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BIRMAN–HILDEN BUNDLES. II
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Abstract—We study the structure of self-homeomorphism groups of fibered manifolds. A fibered
topological space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking
each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through
fiber-preserving homeomorphisms). We prove in particular that the Birman–Hilden class contains all
compact connected locally trivial surface bundles over the circle, including nonorientable ones and
those with nonempty boundary, as well as all closed orientable Haken 3-manifold bundles over the
circle, including nonorientable ones.
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1. Introduction

This article continues studying the structure of self-homeomorphism groups of fibered manifolds
and developing the theory of Birman–Hilden bundles based on [1]. A fibered topological space is
a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber)
self-homeomorphisms the homeomorphisms are also fiber-isotopic. Throughout the article, by a fiber-
preserving mapping we mean a mapping that carries each fiber into some fiber, not necessarily the same,
while by an isotopy of self-homeomorphisms we mean an isotopy in the class of self-homeomorphisms
rather than in the class of embeddings.

A Birman–Hilden bundle is a bundle whose total space is a Birman–Hilden space. If a fibered space
(bundle) is a Birman–Hilden space (bundle) then we say also that it has the Birman–Hilden property or
lies in the Birman–Hilden class.

The question of membership in the Birman–Hilden class amounts to studying self-homeomorphism
groups. Given a fibered space E, denote by Fib(E) the subgroup of fiber-preserving self-homeomorphisms
in the group Homeo(E), endowed with the compact-open topology, of all self-homeomorphisms of E; de-
note by Fib1(E) and Homeo1(E) respectively the path-connected components of Fib(E) and Homeo(E)
containing the identity mapping idE . Then the membership in the Birman–Hilden class is equivalent to
the coincidence of Homeo1(E) ∩ Fib(E), the subgroup of fiber-preserving self-homeomorphisms isotopic
to the identity; and Fib1(E), the subgroup of self-homeomorphisms with a fiber-preserving isotopy to
the identity, or, which is the same, to the path-connectedness of Homeo1(E) ∩ Fib(E). In terms of the
path-connected components a fibered space E lies in the Birman–Hilden class if and only if the inclu-
sion Fib(E) ⊂ Homeo(E) induces a monomorphism on the level of π0, i.e., the component Homeo1(E)
of Homeo(E) includes no components of Fib(E) other than Fib1(E).

The membership in the Birman–Hilden class was studied in [2–17] for the case of branched coverings
of surfaces; see [15] for a survey and additional references on this topic. This problem is studied in [18, 19]
for the case of Seifert fibrations as well as for the case of coverings of three-dimensional manifolds. In knot
theory and the theory of three-dimensional manifolds the problem of membership in the Birman–Hilden
class arises for the three-dimensional manifolds fibered over the circle. A series of theorems is proved
in [1] about sufficient conditions for membership in the Birman–Hilden class for locally trivial bundles
over the circle. Here we use the sufficient conditions of [1] to establish the following:
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Theorem 1. For n ∈ {1, 2, 3} all compact connected n-dimensional manifolds, including nonori-
entable ones and those with nonempty boundary, which are locally trivial bundles over the circle have
the Birman–Hilden property.

Theorem 2. All closed four manifolds, including nonorientable ones, which are locally trivial bundles
over the circle with orientable Haken fibers have the Birman–Hilden property.

In addition to Theorem 1, we have

Theorem 3. For n ∈ {1, 2}, if M a closed fibered n-dimensional manifold of Theorem 1, then the
inclusion Fib1(M) ⊂ Homeo1(M) is a homotopy equivalence.

The compactness and connectedness requirements in Theorems 1 and 2 are both essential. For
instance, a locally trivial bundle over the circle each of whose connected components is a Möbius band
has the Birman–Hilden property if and only if it is connected. A locally trivial bundle Rn → S1 with
fibers consisting of hyperplanes has the Birman–Hilden property if and only if n = 1. Apparently, we
might relax the compactness requirement in Theorems 1 and 2 to the compactness of the connected
components of the fiber, but here we do not pursue this. Theorem 2 can be generalized to a vast
class of 4-dimensional manifolds with boundary; however, we omit the description of the class because
it is bulky and still incomplete. Within the bounds of the proof methods used, the first obstacles to
extrapolating Theorems 1 and 2 to the case of non-Haken fibers and higher dimensions are the manifolds
admitting homotopic but not isotopic self-homeomorphisms; see [20] in particular.

