symmetric rela�
tive to the planet’s rotation axis, integral (16), where
the inclination i is referred to its equatorial plane,
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(0 5).k≤ ≤
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arises just as in case I. It follows from integrals (1) and
(16) that

(18)

where the constant parameters αk  are
defined by Eqs. (7).

Using an independent variable , we will
obtain

(19)

The last equation in (19) allows the dependence of
the ascending�node longitude Ω(ν) to be found by
means of a quadrature, but only after the determina�
tion of e(ν), i(ν), and ω(ν). Note that at α5 = 0 the ele�
ments e and i are constant, while ω and Ω are linear
functions of time. The eccentricity and inclination do
not remain constant at an arbitrary α5 ≠ 0 (as in the
case where only the planet’s oblateness is taken into
account), although they are related between them�
selves in view of integral (16). If sin2i and sin4i are
eliminated from Eq. (18) using it, then we will obtain
some function that defines a family of phase trajecto�
ries in the (ω, е) plane depending on the constants of
the integrals с1 and с2 and the constant parameters of
the problem αk 

If necessary, the investigation of this integrable case
can be continued and applied to a satellite system
where the influence of a distant external body is negli�
gible. It should only be recalled that the terms propor�
tional to αk > 5 with the sixth and higher even degrees in
е and sini remained neglected in integral (18). There�
fore, the results of our analysis of case II (along with
III–VII) are applicable only for orbits with moderate
eccentricities and inclinations.
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Case III. The equatorial plane of the planet coin�
cides with the plane of its heliocentric orbit, i.e., I = 0.
Under this condition, apart from integral (16), it fol�
lows from Eq. (9) that

(20)

The evolution equations will take a simpler form,

(21)

(22)

The dependence Ω(τ) can be found by a quadrature
from the last equation in (22) after the determination
of e(ν), i(ν), and ω(ν). Note that this case at γk = 0

, which was first investigated by Lidov and
Yarskaya (1974), turned out to be richest from the
standpoint of a diversity of the structures of the fami�
lies of phase trajectories and, in addition, was not lim�
ited by the smallness of е and sini. Below we will con�
sider the evolution system (14) in Poincare elements at
I = 0 but γk ≠ 0  when the expression for the
function WN is simplified, while integrals (16) and
(20), to within terms of order (e, sini)4 inclusive, take
the form
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where

Since no other integrals of the canonical evolution
system are directly seen, except for the two obvious
first integrals, it is natural to try to simplify it by mak�
ing a nonlinear (and non�canonical!) change of vari�
ables:

The evolution equations in new variables take the
form

where

with  +  and  + 
As it turned out, the system of equations in vari�

ables  x3, and x4 has three independent first inte�
grals:

where
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The integrals with constants C2 and C3 for β5 = 0
were derived by Yu.A. Sadov, who kindly reported his
result to one of us after a joint discussion of the prob�
lem under study.

It is easy to show that the integral WN = const (the
Hamiltonian of the original canonical evolution sys�
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tem) is composed of a specially selected linear combi�
nation of the above three integrals,

and an elliptic quadrature is obtained from them to
determine the dependence of τ on one of the variables,
for example, x1:

This quadrature is analytically found and inverted

through a simple calculation of the four roots 

 and  of the polynomial R(x1), which is the
product of two quadratic polynomial in the case under
consideration. Two of these roots that do not exceed 1
define the limits  and  of variation in the
variable x1 and the related eccentricity of the satellite
orbit, the most important evolution characteristic,

[x1, min(1 – x1, min/4)]1/2 ≤ e ≤ [x1, max(1 – x1, max/4)]1/2.

The variables x2, x3, and x4 can be found using the same
three integrals. We pass from x1, x2, x3, and x4 to the
Keplerian variables using the formulas

If necessary, the investigation of this integrable case
can be continued and applied to a satellite system
where the equatorial plane of the planet is close to its
orbital plane.

Note that after a modification of the formulas for
    and , the equations

describing the changes in x1, x2, x3, and x4 can also be
integrated in quadratures in the previous case II as
well.

