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1. Introduction

Given a finite group G, denote by π(G) the set of all prime divisors of the order of G and by ω(G) the
set of orders of the elements of G. The Gruenberg–Kegel graph, or the prime graph, of G is the graph Γ(G)
with vertex set π(G) in which two vertices p and q are adjacent if and only if p �= q and pq ∈ ω(G).

The elements of small prime order p are important for studying the structure of finite groups. If
p ∈ {2, 3, 5} then elements of order p occur in most nonabelian finite simple groups. If S is a nonabelian
finite simple group then 2 ∈ π(S) for all S, while 3 ∈ π(S) for all S but S ∼= Sz(q) and 5 ∈ π(S) for
all S outside a short list of exceptions; see Lemma 1 below. If G is a finite group of even order and
2 �= p ∈ π(G) then it is important to know whether the vertices 2 and p are adjacent in Γ(G); see [1] for
instance. Thus, the following problem arises naturally:

Problem 1. Describe all finite groups without elements of order 2p for an odd prime p at least small
ones.

By Lagrange’s Theorem, while solving Problem 1 we may assume that 2p divides the group order.
The nonabelian finite simple groups without elements of order 6 were determined in 1977 in the three

independent articles of Podufalov [2], Fletcher, Stellmacher, and Stewart [3], as well as Gordon [4]. The
problem of describing general finite groups without elements of order 6 remained open for more than
40 years before Kondrat’ev and Minigulov [5] solved it without using the classification of finite simple
groups. Their results have already been applied to studying the finite groups with certain properties of
prime graphs; see [6–8] for instance.

A finite group of order divisible by 5 in which the centralizers of elements of order 5 are 5-groups
is called a C55-group. The nonabelian finite simple C55-groups were determined in [9–11]. The general
description of C55-groups is obtained in [12, 13].

As a particular case of Problem 1 for p = 5, we pose the following problem whose solution will
substantially generalize the description of C55-groups:

Problem 2. Describe all finite groups without elements of order 10.

The nonabelian finite simple groups without elements of order 10 were determined recently in [14,
Theorem 1.5]. Using that result (see Lemma 2 below), we substantially generalize it by determining
all finite almost simple groups without elements of order 10; see Theorem 1 below. Recall that a fi-
nite group X is almost simple whenever S ≤ X ≤ Aut(S) for some finite nonabelian simple group S;
equivalently, provided that the socle of X is a finite nonabelian simple group.

Theorem 1. If G is a finite almost simple group with socle L and 5 divides |G| then G has no
elements of order 10 if and only if one of the following holds:
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(1) the group O{2,5}′(G) is isomorphic to L2(5
f ) with f > 1, to PGL2(5

f ) with f > 1, or to PGL∗
2(5

f )
with even f ;

(2) L ∼= L2(q), where q ≡ ε1 (mod 5) for ε ∈ {+,−} with (q − ε1)2 ≤ 2, and either O{2,5}′(G) = L

or O{2,5}′(G) ∼= PGL∗
2(q), where q is the square of an odd integer, or O{2,5}′(G) = L � 〈t〉, where q is

a square, ε = −, and t is the field automorphism of order 2 of L;

(3) L ∼= Lε
3(q), where ε ∈ {+,−} and q ≡ −ε1 (mod 5) with even q, and either O{2,5}′(G) = L or q is

a square, ε = +, and L� 〈d−1td〉 ≤ O{2,5}′(G) ≤ PGL3(q)� 〈d−1td〉, or O{2,5}′(G) = L� 〈t〉, where t is
respectively a field or graph-field automorphism of order 2 of L, while d is some element of Inndiag(L);

(4) L ∼= Lε
4(q), where ε ∈ {+,−} and q ≡ ±2 (mod 5) with (q + ε1)2 ≤ 2, as well as O{2,5}′(G) = L;

(5) L ∼= Lε
5(q), where ε ∈ {+,−} and q ≡ ±2 (mod 5) with even q, as well as O{2,5}′(G) = L;

(6) L ∼= S4(q), where 2 < q ≡ ±2 (mod 5), and O{2,5}′(G) = L;

(7) L ∼= Sz(q), where q > 2, and O{2,5}′(G) = L;

(8) G = L ∼= A7, M11, M22, or M23.