Theorem 1 has a series of actual corollaries. In particular, Theorem 1 can be applied to show that in
every compact connected three-dimensional manifold which is a locally trivial bundle over the circle all
isotopic transversal links are transversally isotopic. This substantially generalizes the well-known result
that closed braids in the solid torus are isotopic if and only if they represent the same conjugacy class of
the braid group; see [21; 22, Theorem 1; 23, Proposition 10.16; 24, Theorem 2.1]. We intend to present
a proof of this generalization separately.

The rest of this article deals with the proofs of Theorems 1–3 and has the following structure:
In Section 2 we collect a series of preliminary facts, including the statement of sufficient conditions,
proved in [1], for membership in the Birman–Hilden class. In Section 3 we give some propositions that
are used in the subsequent proofs to reduce the situation to the case of bundles with connected fibers.
In Section 4 Theorems 1 and 3 are proved in the case n = 1. In Section 5 Theorem 1 is proved in the
case n = 2. In Section 6 Theorem 3 is proved in the case n = 2. In Section 7 Theorem 1 is proved in the
case n = 3. Theorem 2 is proved in Section 8.

2. Preliminaries

2.1. Sufficient conditions. Let us recall the statements, established in [1], of the sufficient
conditions for membership in the Birman–Hilden class used to prove Theorems 1–3.

Given a topological spaceX, denote byMap(X,X) the space of continuous mappingsX → X with its
compact-open topology. Given a subspace Z of X, denote by Map(X,X; [Z]) the subspace of Map(X,X)
consisting of the mappings which restrict to the identity on Z. Denote by Homeo(X; [Z]) the subgroup
Homeo(X)∩Map(X,X; [Z]). Denote by Map1(X,X), Map1(X,X; [Z]), and Homeo1(X; [Z]) the path-
connected components of the identity mapping in Map(X,X), Map(X,X; [Z]), and Homeo(X; [Z])
respectively.

Theorem 4 [1]. Suppose that a path-connected topological space X admits no homotopic but not
isotopic self-homeomorphisms, and that either the group Homeo1(X) is simply-connected or its inclusion
in the monoid Map1(X,X) induces an isomorphism of fundamental groups. Then every locally trivial
bundle over the circle with fiber X has the Birman–Hilden property.

Definition. Say that a bundle p : E → B has the epimorphism property whenever the inclusion
Fib1(E) ⊂ Homeo1(E) induces an epimorphism on the level fundamental groups.
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Theorem 5 [1]. Consider a locally trivial bundle p : E → S1 over the circle with fiber X, where X
is a compact connected manifold with nonempty boundary ∂X. Suppose that the following hold:

(1) X admits no pair of self-homeomorphisms related by a pointwise boundary fixing homotopy, but
not related by a pointwise boundary fixing isotopy;

(2) either Homeo1(X; [∂X]) is simply-connected or its inclusion into Map1(X,X; [∂X]) induces
an isomorphism of fundamental groups;

(3) the restriction of the bundle p to each connected component of the boundary ∂E has the Birman–
Hilden property and the epimorphism property.

Then p has the Birman–Hilden property.

2.2. Sporadic facts. Let us present a series of facts use below.

Definition. A topological group is Polish whenever it is separable and admits a complete metric.

For convenience of references, recall the following well-known statements (see [25, Corollary 2] and
[26, Section 5, I] for instance):

Assertion 1. The self-homeomorphism groups of metric compact sets with the compact-open topol-
ogy are Polish. The closed subgroups of Polish groups are Polish.

Assertion 2. If M is a compact manifold then Homeo1(M) is closed in Homeo(M) endowed with
the compact-open topology.

Proof. Chernavskii’s Theorem shows [27, 28] that Homeo(M) is locally contractible, and so it is
locally path-connected. This implies that the path-connected components of Homeo(M) are closed. �

Assertion 3. If p : E → B is a bundle of compact metric sets, then the subgroup Fib(E) of
fiber-preserving self-homeomorphisms is closed in Homeo(E).

Proof. Define the mapping f : Homeo(E) → R by putting the value of f(h) at h ∈ Homeo(E)
equal to the supremum over all fibers of the diameters of the projections to B of the images h(F ) of the
fibers F . In other words,

f(h) := sup
b∈B

diam(p(h(p−1(b)))),

where diam(Y ) is the diameter of Y ⊂ B in the fixed metric on B.
It is not difficult to see then that f is continuous and Fib(E) = f−1({0}), so that Fib(E) is closed

as the preimage of a closed set under a continuous mapping. �
The following lemma is proved in [29, Theorem A.3] for instance; see also [30, 27.Vx] for the case of

semidirect products:

Lemma 1. If G is a Polish group, while A and B are closed subgroups of G with G = AB and
A ∩B = 1G, then the group operation induces a homeomorphism between A×B and G.