Case IV. The plane of the planet’s heliocentric
orbit is orthogonal to its equatorial plane, i.e., cosI = 0,
while the satellite moves in this plane (siniorb = 0), so
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that cosi = 0 and sinΩ = 0 in the particular solution.
In this case, di/dτ = dΩ/dτ = 0. However, to confirm
the last two equalities, we cannot rely only on Eq. (9)
but should use the previously described properties of
the function W2 and its general expression (5). Note
that the expressions for the functions W0 and W1 were
derived for arbitrary eccentricity and inclination of the
satellite orbit, while the proposed formulas (6) and (9)
for the functions W2 and WN, respectively, are valid
only at moderate е and sini. Therefore, this case can be
legitimately considered in our formulation of the evo�
lution problem if an expression for the function W2

will be derived for polar orbits. Note that its expression
for arbitrary i, which is also valid, in particular, for i =
90°, was derived by Vashkovjak (1976), but only to
within е2 inclusive.

Case V. Just as in case IV, the plane of the planet’s
heliocentric orbit is orthogonal to its equatorial plane,
i.e., cosI = 0, but the satellite in the particular solution
moves in the equatorial plane (sini = 0, ).
The adopted assumptions simplify the evolution sys�
tem. For equatorial orbits, since the node longitude is
uncertain, the system of four equations is reduced to
two equations for the eccentricity and the previously
introduced pericenter longitude g.

The system of these equations

(23)

has the first integral

At zero initial eccentricity е0, there exists a partic�
ular solution where the orbit remains circular

At е0 ≠ 0, the stationary solutions of system (23)
under consideration are defined by the conditions

(24)

In what follows, we will assume that γ0 > 0 (с20 < 0)
and, in addition, γ1 and γ2 are positive. As follows from
the calculations presented in the next section, these
two conditions hold, in particular, for the system of
Uranus’s main satellites. In view of the adopted
assumptions with regard to the parameters γ0, γ1, and
γ2, the first equation in (24) is not satisfied at any
eccentricities e < 1. Therefore, the stationary solutions
exist only at g = g* = ±90° and are determined from the
second algebraic equation in (24). Since the eccentric�
ity in case V under consideration (just as in all cases
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except case I) is assumed to be low, it is natural to
obtain the solution of this equation only in the biqua�
dratic approximation in е,

(25)

where  –  and 
Thus, singular points exist in the (g, e) plane only

under the condition 5 + q1 > 0 or

(26)

If the semimajor axis of the satellite orbit (or γ0, γ1) is
changed continuously, then the function f(a) will
unavoidably become zero, which will imply a bifurca�
tion (the disappearance or appearance of a singular
solution) at point (g*, 0). The inequality f(a) > 0 corre�
sponds only to a circulational variation of the peri�

center longitude (when  is a sign�constant function

of τ), while at f(a) ≤ 0 it can also vary librationally rel�

ative to g* (when  is an alternating function of τ).

The appearance of a libration region in the (g, e) phase
plane, along with a center�type singular point, entails
the appearance of a saddle singular point as well,
which makes the circular orbits unstable with respect
to the eccentricity.

The integral of Eqs. (23) at low е takes a simpler
form,

(27)

An equation for the family of phase trajectories in
the (g, e) plane is derived directly from this expression,
where the terms of order e6 were discarded:

(28)

The constant of the integral с2 is determined from the
initial values e0 and g0,

с2 > 0 correspond to a circulational variation of g, с2 < 0
correspond to its librational variation, and с2 = 0 cor�
responds to a singular trajectory (separatrix) whose
equation is

(29)

This trajectory limits the eccentricity variation at

 by  The simplified expression of
the integral (27) allows the quadrature to determine
the dependence  to be obtained by eliminating the
pericenter longitude g from the first equation in (23).
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For the change in new variable z = e2, we will have the
equation

(30)

where the sign of the right�hand side is determined by
the sign of sin sin2g,

From (30) we will obtain a fairly complex ultra�elliptic
integral,

(31)

where  = 

The extrema of the eccentricity (or z) are deter�
mined by two positive roots of the polynomial P(z) less
than one. Depending on the sign of the constant с2,
they are found in different ways from Eq. (28) for the
phase trajectory.

