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Abstract: We prove Harnack’s inequality for nonnegative harmonic functions in the sense of the “soft”
Laplacian on a stratified set with flat strata.
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In this article we establish an analog of Harnack’s inequality in its standard form

sup
K

u ≤ C inf
K

u

in the following situation: u is a nonnegative harmonic function in the sense of the so-called “soft” Lapla-
cian on a stratified set Ω = Ω◦ ∪ ∂Ω◦ with flat strata, K is a compact subset of Ω◦, while C = C(Ω◦,K)
is a constant. The Mean Value Theorem for this Laplacian holds only for special admissible spheres,
making the proof of Harnack’s inequality rather complicated in comparison with the classical analog.

1. The Main Concepts

1.1. Stratified sets. A stratified set Ω in a first approximation is a connected subset of the
Euclidean space Rn which consists of finitely many disjoint connected (boundaryless) submanifolds called
the strata of Ω. Denote by Σ the set of all strata of Ω, while the strata themselves by σkj ; i.e.,

Ω =
⋃

σkj∈Σ
σkj .

The first index shows the dimension of a stratum; and the second, the index of the stratum of this
dimension; k ranges from 0 to n. We impose a few requirements on the contact between the strata:

• the closure σkj of each stratum is compact, while its boundary ∂σkj = σkj \ σkj is the union of
some strata in Σ;

• given two strata σkj , σmi ∈ Σ, the intersection of the closure σkj ∩σmi is either empty or consists
of some strata in Σ.

Henceforth the relation σkj ≺ σmi means σkj ⊂ ∂σmi. In this case we say that the strata are
contiguous.

We will use the intrinsic metric d on Ω, defining d(X,Y ) in the usual way as the infimum of the
lengths of curves passing through X,Y ∈ Ω and lying in Ω. It is easy to see that the metric topology
coincides with the induced topology, and all topological concepts below relate to this topology.

Assume that Ω is represented as Ω◦ ∪ ∂Ω◦ (the “interior” and the “boundary” of Ω), where Ω◦ is
a connected open subset of Ω in the topology mentioned above which consists of some strata in Σ and
satisfies Ω◦ = Ω, while the remaining part ∂Ω◦ = Ω \ Ω◦ is then the usual topological boundary of Ω◦.

In this article all interior strata are assumed flat in the following sense: Each stratum σkj ⊂ Ω◦ is
a subregion of some k-dimensional affine subspace of Rn.
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1.2. Stratified measure. Refer to a set ω ⊂ Ω as μ-measurable whenever every intersection σkj ∩ω
is measurable in the sense of the k-dimensional Lebesgue measure on σkj . It is not difficult to observe
that the set M of all μ-measurable sets is a σ-algebra on Ω. Define the stratified measure μ on Ω, or
more exactly on M , as

μ(ω) =
∑

σkj∈Σ
μk(ωkj),

where μk(ωkj) stands for the k-dimensional Lebesgue measure on ωkj = ω ∩ σkj . The measurability of
a function f : Ω → R is defined in the standard fashion: f is μ-measurable whenever the Lebesgue sublevel
set Lf (c) = {X ∈ Ω : f(X) ≤ c} belongs to M for all c ∈ R. The Lebesgue integral of a μ-measurable
function over a μ-measurable set ω reduces to the sum

∫

ω

f dμ =
∑

σkj∈Σ

∫

ωkj

f dμ.

Note that dμ is essentially the same as dμk; it is convenient to omit k unless this leads to confusion.
The definitions of a stratified set and related concepts in a more general situation can be found

in [1, 2]. These definitions are significantly inspired by [3].

1.3. Divergence and Laplacian. A vector field �F in Rn is tangent to Ω◦ whenever, given a stratum

σkj ⊂ Ω◦ and X ∈ σkj , the vector �F (X) lies in the tangent space TXσkj in the usual sense of differential
geometry.

The notation �C1(Ω◦) is applied to the space of tangent vector fields F on Ω◦ such that the restric-

tion �F |σki
to each interior stratum σki ⊂ Ω◦ is continuously differentiable and has continuous extensions

to all points of each contiguous interior stratum of dimension less by 1. We do not assume that �F

is continuous on the whole Ω◦. The latter means that the tangent vector field in �C1(Ω◦) amounts to
a collection of independent fields of class C1, one for each stratum of Ω◦.

The formal divergence of a tangent vector field �F ∈ �C1(Ω◦) at X ∈ σkj ⊂ Ω◦ is defined as

∇ · �F (X) = ∇k · �F (X) +
∑

σk+1i�σkj

�F (X + 0 · �νi) · �νi, (1)

where the summation is over all (k + 1)-dimensional strata σk+1i contiguous with σkj . Let us elucidate
the notation of (1). Note that ∇k on the right-hand side of (1) stands for the ordinary k-dimensional

divergence operator applied to the restriction �F |kj to σkj , the vector �νi is the unit interior normal to σkj
in σk+1j at X, while �F (X + 0 · �νi) is the limit of �F (Y ) as Y ∈ σk+1i tends to X inside the stratum
σk+1i 
 σkj in the direction of νi. Fig. 1 illustrates that.