Definition. Given a class C of topological spaces, say that a topological space X is an absolute
neighborhood retract (ANR) for C whenever X is a neighborhood retract for every space of class C
with X as a closed subspace.

Assertion 4. If f1 : A → B is a homotopy equivalence and f2 : B → C is a mapping such that the
composition f2 ◦ f1 is a homotopy equivalence, then f2 is a homotopy equivalence as well.

Proof. Observe that f2 is homotopic to the composition of homotopy equivalences:

f2 = f2 ◦ idB � f2 ◦ (f1 ◦ g) = (f2 ◦ f1) ◦ g,

where g : B → A is a homotopy equivalence such that g ◦ f1 � idA and f1 ◦ g � idB. �
Assertion 4 relates the standard statement of the classical Whitehead Theorem about the homotopy

equivalence of cellular complexes with the following version of the theorem:
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Theorem 6 [31]. A continuous mapping between topological spaces with the homotopy type of
cellular complexes is a weak homotopy equivalence if and only if it is a homotopy equivalence.

Theorem 7 [32, 33]. A topological space has the homotopy type of a countable cellular complex
if and only if it has the homotopy type of a separable metric space which is an ANR for the class of
separable metric spaces.

3. Reduction to the Case of Connected Fibers

In this section we establish the propositions which reduce the general case of Theorems 1–3 to the
case of bundles with connected fibers.

Assertion 5. Every locally trivial bundle with locally connected sequentially compact total space
(a compact manifold for instance) is the composition of a locally trivial bundle with connected fibers and
a finite covering of the base.

Proof. Observe firstly that the bundle of the said form has only finitely many connected components
in each fiber. Indeed, from the definition of direct product topology we can infer in the standard fashion
that in every locally trivial bundle with locally connected sequentially compact total space both the base
and fibers are also locally connected and sequentially compact, while every space with these properties has
only finitely many connected components. Indeed, using sequential compactness and taking a converging
sequence of points running over an infinite set of components, we would otherwise obtain the limit point
of this sequence without connected neighborhoods.

Furthermore, given an arbitrary bundle p : E → B, define the quotient space Qp and the quotient
mapping p1 : E → Qp corresponding to the identification of all points in every connected component of
each fiber of p. Then p factors as the composition of bundles

E
p1→ Qp

p2→ B;

furthermore, p1 and p2 are locally trivial provided that so is p. The fibers of p1 are connected by definition.
Observe that if the number of connected components in each fiber of p is finite then the fibers of p2 are
finite and discrete because the finite number of connected components of the fiber F of p makes the
subsets corresponding to these components in an arbitrary trivially fibered neighborhood U ×F of F not
only closed, but also open in U×F , which implies that the corresponding fiber of p2 is discrete. Therefore,
the fibers of p1 are always connected, while by hypothesis the fibers of p2 are finite and discrete, meaning
that p2 is a finite covering. �

Corollary 1. Every locally trivial bundle p : M → S1 over the circle with compact connected
manifold as the total space factors as the composition

M
p1→ S1 c→ S1,

where p1 is a locally trivial bundle with connected fibers and c is a covering.

Proof. The claim follows from Assertion 5 because manifolds are locally connected, while every
quotient of a connected space is connected. �

Considering simultaneously two bundles p and c ◦ p with the same total space M in the sequel, we
will denote the subgroup of fiber-preserving self-homeomorphisms in Homeo(M) corresponding to the
fibers of c ◦ p and p by Fibc◦p(M) and Fibp(M) respectively, while the path-connected components of
these subgroups containing the identity mapping idM by Fibc◦p1 (M) and Fibp1(M).

Proposition 1. If p : M → S1 is a locally trivial bundle with connected metrizable compact fiber F
and c : S1 → S1 is a covering then Fibc◦p(M) lies in Fibp(M), while the inclusions Fibc◦p(M) ⊂ Fibp(M)
and Fibc◦p1 (M) ⊂ Fibp1(M) are homotopy equivalences.

Proof. The property that Fibc◦p(M) lies in Fibp(M) follows because the fiber F is connected: the
fibers of p are precisely the connected components of the fibers of c ◦ p, so that each c ◦ p-fiber-preserving
self-homeomorphism is also p-fiber-preserving.
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Verify that the inclusion Fibc◦p(M) ⊂ Fibp(M) is a homotopy equivalence. Denote by S1
p and S1

c the
base circles of p and c◦p respectively. Take an arbitrary (compatible with the topology) intrinsic metric ρ
on S1

c . Denote by Iρ(M) the subgroup of those elements of Fibc◦p(M) whose induced automorphisms
S1
c → S1

c are isometries with respect to ρ. This yields the chain of inclusions

Iρ(M) ⊂ Fibc◦p(M) ⊂ Fibp(M) ⊂ Homeo(M).