(32)

In this case, the pericenter longitude g changes mono�
tonically with time, while its circulation period TС can
be found by calculating the quadrature
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In this case, the pericenter longitude g oscillates
within a limited range relative to g* = ±90°; its
extrema are

(34)

while its libration period TL can be found by calculat�
ing the quadrature

In the case of a limitational motion, where с2 = 0,
the period is infinite,

(35)

When applied to a satellite system where the equa�
torial plane of the central planet is nearly orthogonal
to its orbital plane, this integrable case V, if necessary,
can be investigated in more detail. However, it should
be kept in mind that the corresponding results will also
be applicable only for orbits with low eccentricities
and inclinations.

Case VI. The equatorial plane of the planet is
inclined to its orbital plane at an arbitrary angle I,
while the plane of the satellite orbit is orthogonal to the
line of their intersection, i.e., cos i = 0 and cosΩ = 0. In
this case, di/dt = dΩ/dt = 0. However, the properties of
the function W2 and its general expression (5) should
be used to confirm these equalities, just as in the above
case IV. All of the remaining remarks concerning the
function W2 made in case IV fully pertain to case
VI as well.

Case VII. The equatorial plane of the planet is
inclined to its orbital plane at an arbitrary angle I,
while the satellite in the particular solution moves in a
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circular orbit, i.e., е = 0. In this case, as follows from

Eq. (10),  = 0 and integral (9) takes the form

Hence we can obtain a family of phase trajectories
in the (Ω, i) plane depending on the constant of the
integral с2 and the constant parameters of the problem
γk  and find the dependences i(τ) and Ω(τ)
from Eqs. (11) and (13). Thereafter, we obtain a linear
system of two differential equations with periodic
coefficients for the Lagrangian elements h = ecosω and
k = esinω at low е. If necessary, the investigation of this
integrable case can be continued. It should only be
recalled the terms proportional to γk > 5 with the sixth
and higher even degrees in sini remained neglected in
this integral, so that the results of our analysis of case VII
(along with case II) are applicable only for orbits with
low inclinations. Note that the spatial evolution of cir�
cular satellite orbits at γk = 0  was investi�
gated by Sekuguchi (1961), Allan and Cook (1964),
and Vashkov’yak (1983) using geosynchronous orbits
of artificial Earth satellites arbitrarily inclined to the
Earth’s equator as an example.

THE SATELLITE SYSTEM OF URANUS

Parameters of Gravitational Perturbations

In this section, we will consider the satellite system
of the planet Uranus. Physical and orbital parameters
of the planet itself are given in Table 1.

Here, I is the inclination of Uranus’s retrograde
rotation axis to its orbital plane. Analogous parameters
of Uranus’s main satellites are given in Table 2, and
they are numbered in order of increasing orbital semi�
major axis. The data for both tables were taken from
the site of the Sternberg Astronomical Institute, to be
more precise, from the section supervised by

de
dτ
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Table 1. Physical and orbital parameters of Uranus

µ', km3/s2 a', km µ0, km3/s2 a0, km c20 I, deg

132712440000 2875038596 5793939.3 25559 –3343.46 × 10–6 97.86

Table 2. Orbital and physical parameters of Uranus’s main satellites

j 1 2 3 4 5

Name Miranda (U V) Ariel (U I) Umbriel (U II) Titania (U III) Oberon (U IV)

aj, km 129872 190945 265998 436298 583519

µj, km3/s2 4.4 90.3 78.2 235.3 201.1
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V.S. Uralskaya: http://www.sai.msu.ru/neb/rw/natsat/
index.htm.

In this paper, remaining within a limited formula�
tion, we did not plan to consider the problem of the
mutual perturbations of Uranus’s main satellites. It
seems to us that the most complete investigation of its
mathematical and astronomical aspects is contained
in Nikonchuk (2012, 2013) and Emelyanov and
Nikonchuk (2013).

We will consider a fairly wide range of orbital semi�
major axes for Uranus’s satellites (mostly hypothetical
ones). For this purpose, we performed preliminary
calculations of the coefficients γk (a)  for
a from 90 thousand to 6.9 million km with a step of

6 thousand km. To find the coefficients  in
Eq. (6), we used a previously developed special com�
putational code. Since the semimajor axis of the satel�
lite orbit in the evolution problem under consideration
is constant, the coefficients γk at the fixed physical and
orbital parameters of the system specified by Tables 1
and 2 will also be constant.