Another result of this article is a solution of Problem 1 for solvable groups:

Theorem 2. Given a prime p > 3, if G is a finite solvable group without elements of order 2p and 2p
divides |G| then one of the following holds:

(1) G/O(G) is isomorphic to a cyclic group or a (generalized) quaternion 2-group, SL2(3) or SL2(3)
.2,

a Sylow p-subgroup of O(G) is abelian, and O(G) is of p-length 1;
(2) G/Op′(G) is a cyclic p-group or a Frobenius group with cyclic core of order |G|p and cyclic

complement of order dividing p − 1, the degree of nilpotence of a Sylow 2-subgroup of Op′(G) is at
most (p2 − 1)/4 (and this estimate is sharp for p = 5), and Op′(G) has 2-length at most 1.

As a corollary to Theorem 2 for p = 5, we describe all finite solvable groups without elements of
order 10. Note that the description of all finite solvable groups without elements of order 6 (the case
p = 3) is available in [5, Theorem 1]. The key results for proving Theorem 2 are the description of finite
groups with (generalized) quaternion Sylow 2-subgroup (see Lemma 3 below) and Higman’s description
[15, Theorem 1] (see Lemma 4 below) of the finite solvable nonprimary groups, the orders of whose
elements are prime powers.

In a subsequent article we intend to study the case of finite nonsolvable groups without elements of
order 10 and nontrivial solvable radical relying on the results of the present article.

2. Notation and Auxiliary Results

Our notation and terminology are mostly standard and can be found in [16–18].
Given a positive integer n and a prime p, denote by np the p-part of n which is the greatest power

of p dividing n.
The semidirect product of groups A and B is denoted by A � B, while A.B denotes a nonsplit

extension of A by B.
Given a finite group G and some set π of primes, denote by Oπ(G) the largest normal π-subgroup

of G, and by Oπ(G) the smallest normal subgroup of G the quotient of G over which is a π-group. For
brevity, put O(G) = O2′(G).

We will also use the notation Lε
n(q), PGLε

n(q), and S2n(q), where ε ∈ {+,−} and L+
n (q) = Ln(q) =

PSLn(q), L−
n (q) = Un(q) = PSUn(q), PGL+

n (q) = PGLn(q), PGU−
n (q) = PGUn(q), and S2n(q) =

PSp2n(q).
Put S = L2(q), where q = p2k for some odd prime p and k ∈ N. Put PGL∗

2(q) = S〈δϕ〉, where
PGL2(q) = S〈δ〉 and ϕ is the field automorphism of order 2 of S. It is well known that PGL∗

2(q) \ S
contains no involutions.

Consider some results used in our proofs:
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Lemma 1 [19, Lemma 1]. Every finite nonabelian simple group of order coprime to 5 is isomorphic
to one of the groups L2(q), where 3 < q ≡ ±2 (mod 5); Lε

3(q), where ε ∈ {+,−} and 2 < q ≡ ±2 (mod 5);
G2(q), where 2 < q ≡ ±2 (mod 5); 2G2(q), where 3 < q ≡ ±2 (mod 5); and 3D4(q), where q ≡ ±2 (mod 5).

Lemma 2 [14, Theorem 1.5]. If G is a finite nonabelian simple group then G has no elements of
order 10 if and only if G is isomorphic to one of the following groups: L2(q), where either 3 < q ≡
0,±2 (mod 5) or q ≡ ε1 (mod 5) for ε ∈ {+,−} and (q − ε1)2 ≤ 2; Lε

3(q), where ε ∈ {+,−} and either
2 < q ≡ ±2 (mod 5) or q ≡ −ε1 (mod 5) and q is even; Lε

4(q), where ε ∈ {+,−} and q ≡ ±2 (mod 5) with
(q + ε1)2 ≤ 2; L±

5 (q), where q is even and 2 < q ≡ ±2 (mod 5); S4(q), where 2 < q ≡ ±2 (mod 5); G2(q),
where 2 < q ≡ ±2 (mod 5); 2G2(q), where q > 3; 3D4(q), where q ≡ ±2 (mod 5); Sz(q), where q > 2; A7;
M11; M22; and M23.