To verify that Iρ(M) ⊂ Fibc◦p(M) is a homotopy equivalence, fix an arbitrary fiber ˜F0 of c ◦ p and
an arbitrary continuous surjection

φ : ˜F0 × [0, 1] → M

homeomorphically carrying each fiber ˜F0 × {t} with t ∈ [0, 1] into some fiber of c ◦ p such that c ◦ p ◦ φ
induces a homeomorphism between the quotient space [0, 1]/{0, 1} and S1

c . Denote by L the subgroup

id
˜F0
×Homeo1([0, 1]) of Homeo1(˜F0 × [0, 1]). Observe that L is isomorphic to the contractible group

Homeo1([0, 1]), while φ induces the monomorphism φ∗ : L → Fibc◦p1 (M). It is not difficult to verify
that the subgroups Iρ(M) and φ∗(L) are closed in Fibc◦p(M), while we can uniquely express each g ∈
Fibc◦p(M) as the product g = ab with a ∈ Iρ(M) and b ∈ φ∗(L). These properties imply by Assertion 1
and Lemma 1 that the mapping

Iρ(M)× φ∗(L) → Fibc◦p(M), a× b �→ ab,

is a homeomorphism. Since φ∗(L) is contractible, we infer that Iρ(M) ⊂ Fibc◦p(M) is a homotopy
equivalence.

Verify that Iρ(M) ⊂ Fibp(M) is a homotopy equivalence. Consider the metric ρ̃ on S1
p induced

by the covering c : S1
p → S1

c from the metric ρ on S1
c and the subgroup I ρ̃(M) of the elements of

Fibp(M) whose projections to S1
p are isometries with respect to ρ̃. Since the fiber F is connected,

some elementary arguments show that I ρ̃(M) coincides with Iρ(M). Applying the same arguments to

the inclusion Iρ(M) = I ρ̃(M) ⊂ Fibp(M) as to Iρ(M) ⊂ Fibc◦p(M), we see that it is a homotopy
equivalence.

Assertion 4 implies that Fibc◦p(M) ⊂ Fibp(M) is a homotopy equivalence as well.
Since Fibc◦p(M) ⊂ Fibp(M) is a homotopy equivalence, it follows that so is Fibc◦p1 (M) ⊂ Fibp1(M)

because Fibc◦p1 (M) and Fibp1(M) are defined as the identity components of the subgroups Fibc◦p(M)
and Fibp(M). �

Corollary 2. If p : M → S1 is a locally trivial bundle with connected metrizable compact fibers and
c : S1 → S1 is a covering then the following hold:

(1) p has the Birman–Hilden property if and only if so does c ◦ p;
(2) Fibp1(M) ⊂ Homeo1(M) is a homotopy equivalence if and only if so is Fibc◦p1 (M) ⊂ Homeo1(M).

Proof. Since a fibered space E lies in the Birman–Hilden class if and only if the component
Homeo1(E) of Homeo(E) includes no component of Fib(E) other than Fib1(E), the first claim follows
because Fibc◦p(M) lies in Fibp(M) and Fibc◦p(M) ⊂ Fibp(M) is a homotopy equivalence by Propo-
sition 1, which indicates, in particular, the presence of a natural bijection between the components
of Fibc◦p(M) and Fibp(M).

The second claim follows from Assertion 4 because Fibc◦p1 (M) lies in Fibp1(M) and the inclusion
Fibc◦p1 (M) ⊂ Fibp1(M) is a homotopy equivalence by Assertion 1 again. �

4. Proofs of Theorems 1 and 3 in the Case n = 1

For the bundle-homeomorphism p : S1 → S1, when the fiber is a point, Theorems 1 and 3 hold
because every isotopy between self-homeomorphisms of a circle fibered into points is automatically fiber-
preserving; i.e., in this case Homeo1(M) = Fib1(M). The case of covering S1 → S1 with multiple sheets
follows by Corollary 2: Theorems 1 and 3 in the case of a covering follow from claims (1) and (2) of
Corollary 2 respectively.
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5. Proof of Theorem 1 in the Case n = 2

Corollaries 1 and 2 (claim (1)) reduce the situation to the case of bundles with connected fibers, and
so to prove Theorem 1 for n = 2, it suffices to consider the case of a fiber homeomorphic to a circle, and
the case of a fiber homeomorphic to a segment.