It is easy to calculate these coefficients for a spe�
cific value of a by interpolating the nodal values in the
specified range. To make the dependences of the coef�
ficients γk(a) more detailed, we present them on a log�
arithmic scale in two ranges of semimajor axes. In
Fig. 1, these dependences are shown for 0.09 mil�
lion km < a < 0.69 million km.

(0 5)k≤ ≤

( )j
kP ( ), ja a

Since one of the coefficients (namely γ4) is nega�
tive,  are plotted along the vertical axis for all k.
The solid, dashed, dotted, and dash–dotted curves
indicate the dependences for k = 0, 1, 2, and 3, respec�
tively. The circles and crosses indicate the depen�
dences for k = 4 and 5, respectively. The range in Fig. 1
includes the orbital semimajor axes aj for Uranus’s five
main satellites; therefore, all of the dependences
except  have discontinuities (appearing as peaks
on the graph) at  when the function W1, natu�
rally, tends to infinity. Turning to the previously
described physical meaning of the parameters γk, it can
be made sure that the perturbing influence of oblate�
ness (k = 0) at a less than ~0.1 million km turns out to
prevail over the attraction by the main satellites (k > 0).
At larger a, this influence weakens considerably, nev�
ertheless exceeding appreciably the influence of solar
attraction even near the orbit of Oberon (  ≈ 1.6
for ). The corresponding dependences are
shown in Fig. 2 for 0.5 million km < a < 6 million km.

In this range including the orbital semimajor axes
of only two Uranian satellites, Oberon (a = a5 ≈
0.58 million km) and Francisco (a ≈ 4.3 million km),
the influence of oblateness (k = 0) is weaker than the
attraction by the main satellites (k = 1, 4, 5) approxi�
mately by two orders of magnitude. At the same time,
the influence of solar attraction increases noticeably
with a against the background of a natural weakening
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Fig. 1. Coefficients γk versus semimajor axis for the range 0.09 million km < a < 0.69 million km.
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of the two remaining perturbing factors, the oblateness
of Uranus and the attraction by its main satellites. An
approximate equality, when  is achieved at

a ≈ 1.2 million km  and a ≈ 2.6 million km

, respectively. Near the orbit of Francisco,
the solar perturbations exceed the perturbations from
the attraction by the main satellites by more than an
order of magnitude and even more so from the oblate�
ness of Uranus.

In studying the evolution of satellite orbits in the
system of Uranus, we will rely on the averaged differ�
ential equations (10)–(13). Idealizing the problem,
instead of the real inclination of Uranus’s equatorial
plane to its orbital plane we will assume that I = 90° to
obtain approximate estimates of the evolution
parameters.

γ ≈log 0,k

γ =(log 0 0)

γ =(log 5 0)

On the Orbit of Francisco (U XXII)

Francisco is the closest of Uranus’s outer satellites
discovered to date. The planes of the noticeably ellip�
tical orbits of these satellites are fairly far from the
equatorial ones and, consequently, from those orthog�
onal to the orbit of Uranus. Therefore, the influence of
solar attraction, which is the main perturbing factor,
leads only to such oscillations of the orbital eccentric�
ities of outer satellites at which the pericenter dis�
tances remain considerably larger than the orbital
radius of Oberon. In this case, the main satellites turn
out to have a negligible influence on the orbital evolu�
tion of Caliban (a ≈ 7.2 million km) and more distant
satellites of Uranus. However, the orbit of Francisco
(a ≈ 4.3 million km) is located in the region of circum�
planetary space where the influence of the main satel�
lites is already noticeable. Since this orbit is highly
inclined to the equatorial plane of Uranus, it turns out
to be impossible to use any of the integrable cases to
study the orbital evolution of Francisco. This forces us
to resort to the numerical integration of the rigorous
evolution system. Such integration performed on a
time scale of 50 thousand years showed that during the
evolution of the orbit the attraction by the main satel�
lites of Uranus (mainly Oberon and Titania) lowers its
pericenter approximately to 3.53 million km (Table 3).
Although this value is far from the orbital radius of
Oberon, it nevertheless turns out to be smaller than
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Fig. 2. Coefficients γk versus semimajor axis for the range 0.5 million km < a < 6 million km.