Lemma 3 [15, Theorem 1]. If G is a finite solvable nonprimary group the orders of whose all elements
are prime powers then G is biprimary and one of the following holds:

(a) G is a Frobenius group;
(b) G is a 2-Frobenius group, meaning that G = ABC, where A and AB are normal subgroups of G,

while AB and BC are Frobenius groups with cores A and B and complements B and C, respectively.

Lemma 4 [16, Remark on p. 377]. If G is a finite group whose Sylow 2-subgroup is isomorphic to
a (generalized) quaternion group and G = G/O(G) then one of the following holds:

(a) G is isomorphic to a Sylow 2-subgroup of G;
(b) G is isomorphic to 2.A7;
(c) G is an extension of SL2(q), where q is odd, by a cyclic group of either an odd order or a doubled

odd order.

Lemma 5 [20, Theorem 1]. If G is a finite primary group possessing an automorphism α of prime
order p ≥ 5 and CG(α) = 1 then the degree of nilpotence of G is at most (p2 − 1)/4, and this bound is
sharp for p = 5.

Lemma 6 [6, Lemma 11]. Given three distinct primes p, q, and r, consider a finite group G of the
formG = P�(T�〈x〉), where P is a nontrivial p-group, T is a q-group, |x| = r, and CG(P ) = Z(P ). If C is
a critical subgroup of T (see [16, 5.3.11]) and [T, 〈x〉] �= 1 then either CP (x) �= 1 or Z(T ) ≤ Z(C) ≤ CT (x),
q = 2, r = 1 + 2n is a Fermat prime, and [C, 〈x〉] is an extraspecial group of order 22n+1.

3. Proof of Theorem 1

Consider a finite almost simple group G with socle L such that 5 divides |G|.
Necessity: Suppose that G has no elements of order 10 and justify the claim of Theorem 1. The

group L is isomorphic to one of the groups of Lemma 2.
If L is isomorphic to some sporadic group then G = L because [17] yields Out(M11) = Out(M23) = 1

and Aut(M22) ∼= M22.2 contains an element of order 10.
If L ∼= A7 then G = L because Aut(A7) ∼= S7 contains an element of order 10, namely, the product of

some independent 5-cycle and transposition. Therefore, claim (8) of Theorem 1 holds in the considered
cases.

Thus, we will assume that L = Φ(q) is a simple group of Lie type Φ over the field of order q = pf ,
where p is a prime and f ∈ N. By [18, Theorem 2.5.12], we have Aut(L) = Inndiag(L)� (ΦLΓL), where
Inndiag(L), ΦL, and ΓL are respectively the groups of inner-diagonal, standard field, and standard graph
automorphisms of L, while ΦL is a cyclic group of order either f or 2f , |ΓL| ≤ 6, and ΦLΓL is an abelian
group.

Suppose that 5 divides |G : L|. Then [18, Theorem 2.5.12] implies that 5 divides |Outdiag(L)|
or |ΦL|. If 5 divides |Outdiag(L)| then L ∼= L±

5 (q), where 5 = (q ± 1, 5) and q ≡ ±2 (mod 5), which is
contradictory. Therefore, 5 divides |ΦL|, and consequently G \ L contains an element x of order 5 which
induces a field automorphism on L. By [18, Proposition 4.9.1], the centralizer CL(x) has a subgroup
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isomorphic to Φ(q0), where q is a square and q = q20. However, Φ(q0) is of even order, and so G contains
an element of order 10; this is a contradiction.

Thus, 5 does not divide |G : L|, and so 5 divides |L|.
Suppose that p = 5. Then Lemma 2 yields L ∼= L2(5

f ), and consequently G ≤ Inndiag(L) � ΦL. If
G∩O2(ΦL) �= 1 then by [18, Proposition 4.9.1] for an involution x ∈ G∩O2(ΦL) the centralizer CL(x) has
a subgroup isomorphic to Φ(q0), where q is a square and q = q20. However, |Φ(q0)| is divisible by 5, and soG

contains an element of order 10; this is a contradiction. Thus, G∩O2(ΦL) = 1 and consequently O{2,5}′(G)
is isomorphic to PGL2(5

f ) or PGL∗
2(5

f ) for even f . If f = 1 then L ∼= L2(5) ∼= L2(4). For this reason,
we may assume that f > 1, meaning that claim (1) of Theorem 1 is valid.