5.1. The fiber homeomorphic to a circle. We deduce this case from Theorem 4. The property
that the homotopic self-homeomorphisms of a circle are isotopic, i.e.,

Map1(S
1, S1) ∩Homeo(S1) = Homeo1(S

1),

is well known and implied by many classical constructions; see [34, 35] for instance. As for the second
condition of Theorem 4 the second alternative in this condition holds: The inclusion Homeo1(S

1) ⊂
Map1(S

1, S1) induces an isomorphism of fundamental groups, see Proposition 2 below.

Proposition 2. Homeo1(S
1) ⊂ Map1(S

1, S1) is a homotopy equivalence.

Proof. Consider the natural embedding

SO(2) ⊂ Homeo1(S
1) ⊂ Map1(S

1, S1),

where SO(2) stands for the group of Euclidean rotations of a Euclidean circle. The property that the
embedding SO(2) ⊂ Homeo1(S

1) is a homotopy equivalence is obtained, for instance, in [36, Propo-
sition 4.2]; see also [37, Lemma 3.3]. The property that the embedding SO(2) ⊂ Map1(S

1, S1) is
a homotopy equivalence follows from the results about H∗-spaces established in [38]; see also [39; 40, The-
orem (2.2); 41, 42; 43, Theorem 5.1]. Thus, Assertion 4 implies the claim. �

5.2. The fiber homeomorphic to a segment. In this part we deduce Theorem 1 from Theorem 5.
Let us mention the results from which it follows that if in Theorem 1 the fiber is a segment then the
hypotheses of Theorem 5 hold.

The property that the segment lacks a pair of self-homeomorphisms related by a boundary fixing
homotopy, but not related by a boundary fixing isotopy, can be established by Alexander’s trick; see [44]
and [45, Theorem 1.1.1]. This trick shows that the underlying space of Homeo([0, 1]) consists of the two
components: The component Homeo1([0, 1]) contains the self-homeomorphisms which fix the endpoints,
and the second component contains the self-homeomorphisms which exchange the endpoints. It remains
to observe that the self-homeomorphisms in distinct components are obviously not related by a pointwise
boundary fixing homotopy.

The property that the underlying space of Homeo1([0, 1]) is simply-connected (and even contractible)
can also be proved using Alexander’s trick; see [45, Theorem 1.1.1] and [44].

The claim that the restriction of the bundle p to each connected component of the boundary ∂E has
the Birman–Hilden property follows respectively from the case n = 1 of Theorems 1 and 3.

6. Proof of Theorem 3 in the Case n = 2

For n = 2 the closed fibered n-dimensional manifold of Theorem 3 is either the torus or the Klein
bottle, while the fiber is a collection of circles. Corollaries 1 and 2 (claim (2)) reduce the situation to the
case of connected fibers, i.e., it suffices to give the proof only in the case that the fiber is a circle.

Therefore, take a bundle p : E → S1 with circle fibers (while the total space E is either the torus or
the Klein bottle). Introduce on E some locally Euclidean metric such that all fibers of p are geodesics.
Denote by I1(E) the identity component of the isometry group of E and consider the identical inclusions

I1(E) ⊂ Fib1(E) ⊂ Homeo1(E).

In the case of the torus E = T = S1 × S1 the underlying space of I1(E) is homeomorphic to the torus,
while in the case of the Klein bottle E = K the group I1(K) is isomorphic to SO(2); going around
the circle SO(2) corresponds to a double rotation of the base of the bundle. As [46] and [47] show,
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I1(T ) ⊂ Homeo1(T ) and I1(K) ⊂ Homeo1(K) are weak homotopy equivalences; the appearing spaces are
separable, metrizable (Proposition 1) and ANRs for the class of metric spaces; see [48]. Hence, Theorems 6
and 7 imply that the inclusions are homotopy equivalences. Let us verify that I1(E) ⊂ Fib1(E) is
a homotopy equivalence in both cases E = T and E = K. The claim that Fib1(E) ⊂ Homeo1(E) is
a homotopy equivalence would then follow by Assertion 4.

The torus case. In order to verify that I1(T ) ⊂ Fib1(T ) is a homotopy equivalence, observe firstly
that Fib1(T ) is closed in Homeo(T ) because Fib1(T ) = Homeo1(T )∩Fib(T ) by the case n = 2 of Theo-

rem 1 established above,1) while Homeo1(T ) and Fib(T ) are closed in Homeo(T ) by Assertions 2 and 3.
This implies that Fib1(T ) is a Polish group because it is a closed subgroup of the Polish group Homeo(T );
see Assertion 1.