Table 3. Change in the pericenter distance of Francisco’s
orbit on a time scale of 50 thousand years

Perturbing factor
qmin,

million km
qmax,

million km

Sun, oblateness of Uranus and 
its five main satellites

3.53 3.79

Sun 3.58 3.79
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that under the hypothetical influence of only the solar
perturbations approximately by 50 thousand km.

Note, in addition, that the orbital inclination of
Francisco to the orbital plane of Uranus is ~150°.
Such an orientation is far from the orthogonal one at
which the Lidov–Kozai effect of a satellite’s fall to a
central body could manifest itself.

On the Orbits of Uranus’s Hypothetical 
Equatorial Satellites

Now we will dwell on the condition for the appear�
ance of singular points in the (g, e) plane obtained in
the section “The Cases of Integrability… (case V)”,
which leads to the loss of stability of circular orbits
with respect to the eccentricity. Consider the function
f(a) = f[γ0(a), γ1(a)] defined by Eq. (26) and repre�
sented by the solid curve in Fig. 3. For comparison, the
dashed line in the same figure indicates the function
ϕ(a) = f[γ0(a), 0] calculated without any influence of
the main satellites. The zeros of these functions are the
bifurcation values of the semimajor axis, af ≈ 1.6 mil�
lion km and aϕ ≈ 1.1 million km, respectively, corre�
sponding to the loss of stability of circular orbits with
respect to the eccentricity. Obviously, the influence of
inner satellites noticeably shifts the boundary of the
region of instability of circular orbits toward larger
semimajor axes.

To illustrate the qualitatively different behavior of
the pericenter longitude at two, close to af, semimajor
axes of the nearly circular orbits of Uranus’s hypothet�
ical satellites and to check the validity of the derived
formulas (case V), we numerically integrated the evo�
lution system at e0 = 0.05 in an idealized model (I =
90°). The initial angular elements referred to its equa�
torial plane were taken to be i0 = 0°.1, ω0 = 90°, and
Ω0 = 0.

Our calculations performed on a time scale of
150 thousand years showed that at a = 1.595 mil�
lion km < af the pericenter longitude g changed
monotonically with time, while the eccentricity
oscillated within a narrow range, from emin ≈
0.00534 to emax = e0 = 0.05 (in agreement with Eqs. (32)).

By contrast, at a = 1.605 million km > af the peri�
center longitude experienced oscillations within the

range from = 85.8° to  = 94.2° (Eqs. (34)).
The eccentricity experienced considerably larger
(than those at a = 1.595 million km) oscillations from
emin = e0 = 0.05 to emax = 0.227 (Eqs. (33)). The libra�
tion region of the eccentricity and pericenter argu�
ment relative to the point (g* = g0 = 90°, e* = 0.168) is
bounded by es = 0.237, gs = 84.5°, and 180° – gs belong�
ing to the separatrix (Eq. (35)). The solid and dashed
curves in Fig. 4 indicate the libration trajectory in the
(g, e) plane and the separatrix, respectively. The circle
marks the libration center; the arrows indicate the
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direction of motion of the phase point in trajectories
with finite and infinite periods.

However, the existence of singular points and a
g libration zone does not yet rule out the initial condi�
tions under which the eccentricity of the orbit during
its evolution will be unable to reach its critical value,

 –  And only from the equality

(36)

do we find the “threshold” semimajor axis starting
from which (by analogy with Lidov’s theorem in the
twice�averaged Hill problem) the eccentricity reaches
its critical values  in a finite time at any initial e0 and g0.
Vashkov’yak (2001) and Vashkov’yak and Teslenko
(2002) obtained an estimate of 1.3 million km for such
a threshold value exceeding aϕ ≈ 1.1 million km. This
estimate corresponds to the determination of e* as a
rigorous (without assuming the eccentricity to be low)
solution of the second equation in (24) at γ1 = γ2 = 0,

i.e., the condition  –  In the evolution
problem under consideration, where all γk are non�
zero, to obtain the corresponding estimate in equality
(36), we should use Eq. (25), i.e., the condition

