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THE INVERSE PROBLEM FOR THE HEAT
EQUATION WITH TWO UNKNOWN COEFFICIENTS

M. R. Ishmeev UDC 517.95

Abstract—We solve the simultaneous recovery of thermal conductivity and a high-frequency coefficient
of a source in a one-dimensional initial-boundary value problem for the heat equation with Dirichlet
boundary conditions and an inhomogeneous initial condition from some information on the partial
asymptotics of a solution. We show that the coefficients can be restored from some data on the
asymptotics of a solution, which is constructed and justified. This article was inspired by Denisov’s
research on a variety of inverse problems without accounting for high-frequency oscillations. Also, we
continue the research by Levenshtam and his students which firstly addressed the inverse problems
for parabolic equations with high-frequency coefficients and developed the relevant methodology. In
contrast to the previous research of the case that only the source function or its factors are unknown, we
assume that the thermal conductivity and the factor of a source function are unknown simultaneously.
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Introduction

In the article we consider the initial-boundary value problem for the heat equation in a rectangle
with Dirichlet boundary conditions, an inhomogeneous initial condition, heat conductivity depending on
time, and the high-frequency source. The source is a product of two functions: One depends on the
space variable and the other on time and fast time variables. In Section 1 we construct and justify the
asymptotics of a solution to the direct initial-boundary value problem for the large values of the frequency
of oscillations. In Section 2 we solve the inverse problem in which heat conductivity and the second factor
of a source are the unknowns recovered from the values of a few first coefficients of the asymptotics of
a solution which are calculated at a prescribed space point.

This article was inspired by [1–3] that address various inverse problems for parabolic equations
(without high-frequency oscillations). Also, the article continues the research of [4–6] which considered
the parabolic inverse problems with high-frequency coefficients for the first time and developed the
methods for solving similar problems. In contrast to these articles in which the source is an unknown
function, in the present article the unknowns are heat conductivity and the source.

Note that problems with high-frequency data simulate many physical phenomena and processes.
Among them are high-frequency impacts in mechanical systems, diffusion in a medium subject to high-
frequency vibrations, and convection of a fluid in the field of high-frequency forces (see [7–10], etc).

1. Constructing and Justifying Asymptotics

Consider the Dirichlet initial-boundary value problem with inhomogeneous initial condition for the
heat equation ⎧

⎪⎨

⎪⎩

∂u(x,t)
∂t = k(t)∂

2u(x,t)
∂x2 + q(x, t)r(t, ωt),

u(x, 0) = ϕ(x),

u(0, t) = u(π, t) = 0.

(1)

Here x ∈ (0, π), t ∈ (0, T ), T = const > 0, and ω � 1. Put S0 = [0, π] × [0, T ] and S1 = [0, T ] ×
[0,+∞). Assume that the functions q(x), k(t), and r(t, τ) are defined and continuous on [0, π], [0, T ],
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and S1; moreover, r(t, τ) is 2π-periodic in τ and representable as r(t, τ) = r0(t) + r1(t, τ), where
〈r1(t, τ)〉 = 0 and k(t) is everywhere positive. Let 〈f(t, τ)〉 stand for the integral mean over τ of an
arbitrary function f(t, τ) 2π-periodic (in τ); i.e.,

〈f(t, τ)〉 ≡ 1

2π

2π∫

0

f(t, τ) dτ (2)

while {f(t, τ)} designates the function with zero mean:

{f(t, τ)} ≡ f(t, τ)− 〈f(t, τ)〉. (3)

Let q(x) ∈ C3([0, π]), ϕ(x) ∈ C0([0, π]), k(t) ∈ C0([0, T ]), r0(t) ∈ C0([0, T ]), and r1(t, τ) ∈
C1+γ,0(S1), where γ ∈ (0, 1). Denote C l,m(S), where l and m are nonnegative integers, the ordinary
Hölder function spaces. The matching conditions are written as follows:

q(0) = q(π) =
d2q

dx2
(0) =

d2q

dx2
(π) = 0, (4)

ϕ(0) = ϕ(π) = 0. (5)

Represent a solution to problem (1) as

uω(x, t) = u0(x, t) + ω−1[u1(x, t) + v1(x, t, ωt)] +Wω(x, t), ω � 1, (6)

where v1(x, t, τ) is 2π-periodic in τ with zero mean.
As is known, problem (1) has the unique classical solution uω(x, t).