Assume now that p �= 5 and L < G.
Suppose firstly that G ∩ Inndiag(L) �= L.
Assume further that L ∼= Lε

3(q), where ε ∈ {+,−} and q ≡ −ε1 (mod 5) with even q. Then
G ∩ Inndiag(L) ∼= PGLε

3(q), where (q − ε1, 3) = 3 and G = PGLε
3(q) � (G ∩ (ΦLΓL)). Recall that

G∩ (ΦLΓL) is an abelian 5′-group. Since O{2,5}′(G) = G; therefore, G/L is not abelian, and G∩ (ΦLΓL)
is a nontrivial abelian 2-subgroup. Thus, G ∩ (ΦLΓL) contains some involution t which is either a field,
graph, or graph-field automorphism of L.

If t is a graph automorphism of L then by [18, Proposition 4.9.2] the centralizer CL(t) is isomorphic
to L2(q). Since q + ε1 is divisible by 5, while the subgroup L2(q) has a cyclic subgroup of order q + ε1;
the group G contains an element of order 10. This contradiction shows that G∩ (ΦLΓL) is a cyclic group.

If t is a graph-field automorphism of L then G∩(ΦLΓL) = 〈t〉, and consequently [18, Theorem 2.5.12]
shows that G/L is an abelian group; this is a contradiction.

If t is a field automorphism of L then [18, Proposition 4.9.1] yields O2′(CL(t)) ∼= Lε
3(q0), where

q = q20. If q0 ≡ ±1 (mod 5) then q ≡ 1 (mod 5), and so ε = − and O2′(CL(t)) ∼= U3(q0). However,
then by Lemma 1 the group L〈t〉 contains an element of order 10; this is a contradiction. Therefore,
q0 ≡ ±2 (mod 5), whence ε = +. Consequently, by Lemma 1 the group G = PGL3(q)〈t〉 has no elements
of order 10, meaning that claim (3) of Theorem 1 is valid.

Let us exclude all other possibilities for L.
Assume that L ∼= L2(q), where q ≡ ε1 (mod 5) for ε ∈ {+,−} with (q − ε1)2 ≤ 2. Then G =

Inndiag(L) ∼= PGL2(q) and (q − ε1)2 = 2. By [21, Proposition 7], G has abelian subgroups (maximal
tori) of orders q − 1 and q + 1. But one of them contains an element of order 10; this is a contradiction.

Assume further that L ∼= Lε
4(q), where ε ∈ {+,−} and q ≡ ±2 (mod 5) with (q + ε1)2 ≤ 2. Then

L < G ∩ Inndiag(L) ≤ Inndiag(L) ∼= PGLε
4(q)

and (q + ε1)2 = 2. This yields (q − ε1, 4) = 4, meaning that Outdiag(L) ∼= Z4. By [21, Propositions 7
and 8], the group PGLε

4(q) has an abelian subgroup (maximal torus) of order (q2 + 1)(q + ε1), which
is divisible by 20. Therefore, the subgroup G ∩ Inndiag(L) is of index at most 2 in PGLε

4(q), and so it
contains an element of order 10; this is a contradiction.

The possibility L ∼= Lε
5(q) is excluded because 5 does not divide |G : L|.

Assume that L ∼= S4(q), where q ≡ ±2 (mod 5). Then q is odd and G = Inndiag(L). By [21,
Proposition 9] G has an abelian subgroup (maximal torus) of order q2 + 1, which is divisible by 10, and
so G contains an element of order 10; this is a contradiction.

Thus, we may assume that G � Inndiag(L); and, moreover, G ∩ Inndiag(L) = L. Put G = G/L.
Since G ∩ Inndiag(L) = L, we have

G = G/(G ∩ Inndiag(L)) ∼= Inndiag(L)G/ Inndiag(L)

≤ (Inndiag(L)� ΦLΓL)/ Inndiag(L) ∼= ΦLΓL.

Hence, G is isomorphic to a subgroup of the abelian group ΦLΓL, and so

G = O{2,5}′(G) = O{2,5}′(G) = O2(G) �= 1.