 +  or, in an explicit form,

(37)

An approximate numerical solution of this equation
for the semimajor axis gives its threshold value that
slightly exceeds af and is ~1.72 million km. This
approximate value will slightly decrease if the orbital
radii of the main satellites are substituted into Eq. (37)
for a0. The solution of each of the j equations  = 0
will then define its threshold semimajor axis corre�

1e = 0 .a a

( ) ( )*e a e a=
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( ) ( ) ( )[ ]

( ) ( ) ( )

ψ = γ + γ

× − − + γ + γ =

0 2 0

2
0 1 0

, 2 5
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sponding to the contact of the orbits of hypotheti�
cal and one of the main satellites of Uranus. For
the contact with Oberon’s orbit, this value is
~1.66 million km.

Thus, at a greater than 1.66 million km, the initially
nearly circular orbits of Uranus’s hypothetical satel�
lites should have evolved in such a way that their peri�
center distances became smaller than the orbital
radius of Oberon (and other main satellites) in a finite
time, which would lead to their mutual collisions with
a high probability. At a greater than 1.72 million km,
the collision with Uranus itself is also unavoidable. As
an illustration, we will consider its hypothetical satel�
lite that has an orbit with the semimajor axis a =
1.8 million km, e0 = 0.05, i0 = 3°, and ω0 = Ω0 = 0. Fig�
ure 5 shows the dependences of the pericenter distance q
on time t obtained by numerically integrating the rig�
orous (I ≠ 90°) evolution system (10)–(13). The solid
and dashed curves correspond to the complete set of
perturbing factors under consideration and only the
solar perturbations, respectively. The horizontal
straight lines numbered on the right mark the radius of
Uranus (0) and the orbital radii of its main satellites
(j = 1–5). It can be seen from this figure that in the
central gravitational field of Uranus and without
allowance for the influence of its main satellites, the
solar perturbations lower the pericenter almost to a
distance smaller than the planet’s radius.

At the same time, when the complete set of pertur�
bations, including the main satellites, is taken into
account, the pericenter is lowered only to a distance
slightly smaller than the orbital radius of Umbriel.
Nevertheless, the orbit of this satellite crosses the
orbits of the two most distant main satellites of Uranus
already in approximately 10–11 thousand years. As
has already been pointed out in Vashkov’yak (2001),
their noticeable massiveness compared to the remain�
ing main satellites (Table 2) apparently suggests a fatal
role of the “main absorbers” of outer equatorial small
bodies.

On the Orbit of Oberon (U IV)

In the Introduction, we described the cause of the
real existence of both the most distant main satellite,
Oberon, and all of the closer satellites established by
M.L. Lidov. At those, relatively small, Uranocentric
distances at which these satellites are located, the
planet’s oblateness prevents a catastrophic decrease in
the pericenter radii of their nearly equatorial orbits to
the radius of Uranus. Because of the solar perturba�
tions, such a decrease would inevitably occur if the
gravitational field of Uranus were (hypothetically)
central. The loss of stability of circular satellite orbits
with increasing a, i.e., the possibility of a dramatic
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Fig. 4. Phase (g, e) plane for a = 1.605 million km.
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increase in their eccentricities, a corresponding
decrease in the pericenter distances, and a collision of
the satellite with the “surface” of Uranus, serves as a
precursor of this phenomenon. A mathematical
reflection of the possibility of such a collision is the
emergence of the Lidov–Kozai resonance, the
appearance of singular points and a libration region in
the (ω, e) or (g, e) plane. As, in general, might be
expected, in addition to the solar perturbations and
the oblateness of Uranus, the attraction by the main
satellites also manifests itself noticeably in its satellite
system. It follows from Figs. 1 and 2 that its influence
exceeds the influence of oblateness for a greater than
~0.1 million km.