Theorem 1. A solution uω(x, t) to problem (1) is representable as (6), where

‖Wω(x, t)‖C(S0) = o(ω−1) as ω → ∞. (7)

Remark 1. It is possible to construct and justify the complete asymptotics of a solution to prob-
lem (1) in the norm of C(S0) for the functions q(x), ϕ(x), k(t), and r(t, τ) infinitely differentiable with
respect to x and t and satisfying some conditions of the type (4) of each even order. However, to solve
the inverse problem, we need only the asymptotics of the form (6).

Remark 2. We can construct the asymptotics of a solution to problem (1) by replacing the source
q(x)r(t, τ) with some function f(x, t, τ) 2π-periodic in τ of more general form that is defined and contin-
uous on [0, π]× [0, T ]× [0,+∞). Note that to simplify exposition, we choose the above particular case.

Proof. Indeed, insert (6) in system (1) and equate the coefficients of the powers of ω0 and ω−1 in
the above equalities and apply the averaging operation in τ = ωt. In result, we come to the problems

⎧
⎪⎨

⎪⎩

∂u0(x,t)
∂t = k(t)∂

2u0(x,t)
∂x2 + q(x)r0(t),

u0(x, 0) = ϕ(x),

u0(0, t) = u0(π, t) = 0,

(8)

{ ∂v1(x,t,τ)
∂τ = q(x)r1(t, τ),

〈v1(x, t, τ)〉 = 0,
(9)

⎧
⎪⎨

⎪⎩

∂u1(x,t)
∂t = k(t)∂

2u1(x,t)
∂x2 ,

u1(x, 0) = −v1(x, 0, 0),

u1(0, t) = u1(π, t) = 0.

(10)
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Next, the Fourier method yields (according to the matching conditions (4) v1(0, t, τ) = v1(π, t, τ) = 0):

u0(x, t) =

∞∑

n=1

sin(nx)ϕne
−n2

t∫

0

k(s) ds

+
∞∑

n=1

sin(nx)

t∫

0

qn(s)r0(s)e
−n2

t−s∫

0

k(ξ) dξ

ds, (11)

where

ϕn =
2

π

π∫

0

ϕ(y) sin(ny) dy, qn =
2

π

π∫

0

q(y) sin(ny) dy, (12)

v1(x, t, τ) = q(x)

⎧
⎨

⎩

τ∫

0

r1(t, s) ds

⎫
⎬

⎭
, (13)

u1(x, t) =

〈 τ∫

0

r1(0, s) ds

〉 ∞∑

n=1

sin(nx)qne
−n2

t∫

0

k(s) ds

. (14)

One problem remains for the summand Wω which is as follows:

⎧
⎪⎨

⎪⎩

∂Wω(x,t)
∂t = k(t)∂

2Wω(x,t)
∂x2 + ω−1

[
k(t)∂

2v1(x,t,ωt)
∂x2 − ∂v1(x,t,ωt)

∂t

]
,

Wω(x, 0) = 0,

Wω(0, t) = Wω(π, t) = 0.

(15)

A solution to problem (15) is of the form

Wω(x, t) =
1

ω

∞∑

n=1

sin(nx)

⎡

⎢
⎣q

(2)
n

t∫

0

k(s)p0(s, ωs)e
−n2

t−s∫

0

k(ξ) dξ

ds

−qn

t∫

0

∂p0(t, ωs)

∂t

∣
∣
∣
∣
t=s

e
−n2

t−s∫

0

k(ξ) dξ

ds

⎤

⎥
⎦ , (16)

where

q(2)n =
2

π

π∫

0

d2q(x)

dx2

∣
∣
∣
∣
x=y

sin(ny) dy, p0(t, τ) =

{ τ∫

0

r1(t, s) ds

}

. (17)

To prove Theorem 1, it suffices to demonstrate that

‖Wω(x, t)‖C(S0) = o(ω−1) (18)

as ω → ∞. We use the same scheme as that in [5]; i.e., we divide (16) into two series, establish estimates
for the Fourier coefficients, apply to either of the series the Cauchy–Bunyakovsky inequality, and estimate
the integrals in the series.
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Since q(x) ∈ C3([0, π]) and the matching conditions (4) hold at the endpoints of [0, π], we can

extend d2q
dx2 (x) as an odd 2π-periodic function on preserving the smoothness class C1 on the whole real

axis. The extension will keep the same symbol. In this case

d2q(x)

dx2
=

∞∑

n=1

q(2)n sin(nx), x ∈ R, (19)

q(2)n =
an
n
,

∞∑

n=1

a2n < ∞. (20)