Inspect all three possibilities for L which arise in Lemma 2.
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Assume that L ∼= L2(q), where q = pf ≡ ε1 (mod 5) for ε ∈ {+,−} and (q − ε1)2 ≤ 2. Therefore, G
is isomorphic to a subgroup of even order in the cyclic group ΦL of order f . Then f is even, and so q
is the square of q0 = pf/2. If G ∩ ΦL = 1 then q is odd and G is isomorphic to PGL∗

2(q); consequently,
claim (2) of Theorem 1 is valid. Suppose that G∩ΦL �= 1 and take an involution t in G∩ΦL. Then [18,

Proposition 4.9.1] yields O2′(CL(t)) ∼= L2(q0). Since L2(q0) has no elements of order 5, by Lemma 1 we
see that q0 ≡ ±2 (mod 5) and ε = −, while the number f/2 is odd. Thus, G = L � 〈t〉 has no elements
of order 10, and so claim (2) of Theorem 1 is valid.

Assume that L ∼= Lε
3(q), where ε ∈ {+,−} and q ≡ −ε1 (mod 5) with even q.

Assume at first that (q − ε1, 3) = 3. Then |Outdiag(L)| = 3 and Inndiag(L)G has no elements of
order 10. The argument above shows that G < Inndiag(L) � 〈t〉, where t is the field automorphism of
order 2 of L. Therefore, Inndiag(L)〈t〉/L ∼= S3 and so G = L� 〈d−1td〉 for some d ∈ Inndiag(L), meaning
that claim (3) of Theorem 1 is valid.

Assume now that (q − ε1, 3) = 1. Then Outdiag(L) = 1 and consequently G = L � (G ∩ (ΦLΓL)).
Arguing as above, we see that G = L � 〈t〉, where q is a square, ε = +, and t is the field or graph-field
automorphism of order 2 of L. If t is the field automorphism; then, as we showed above, L� 〈t〉 has no
elements of order 10. Assume that t is the graph-field automorphism. Then [18, Proposition 4.9.1] implies

that ε = + and O2′(CL(t)) ∼= U3(q0), where q = q20. Since q ≡ −1 (mod 5), we have q0 ≡ ±2 (mod 5)
and therefore Lemma 1 shows that L〈t〉 has no elements of order 10. Thus, in both cases claim (3) of
Theorem 1 is valid.

In view of Lemma 2 we may assume henceforth that q = pf ≡ ±2 (mod 5) and so f is odd. Then,
since G ∩ Inndiag(L) = L and G = O2(G) �= 1, we obtain G = L〈t〉, where t is some involution in
Aut(L) \ Inndiag(L).

Assume that L ∼= S4(q). Then q is even, Inndiag(L) = L, and we may assume that t is an involution
in the cyclic group ΦLΓL. By [22, (19.5)] the centralizer CL(t) is isomorphic to the group Sz(q). Since
5 ∈ π(Sz(q)) by Lemma 1; G contains an element of order 10, which is a contradiction.

Assume that L ∼= Lε
5(q) with ε ∈ {+,−} and even q. Then Inndiag(L) = 1 and we may assume

that t is an involution in the cyclic group ΦLΓL. By [18, Proposition 4.9.2] the centralizer CL(t) is
isomorphic to S4(q). Since 5 ∈ π(S4(q)) by Lemma 1, the group G contains an element of order 10, which
is a contradiction.

Thus, L ∼= Lε
4(q) with ε ∈ {+,−} and (q + ε1)2 ≤ 2. For q even we arrive at a contradiction as

in the previous paragraph. Hence, q is odd, and so (q + ε1)2 = 2, whence (q − ε1)2 ≥ 4. Therefore,
Outdiag(L) ∼= Z4. By [18, Theorem 2.5.12] we have Outdiag(L)〈t〉 ∼= D8. Since q ≡ ±2 (mod 5), the
well-known formula for the order of L (see [17]) shows that |L|5 = (q2 + 1)5 > 1. According to [23,
Tables 8.8 and 8.10], there is a maximal subgroup M of L isomorphic to an extension of L2(q

2) by the
cyclic group of order q+ε1. The socle Soc(M) of M is isomorphic to L2(q