It is not clear immediately that the divergence we defined is a genuine

Fig. 1. The unit normal.

analog of the classical one, but we can show that ∇ · �F (X), as in the usual
setup, is the flow density of the vector field at X relative to the stratified
measure μ as defined in the previous subsection. For more detail, see [4] as
well as [5].

The gradient ∇u of a scalar function u whose restriction to each interior
stratum is continuously differentiable is an example of a tangent vector field.
In this case ∇u amounts to the collection of gradients of these restrictions.

For ∇u ∈ �C1(Ω◦) it is perfectly natural to define the Laplacian on a stratified
set as Δu = ∇ · (∇u). This Laplacian is often called hard. Presently the

qualitative theory of harmonic functions in the sense of this Laplacian is poorly developed. In particular,
so far no prospect can be discerned of obtaining Harnack’s inequality for them. Thus, in this article we
restrict exposition to the case of the so-called soft Laplacian.
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A stratum σkj is free whenever σkj is not contiguous with any stratum of greater dimension; in this
case σkj is obviously interior; i.e., σkj ⊂ Ω◦. The soft Laplacian is defined as

Δ̃u = ∇ · (p∇u), (2)

where p = 1 on the free strata, while p vanishes on the remaining strata.
The explicit expression for the soft Laplacian at the points of free strata coincides with the usual

Laplacian (and for nonflat strata, with the Laplace–Beltrami operator).
However, if a stratum σkj is not free but there exist free strata σk+1i 
 σkj , then we call σkj semifree,

and the expression for the soft Laplacian at X ∈ σkj is

Δ̃u(X) =
∑

σk+1i�σkj

∇u(X + 0 · �νi) · �νi,

with the summation over all free strata σk+1i 
 σkj .
Finally, if a stratum is not free and does not contiguous with any free stratum of dimension greater

by 1 then Δ̃u = 0 on this stratum.
Since ∇u appears in (2) with nonzero coefficients only on the free strata, it is natural to consider

solutions to this equation in the function class C̃2(Ω◦) consisting of the continuous functions u on Ω◦

whose restriction to each free stratum is twice continuously differentiable, while the gradient of this
restriction extends continuously to each point of the adjoint interior stratum of dimension one less.

By a harmonic function u henceforth we will understand a function u ∈ C̃2(Ω◦) satisfying Δ̃u = 0.

2. Harnack’s Inequality

The following theorem is the main result of this article:

Theorem 1 (Harnack’s inequality). Given a stratified set Ω and a compact subset K of Ω◦, for each
nonnegative harmonic function u on Ω◦ we have

sup
X∈K

u(X) ≤ C inf
X∈K

u(X)

with some constant C = C(K,Ω◦) independent of u.

We deduce this theorem as a corollary of the corresponding result for sturdy stratified sets. A strat-
ified set Ω is sturdy (of dimension d) whenever

• all free strata in Ω◦ are of the same dimension d;
• Ω◦ \ Ω◦

d−2 is connected, where Ω◦
d−2 is the union of all strata σkj ⊂ Ω◦ with k ≤ d− 2.

Fig. 2 illustrates this concept.

Fig. 2. Stratified sets:
(a) sturdy; (b) not sturdy.

Lemma 1 (Harnack’s inequality for sturdy sets). The claim of Theorem 1
holds for every sturdy stratified set Ω.

Deduction of Theorem 1 from Lemma 1. Call two free strata σki
and σkj of the same dimension adjacent whenever there exists a chain of free
strata of the same dimension, σki1 , σki2 , . . . , σkis with i1 = i and is = j, in
which the boundaries of each pair of neighboring strata contain a common
interior stratum, i.e., a stratum in Ω◦ of dimension one less. The whole set
of free strata splits into the disjoint union of classes of adjacent strata. For

each of such classes σki1 , . . . , σkim of adjacent strata consider the stratified set

P = σki1 ∪ · · · ∪ σkim .

Observe that P inherits the natural partition P = P◦ ∪ ∂P◦; the boundary strata which belonging
to P are declared boundary strata in P. It is not difficult to verify that P is a sturdy stratified set and
the restriction u|P◦ of an arbitrary harmonic function u on Ω◦ is harmonic on P◦.

1139



This procedure leads to the representation of Ω as a union of sturdy stratified sets:

Ω = P1 ∪ · · · ∪ Pl;

furthermore, Ω◦ = P◦
1 ∪ · · · ∪ P◦

l and ∂Ω◦ = ∂P◦
1 ∪ · · · ∪ P◦

l .
By Lemma 1, the claim of Theorem 1 holds for the harmonic functions on each sturdy stratified

set Pi. From this, it is not difficult to deduce the claim of Theorem 1. �
In turn, Harnack’s inequality for sturdy sets follows from its validity

Fig. 3. Admissible balls.

for admissible balls in the sets. We omit the standard proof; see [6] for
instance.