In view of the geometrical and dynamical proper�
ties of this satellite system, below we will use the inte�
grable case V as the most suitable one for an approxi�
mate analytical study of the evolution of the nearly cir�
cular equatorial orbits of Uranus’s satellites. To
estimate the influence of its main satellites on this evo�
lution, we will dwell on the oscillations of the orbital
eccentricity of Oberon, the most distant main satellite
of Uranus. In this case, naturally, by excluding it from
the perturbing bodies, we will assume it to be a per�
turbed body of an infinitesimal mass, i.e., we will con�
sider a restricted evolution problem using it as an
example. The dependences shown in Figs. 1 and 2 will
undergo changes, the most significant of which will be
the “disappearance” of the discontinuity at a = a5.
Since the family of phase trajectories in the (g, e) plane
has no singular points for this semimajor axis, the
orbital eccentricity of Oberon experiences small long�
period oscillations Δе = еmax – emin. Our estimates of Δе
using Eqs. (32) for various perturbation models are

presented in Table 4. The first row gives our estimate
without allowance for the influence of Uranus’s main
satellites that coincides in order of magnitude with
that from Lidov (1963). The second and third rows
give our estimates without allowance for the influence
of Uranus’s oblateness and with allowance for the
complete set of perturbations under consideration,
respectively. It can be seen from this table that the
attraction by the main satellites reduces the amplitude
of the oscillations in Oberon’s orbital eccentricity by
an order of magnitude.

To illustrate the influence of the Sun on the orbital
evolution of Oberon in the hypothetical “absence” of
the remaining perturbations, we numerically inte�
grated the evolution system with γk = 0  fol�
lowing M.L. Lidov’s computational experiment
(Lidov, 1961) with an “orthogonal Moon”. It turned
out that in approximately 120 thousand years the
orbital eccentricity of Oberon would reach its critical
value, about 0.96, while the corresponding pericenter
distance would become equal to the radius of Uranus.

≤ ≤(0 5)k

Table 4. Estimates of Δe for the orbit of Oberon

Perturbing factor Δe

Sun and Uranus’s oblateness 5 × 10–5

Sun and four main Uranian satellites 6 × 10–6

Sun, Uranus’s oblateness, and its four main 
satellites

5 × 10–6
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Fig. 5. Variation of the pericenter distance with time for a = 1.8 million km.
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CONCLUSIONS

In this paper, we investigated a more general celes�
tial�mechanics problem of the evolution of orbits than
those considered previously under the joint influence
of three different perturbing factors: the non�central�
ity of the planet’s gravitational field and the attraction
by the Sun and its main satellites. The goal of this
paper was to describe the integrable cases of the prob�
lem and (based on one of them) to estimate the influ�
ence of attraction by the main satellites of Uranus on
the orbital evolution its real (Oberon, Francisco) and
hypothetical satellites.

Analysis of the evolution problem revealed that the
influence of the main satellites for the orbit of the clos�
est of the distant satellites (Francisco) leads to a low�
ering of its pericenter compared to the case where only
the solar perturbations are taken into account. For the
orbit for the most distant main satellite (Oberon),
allowance for the attraction by the remaining main
satellites reduces the amplitude of its eccentricity
oscillations by an order of magnitude compared to the
model that takes into account the perturbations only
from Uranus’s oblateness and solar attraction.

In addition, we refined the location of the bound�
ary of the region where the existence of Uranus’s
equatorial satellites is hypothetically possible that sep�
arates this region from the region “populated” by its
distant satellites. The influence of the main satellites
leads to a shift of this boundary to a distance of
~1.7 million km (instead of 1.3 million km in the case
where only Uranus’s oblateness and solar attraction
are taken into account). A manifestation of the
Lidov–Kozai mechanism, which, in the long run,
leads to a collision either with the planet itself or with
its massive main satellites, is unavoidable beyond this
boundary.

The same factor is apparently responsible for the
existence of zones of “avoidance” by small celestial
bodies in the satellite systems of all giant planets.
Whereas the integrable case V turned out to be useful
for Uranus (I ≈ 98°), case III may turn out to be useful
for Jupiter (I ≈ 3°). For Saturn (I ≈ 25°) and Neptune
(I ≈ 28°), it is apparently possible to obtain informa�
tion about the fairly smeared boundaries of such zones
by numerically integrating the presented evolution
system.
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