2), and so it contains a maximal
dihedral subgroup D of order q2+1. Take some Sylow 5-subgroup T of D. Since (q2+1)5 = |L|5 = |D|5,
it follows that T is a cyclic Sylow 5-subgroup of G. Frattini’s Lemma yields M = Soc(M)NM (T ) =
Soc(M)NM (Ω1(T )). This implies that

M/Soc(M) ∼= NM (Ω1(T ))/NSoc(M)(Ω1(T )) ∼= NM (Ω1(T ))/D,

and so the Sylow 2-subgroup of NM (Ω1(T )) is of order 4. Since CM (Ω1(T )) is of odd order and
NM (Ω1(T ))/CM (Ω1(T )) is isomorphic to a subgroup of Aut(Z5) ∼= Z4, we find that NM (Ω1(T )) =
CM (Ω1(T ))Z, where CM (Ω1(T )) = O(NM (Ω1(T ))) and Z ∼= Z4. Furthermore, Frattini’s Lemma yields

G = LNG(Ω1(T )) = LZCG(Ω1(T )),

but Z < L, and hence G = LCG(Ω1(T )). Since G has no elements of order 10, the subgroup CG(Ω1(T ))
is of odd order. However, this contradicts the evenness of the index |G : L|.

Necessity is verified.

Sufficiency follows from Lemmas 1 and 2 on arguing as in the proof of necessity.
The proof of Theorem 1 is complete.
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4. Proof of Theorem 2

Given a group G satisfying the hypotheses of Theorem 2, take S ∈ Syl2(G) and T ∈ Sylp(G). The
Hall–Chunikhin Theorem [16, Theorem 6.4.1] shows that G contains a biprimary Hall {2, p}-subgroup U ;
and, moreover, we may assume that U = ST . All elements of U are of primary orders, and so U is either
a Frobenius group or a 2-Frobenius group by Lemma 3. It is clear that either Op(U) �= 1 or O2(U) �= 1.

Assume that Op(U) �= 1. Then by [16, Theorem 10.3.1] S is either a cyclic group or a (generalized)
quaternion group. Burnside’s Theorem (see [16, Theorem 7.4.3]) and Lemma 4 show that U = O(U)S.
Hence, U is a Frobenius group with core T and complement S. Since CT (s) = 1 for the (unique)
involution s in S, this involution inverts T , and so T is abelian. Therefore, by Lemma 4 and [16,
Theorem 6.3.2], claim (1) of Theorem 2 is valid.

Assume now that O2(U) �= 1. Then the subgroup T is cyclic. By [16, Theorem 6.3.2] the central-
izer CG(T ) is contained in Op′,p(G). Hence,

Op′,p(G) = Op′(G)T,

and so Frattini’s Lemma yields G = Op′(G)NG(T ). By [16, Theorem 5.2.4] CNG(T )(Ω1(T )) = CG(T ).
Since Aut(Ω1(T )) is a cyclic group of order p − 1, this implies that G/O5′(G) is either a cyclic p-group
or a Frobenius group with cyclic core of order |G|p and cyclic complement of order dividing p − 1. Put
K = Op′(G). Since O2(U) �= 1, it follows that K is of even order. Without loss of generality we may
assume that O{2,p}′(G) = O(K) = 1. However, then O2(K) = O2(G) �= 1 and CG(O2(K)) ≤ O2(G) by
[16, Theorem 6.3.2]. If K = O2(K), then by Lemma 5 claim (2) of Theorem 2 is valid. Assume that
O2(K) < K. Then

O2(K) < O{2,2′}(K).

Denote by R some 2-complement in O{2,2′}(K). By [16, Theorem 6.3.2] we have

CK(R) ≤ O2(K)R.

Frattini’s Lemma yields G = O2(K)NG(R), and so we may assume that T normalizes R. Consider the
subgroup O2(K)� (R� 〈t〉), where t is an element of order p of T . Since CO2(K)(t) = 1, Lemma 6 implies
that [R, 〈t〉] = 1. Since t lies in CG(R), which is a normal subgroup of NG(R), we have

[K, 〈t〉] ≤ CK(R) ≤ O2(K)R.

It is then clear that K = O2(K)R, and so the 2-length of Op′(G) is 1. Since CO2(K)(t) = 1, Lemma 5
implies that claim (2) of Theorem 2 is valid.

The proof of Theorem 2 is complete.
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