Furthermore, choose an arbitrary point x in T and denote by Fib1(T, x) the subgroup of Fib1(T )
formed by the homeomorphisms fixing x. It is not difficult to verify that I1(T ) and Fib1(T, x) are closed
in Fib1(T ), while we can uniquely express each g ∈ Fib1(T ) as the product g = ab with a ∈ I1(T ) and
b ∈ Fib1(T, x), i.e.,

I1(T )Fib1(T, x) = Fib1(T ), I1(T ) ∩ Fib1(T, x) = {idT }.

Hence, Lemma 1 shows that the mapping

I1(T )× Fib1(T, x) → Fib1(T ), a× b �→ ab,

is a homeomorphism.
In order to verify that the underlying space of Fib1(T, x) is contractible, fix some section γ of the

bundle T = E → S1 such that γ contains x and consider the following subgroups G1, G2, and G3

of Fib1(T, x):

G1 is the subgroup of all fiberwise2) self-homeomorphisms in Fib1(T, x) which are the identity on γ;
G2 is the subgroup of all fiberwise self-homeomorphisms in Fib1(T, x) whose restriction to each fiber
is an isometry (with respect to the restrictions of the original locally Euclidean metric on E to the
fibers),
G3 is the intersection of the subgroup of all elements of Fib1(T, x) carrying γ to γ with the subgroup
of all elements of Fib1(T, x) whose restriction to each fiber is an isometry (with respect to the
restriction of the original locally Euclidean metric on E to the fibers) between the fibers.
It is clear from the definitions that the underlying spaces of G1, G2, and G3 are homeomorphic to

(obviously contractible) spaces: the space of free loops in Homeo1([0, 1]), the space of based loops in R1

with the base point at the origin, and the space Homeo1([0, 1]) respectively. Therefore, G1, G2, and G3

are contractible. Moreover, simple reasoning shows that each of the subgroups G1, G2, and G3 is closed
in Fib1(T, x), while we can uniquely express each g ∈ Fib1(T, x) as the product g = abc with a ∈ G1,
b ∈ G2, and c ∈ G3. Hence, Assertion 1 and Lemma 1 imply that the underlying space of the group
Fib1(T, x) is contractible.

Thus, the group Fib1(T ) trivially fibers over I1(T ) with contractible fibers, so that I1(T ) ⊂ Fib1(T )
is a homotopy equivalence.

The Klein bottle case. Verify that I1(K) ⊂ Fib1(K) is a homotopy equivalence. The proof
strategy repeats the torus case.

Observe firstly that Fib1(K) is a Polish group because it is a closed subgroup of the Polish group
Homeo(K); see Proposition 1. As in the torus case, Fib1(K) is closed in Homeo(K) because Fib1(K) =

1)In the case of a manifoldN locally trivially fibered over the circle with compact fiberM the subgroup Fib1(N)
is closed regardless of the bundle lying in the Birman–Hilden class. We can justify this by using the local con-
tractibility (Chernavskii’s Theorem [27]) of the underlying space of the group of self-homeomorphisms of M :
since Homeo(M) is locally simply-connected, we conclude that Fib1(N) is locally path-connected.

2)A fiber-preserving self-homeomorphism of a fibered space is called fiberwise whenever it takes each fiber to
the same fiber.
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Homeo1(K)∩Fib(K) by the case n = 2 of Theorem 1 considered above, while Homeo1(K) and Fib(K)
are closed in Homeo(K) by Assertions 2 and 3.

Furthermore, choose and denote bym some fiber of the bundle p. Denote by Fib1(K,m) the subgroup
of Fib1(K) formed by the orientation-preserving elements that send m to m. It is not difficult to verify
that I1(K) and Fib1(K,m) are closed in Fib1(K), while we can uniquely express each g ∈ Fib1(K) as
the product g = ab with a ∈ I1(K) and b ∈ Fib1(K,m).