Similar arguments can be used for the function q(x) itself.
The above considerations and the Cauchy–Bunyakovsky inequality suffice to show the estimate uni-

form in n ∈ N:
∥
∥
∥
∥

t∫

0

p(s, ωs)e
−n2

t−s∫

0

k(ξ) dξ

ds

∥
∥
∥
∥
C([0,T ])

= o(1) as ω → ∞, (21)

where p(t, τ) is 2π-periodic in τ with zero mean in τ .
The proof of the estimate is divided into three steps. First, we take an arbitrary ε > 0 and find δ > 0

such that, for all t ∈ [0, T ], n ∈ N and ω > 0,

∣
∣
∣
∣

t∫

t0

p(s, ωs)e
−n2

t−s∫

0

k(ξ) dξ

ds

∣
∣
∣
∣ <

ε

3
, (22)

where t0 = max(0, t− δ). Next, taking the positivity of k(t) into account, we find n0 ∈ N such that, for
all n > n0, t > δ, and ω > 0, we have

∣
∣
∣
∣

t−δ∫

0

p(s, ωs)e
−n2

t−s∫

0

k(ξ) dξ

ds

∣
∣
∣
∣ <

ε

3
. (23)

Finally, divide the segment [0, t− δ] for every t > δ into m equal parts [tj , tj+1], with j = 0, . . . ,m− 1,
and apply the representation

t−δ∫

0

p(s, ωs)e
−n2

t−s∫

0

k(ξ) dξ

ds

=

m−1∑

j=0

⎡

⎢
⎢
⎣

tj+1∫

tj

p(s, ωs)e
−n2

t−s∫

0

k(ξ) dξ

ds−
tj+1∫

tj

p(tj , ωs)e
−n2

t−tj∫

0

k(ξ) dξ

ds

⎤

⎥
⎥
⎦

+
m−1∑

j=0

tj+1∫

tj

p(tj , ωs)e
−n2

t−tj∫

0

k(ξ) dξ

ds. (24)

Find m ∈ N such that, for all n ≤ n0, ω > 0, we have

∣
∣
∣
∣
∣

m−1∑

j=0

[ tj+1∫

tj

p(s, ωs)e
−n2

t−s∫

0

k(ξ) dξ

ds−
tj+1∫

tj

p(tj , ωs)e
−n2

t−tj∫

0

k(ξ) dξ

ds

]∣∣
∣
∣
∣
<

ε

6
. (25)
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Next, using the equality

m−1∑

j=0

tj+1∫

tj

p(tj , ωs)e
−n2

t−tj∫

0

k(ξ) dξ

ds

=
1

ω
e
−n2

t−tj∫

0

k(ξ) dξ m−1∑

j=0

[ ωtj+1∫

0

p(tj , τ) dτ −
ωtj∫

0

p(tj , τ) dτ

]

(26)

and the fact that p(t, τ) has zero mean in τ , we can find ω0 > 0 such that

∣
∣
∣
∣

m−1∑

j=0

tj+1∫

tj

p(tj , ωs)e
−n2

t−tj∫

0

k(ξ) dξ

ds

∣
∣
∣
∣ <

ε

6
(27)

for all ω > ω0 and n ≤ n0. Hence, estimate (21) holds as well. Theorem 1 is proved. �

2. Solving the Inverse Problem

Our aim is to define some functions k(t) and r(t, τ) of the above-pointed class for which a solution
uω(x, t) to problem (1) satisfies the condition

‖uω(x0, t)− ψ(t, ωt)‖|C([0,T ]) = o(ω−1) as ω → ∞, (28)

where

ψ(t, τ) = ϕ0(t) +
1

ω
(ϕ1(t) + ψ1(t, τ)). (29)

Here x0 ∈ (0, π) is a point at which q(x0) �= 0, while ϕ0(t), ϕ1(t), and ψ1(t, τ) are known functions
such that ϕ0(t) ∈ C1([0, T ]), ϕ0(0) = ϕ(x0), and ψ1(t, τ) is 2π-periodic in τ with zero mean, and
ψ1(t, τ) ∈ C1+γ,1(S1).

Consider the operator equation
Ay(t) = ϕ1(t), (30)

where

Ay(t) =

〈 τ∫

0

r1(0, s)ds

〉 ∞∑

n=1

qn sin(nx0)e
−n2

t∫

0

y(s) ds

. (31)

Assume that (30) is uniquely solvable.