To verify that Fib1(K,m) is contractible, by analogy with the torus case fix some section γ of the
bundle K = E → S1 and consider the following subgroups of Fib1(K,m):

G′
1 is the subgroup of all fiberwise self-homeomorphisms in Fib1(K,m) which are the identity on γ;

G′
2 is the subgroup of all fiberwise self-homeomorphisms in Fib1(K,m) whose restriction to each fiber

is an isometry;
G′

3 is the intersection of the subgroup of all elements of Fib1(K,m) carrying γ to γ with the subgroup
of all elements of Fib1(K,m) whose restriction to each fiber is an isometry between fibers.
The underlying space of G′

1 is homeomorphic to the space of fiber-preserving pointwise boundary
fixing self-homeomorphisms of the Möbius band fibered over the circle (with segments as fibers). The
underlying space of G′

2 is homeomorphic to the space of sections of the open Möbius band fibered over
the circle (with fibers homeomorphic to the real line arising here as the universal covering of the circle,
which is the fiber of the bundle p). The underlying space of G′

3 is homeomorphic to Homeo1([0, 1]). It
is a simple exercise to verify that these spaces are contractible.

The rest of the argument repeats verbatim the torus case with the replacement of Fib1(T, x) by
Fib1(K,m).

7. Proof of Theorem 1 in the Case n = 3

Corollaries 1 and 2 (claim (1)) reduce the situation to the case of bundles with connected fibers.
Proceed to inspect the subcases.

7.1. The fiber is a closed surface. If the fiber of the bundle in Theorem 1 is a connected closed
surface then the claim follows from Theorem 4. Let us indicate why the hypotheses of the latter hold.

The property is established in [35] that homotopic self-homeomorphisms of a closed surface are

isotopic.3) The exposition in [35] is in the piecewise linear category, but the result extends to the
topological category. Indeed, take two homotopic self-homeomorphisms of a closed surface; since ev-
ery self-homeomorphism of a surface is isotopic to a piecewise linear one [35, Theorem A4], the prob-
lem reduces to the case of homotopic piecewise linear self-homeomorphisms; homotopic piecewise linear
self-homeomorphisms are piecewise linearly homotopic, and consequently piecewise linearly isotopic [35,
Theorems 6.3 and 6.4].

The property that for every connected closed surface X the inclusion

Homeo1(X) ⊂ Map1(X,X)

induces an isomorphism of fundamental groups follows from the next proposition.

Proposition 3. If a connected closed surface F is neither the sphere S2 nor the projective plane P 2

then the inclusion

Homeo1(F ) ⊂ Map1(F, F )

is a homotopy equivalence. If F ∈ {S2, P 2} then the inclusion induces an isomorphism on the level of
fundamental groups but is neither a homotopy equivalence nor a weak homotopy equivalence.

Proof. Demonstration amounts to comparing the available results about the underlying spaces
of Homeo1(F ) and Map1(F, F ). The necessary results about Homeo1(F ) lie mainly in [46, 47, 50–52],

3)For the case of a closed orientable surface of genus above 1 this fact is already justified in [34, 49].
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while those about Map1(F, F ), in [53–55], which cover the cases of aspherical surfaces, the sphere, and
the projective plane respectively. Below we give a more detailed information for each class.

Recall that, since the spaces Homeo1(F ) and Map1(F, F ) for a compact surface F are separable,
metrizable (see Assertion 1 and, for instance, [56] respectively) and are ANR for the class of metric spaces
(respectively, see [48] and, for instance, [57, Theorem 2.4, p. 186]), by Theorems 6 and 7 Homeo1(F ) ⊂
Map1(F, F ) is a homotopy equivalence if and only if it is a weak homotopy equivalence.

The case χ(F ) < 0. In the case of a connected closed surface F of negative Euler characteristic
Homeo1(F ) and Map1(F, F ) are homotopically trivial, and so Homeo1(F ) ⊂ Map1(F, F ) is a weak

homotopy equivalence. For Homeo1(F ), we refer to [50].4) For Map1(F, F ), we use [53, Corollary III.2]
stating that for every linearly connected aspherical polyhedron X whose fundamental group has trivial
center the underlying space of Map1(X,X) is contractible.

The torus case. In the case of the torus T = S1 × S1 the natural embedding

T ⊂ Homeo1(T ) ⊂ Map1(T, T )

is supplied by the isometries of the torus endowed with a locally Euclidean metric. As [46] shows, T ⊂
Homeo1(T ) is a weak homotopy equivalence. A weak homotopy equivalence for T ⊂ Map1(T, T ) follows
from [53, Theorem III.2] which describes the weak homotopy type for aspherical (locally finite linearly

connected simplicial) polyhedra.5) (For mappings to the Eilenberg–Mac Lane spaces with an abelian
group the description of the weak homotopy type was previously available, see [58]; for details, see the
surveys [59, Section 2.1; 60, Section 2.1.2].) Consequently, Homeo1(T ) ⊂ Map1(T, T ) is a weak homotopy
equivalence.