Theorem 2. For every collection of functions ϕ0(t), ϕ1(t), and ψ1(t, τ) and a point x0 satisfying the
above conditions, there exists a unique pair of functions k(t) and r(t, τ) from the above-pointed classes
for which a solution to problem (1) satisfies (28) and (29).

Remark 3. If (30) is solvable and d2q(x)
d2x

> 0 (d
2q(x)
d2x

< 0) for all x ∈ [0, π]; then, in accord with the
results of [1], (30) has the unique solution. Note that [1] contains some necessary solvability conditions
as well as some examples of solvable equations.

Proof. Theorem 1 implies that if k(t) and r(t, τ) are from the above classes, then (1) has the unique
classical solution representable as (6).

Assume that a pair k(t), r(t, τ) is a solution to the inverse problem and uω is the corresponding
solution to (1). Using Theorem 1, together with the conditions of the inverse problem, (6), (7), (28),
and (29), we have

u0(x0, t) + ω−1 [u1(x0, t) + v1(x0, t, ωt)] = ϕ0(t) + ω−1 [ϕ1(t) + ψ1(t, ωt)] + o(ω−1) (32)

for ω � 1 uniformly in t ∈ [0, T ].
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Equating in (32) the coefficients of the same powers of ω and averaging in τ , we infer

u0(x0, t) = ϕ0(t), (33)

u1(x0, t) = ϕ1(t), (34)

v1(x0, t, τ) = ψ1(t, τ). (35)

Using (14), (34) and inserting x = x0, we obtain the nonlinear operator equation for k(t); i.e.,

Ak(t) = ϕ1(t). (36)

By conditions, (36) is uniquely solvable and k(t) is found.
The function u0(x, t) in accord with Section 1 is defined by (11). Differentiating u0(x, t) with respect

to t and putting x = x0, we see that

∂u0(x0, t)

∂t
= f(t) + q(x0)r0(t) +

t∫

0

K(t, s)r0(s) dξ, (37)

where

K(t, s) = −
∞∑

n=1

n2k(t− s)qne
−n2

t−s∫

0

k(ξ) dξ

sin(nx0), (38)

f(t) = −
∞∑

n=1

n2k(t)ϕne
−n2

t∫

0

k(ξ) dξ

sin(nx0). (39)

Now, by (33), we derive that the unknown r0(t) satisfies the Volterra equation of the second kind:

q(x0, t)r0(t) +

t∫

0

K(t, s)r0(s) dξ =
dϕ0(t)

dt
− f(t). (40)

In view of the conditions on q(x) and ϕ(x) in Section 1, the functions K(t, s) and f(t) are continuous
and, thereby, equation (40) has the unique continuous solution r0(t).

In view of (9), putting x = x0 and (35) finally yields

q(x0)r1(t, τ) =
∂ψ1(t, τ)

∂τ
, (41)

and, therefore, r1(t, τ) =
∂ψ1(t,τ)

∂τ /q(x0).
Since the above functions r(t, τ) = r0(t) + r1(t, τ) and k(t, τ) satisfy the conditions of Section 1,

Theorem 1 holds for them and, in particular, a solution to problem (1) is representable as (6) and (7).
Demonstrate that the functions uω(x, t) satisfy conditions (28) and (29). It suffices to validate (33)–(35).

From the previous part of the proof of Theorem 2, we know that k(t) is a solution to equation (36);
using (14) and (36), we infer that u1(x0, t) = ϕ1(t). The function r0(t) is a solution to (40), equalities (37)
and (40) imply that

∂u0(x0, t)

∂t
=

dϕ0(t)

dt
.

Since u0(x0, 0) = ϕ0(0) = ϕ(x0), we conclude that u0(x0, t) = ϕ0(t). The function r1 is defined by (41).
Using (9), (41) and considering that ψ1(t, τ) and v1(x, t, τ) are 2π-periodic in τ with zero mean, we derive
that v1(x0, t, τ) = ψ1(t, τ). Theorem 2 is proved. �
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Conclusion

We solved the problem on simultaneous recovering the heat conductivity and high-frequency coeffi-
cient of the source in the one-dimensional initial-boundary value problem for the heat equation with the
Dirichlet boundary condition and inhomogeneous initial condition from partial asymptotics of a solution.
We show that the coefficients can be completely recovered from the data on the partial asymptotics of
a solution. Furthermore, we construct and justify the asymptotics of a solution to the direct initial-
boundary value problem.
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