The Klein bottle case. In the case of the Klein bottle K we have the natural embedding

SO(2) ⊂ Homeo1(K) ⊂ Map1(K,K),

where the embedding SO(2) ⊂ Homeo1(K) corresponds to the double rotation about the base in the
representation of the Klein bottle as a circle bundle over the circle; see [47, Section 4]. As [47] shows,
SO(2) ⊂ Homeo1(K) is a weak homotopy equivalence. The construction in the proof of Theorem III.2
of [53] implies that SO(2) ⊂ Map1(K,K) is a weak homotopy equivalence. Thus, so is Homeo1(K) ⊂
Map1(K,K).

The sphere case. In the case of S2 we have the natural embedding

SO(3) ⊂ Homeo1(S
2) ⊂ Map1(S

2, S2),

where by SO(3) ⊂ Homeo1(S
2) we understand Euclidean rotations. Kneser showed in [61] that the image

of SO(3) ⊂ Homeo1(S
2) is a deformation retract for Homeo1(S

2), while Hansen showed [54, p. 364; 62,
p. 44] that SO(3) ⊂ Map1(S

2, S2) induces an isomorphism of fundamental groups without being a ho-
motopy equivalence (and consequently, a weak homotopy equivalence either because we deal with ANR;
see Theorems 6 and 7). This implies that Homeo1(S

2) ⊂ Map1(S
2, S2) also induces an isomorphism of

fundamental groups without being a weak homotopy equivalence.

The projective plane case. In the case of the projective plane P 2 we have the natural embedding

SO(3) ⊂ Homeo1(P
2) ⊂ Map1(P

2, P 2).

4)Thus, in the case of a closed surface of negative Euler characteristic both alternative hypotheses of Theorem 4
hold: Homeo1(X) ⊂ Map1(X,X) induces an isomorphism of fundamental groups and Homeo1(X) is simply-
connected.

5)Henceforth in similar cases the mentioned statements, as a rule, deal only with isomorphisms of groups, but
it is clear from the constructions that these isomorphisms are induced by the embeddings of spaces in question.
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The embedding SO(3) ⊂ Homeo1(P
2) is a weak homotopy equivalence; see the proof of Theorem 3.2 and

Section 5 of [47]. As [55] shows, SO(3) ⊂ Map1(P
2, P 2) is not a homotopy equivalence (and consequently,

not a weak homotopy equivalence because we deal with ANR; see Theorems 6 and 7). However, the
results of [55] imply (see the explanations with calculations of the fundamental group π1(Map1(P

2, P 2))
in [63, Remark 3.2]) that SO(3) ⊂ Map1(P

2, P 2) induces an isomorphism of fundamental groups. Thus,
Homeo1(P

2) ⊂ Map1(P
2, P 2) induces an isomorphism of fundamental groups, although it is not a weak

homotopy equivalence. �

7.2. The fiber is a surface with boundary. This case of Theorem 1 follows from Theorem 5. Let
us indicate why the hypotheses of the latter hold in the former in the case that the fiber is a connected
compact surface with nonempty boundary.

The property that all self-homeomorphisms of a surface with boundary related by a pointwise bound-
ary fixing homotopy are also related by a pointwise boundary fixing isotopy is proved in [35, Theorems 6.3

and 6.4].7)

In the case that X is a connected compact surface with nonempty boundary, [50–52, 46, 47] show
that the underlying space of Homeo1(X; [∂X]) is simply-connected and even contractible; the case of the
disk follows already from the results of Alexander [44].

The assertion that the restriction of the bundle p to each connected component of the boundary ∂E
has the Birman–Hilden property and the epimorphism property follows from the case n = 2 of Theorems 1
and 3 respectively.

8. Proof of Theorem 2

Corollaries 1 and 2 (claim (1)) reduce the general case of Theorem 2 to the case of bundles with
connected fibers. In the case of connected fibers Theorem 2 follows from Theorem 4 in view of the results
of [64, 65]. In particular, [64] shows that homotopic self-homeomorphisms of every orientable closed
Haken manifold M are isotopic, which is the first condition on the fiber in Theorem 4, while [65] shows
that Homeo1(M) ⊂ Map1(M,M) induces an isomorphism of fundamental groups, which is the second
condition on the fiber in Theorem 4; see also [66], where a stronger result about homotopy equivalence
is established. These articles use the piecewise linear and smooth categories [66, p. 343], and transition
between them and the topological category is guaranteed by the triangulation theorems of Bing and
Moise and the Smale conjecture, proved by Hatcher in [67].
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