Call the ball Br(X0) = {X ∈ Ω : d(X,X0) < r} admissible, or in
more detail, an open ball of admissible radius r > 0 centered at X0 ∈ Ω◦,
whenever r is at most the distance from X0 to all strata whose closures
avoid X0. Fig. 3 depicts some examples of admissible balls. If the radius
of a ball is not essential then we use the simpler notation B(X0).

Lemma 2 (Harnack’s inequality for admissible balls). Given a sturdy
stratified set Ω, if B4r(X0) is an admissible ball in Ω◦ then there exists a constant C > 0 such that

1

C
u(X) ≤ u(X0) ≤ Cu(X) (3)

for all X ∈ Br(X0) and nonnegative harmonic functions u on Ω◦.

Lemma 2 is equivalent to the following:

Lemma 3. Given a sturdy stratified set Ω, if B4r(X0) is an admissible ball in Ω◦, while {ui} for
i = 1, 2, . . . is a sequence of nonnegative harmonic functions on Ω◦ then

(i) if {Xi} is a sequence in Br(X0) such that {ui(Xi)} is bounded below by a positive constant then
so is some subsequence of {ui(X0)};

(ii) if the sequence {ui} is uniformly bounded on Br(X0), while {Xi} is a sequence in Br(X0) such
that ui(Xi) → 0 as i → ∞, then the same holds for some subsequence of {ui(X0)}.

Proof of the equivalence. Assume that Lemma 2 is valid. Then (3) easily implies claims (i)
and (ii) even without extracting subsequences and without the condition of uniform boundedness on a ball.

Conversely, assuming that Lemma 3 is valid and arguing by contradiction, find a sequence of non-
negative harmonic functions ui on Ω◦ and a sequence of Xi ∈ Br(X0) satisfying either

ui(Xi) > iui(X0) (4)

or
ui(X0) > iui(Xi). (5)

At least one of these inequalities must hold infinitely many times. If (4) holds for some subse-
quence {ij} for j = 1, 2, . . . ; then for the sequence u∗j (X) = uij (X)/uij (Xij ) we obtain

u∗j (Xij ) = 1, u∗j (X0) → 0 as j → ∞
in contradiction with claim (i). However, if (5) holds for some subsequence {ij} for j = 1, 2, . . . ; then for
the sequence u∗j (X) = uij (X)/uij (X0) we have

u∗j (X0) = 1, u∗j (Xij ) → 0 as j → ∞.

Observe that claim (i) is equivalent to
(i′) if {ui(X0)} is bounded then some subsequence of {ui} is uniformly bounded on Br(X0).
This is easy to prove, arguing by contradiction.
In this case (i′) implies the uniform boundedness of {u∗j} on Br(X0), and we arrive at a contradiction

with claim (ii) applied to u∗j . �
Summing up the above, we see that Lemma 3 will yield our main result.
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3. Some Auxiliary Tools

3.1. The Mean Value Theorem. For the harmonic functions corresponding to the soft Laplacian
the analog of the classical Mean Value Theorem looks as follows; see [7].

Theorem 2. Given a stratified set Ω all of whose free strata are of the same dimension, if u is
a harmonic function on Ω◦ and Br(X0) is an admissible ball in Ω◦ then

u(X0) =
1

μp(Br(X0))

∫

Br(X0)

pu(X) dμ,

where μp(Br(X0)) =
∫
Br(X0)

p dμ.

Note the following useful corollary of the Mean Value Theorem which we will use a few times.

Remark 1. If Br(X0) is an admissible ball and Bρ(X) ⊂ Br(X0) is another one, while u is a non-
negative harmonic function on Br(X0); then u(X0) ≥ Cu(X), where C = μp(Bρ(X))/μp(Br(X0)).

3.2. Harnack’s inequality for special compact sets. When the center X0 of an admissible
ball Br(X0) lies on a free stratum σkj or on a stratum σkj adjoined by only free strata σk+1i 
 σkj of
dimension greater by 1, we can obtain an analog of the “spherical” Harnack’s inequality. It is obvious in

the first case, when σkj is a free stratum, because then Δ̃ is the standard Laplacian. As for the second
case (recall that σkj is then called semifree), we can assert the following

Lemma 4. Given a stratified set Ω, if σkj ⊂ Ω◦ is a semifree stratum and X0 ∈ σkj then for every
admissible ball Br(X0) and an arbitrary ρ with 0 < ρ < r we have

(r − ρ)rk−1

(r + ρ)k
u(X) ≤ u(X0) ≤

(r + ρ)rk−1

(r − ρ)k
u(Y )

for all X,Y ∈ Bρ(X0) and all nonnegative harmonic functions u on Ω◦.

This property is a corollary of the Poisson formula in [4] for the ball in question presented a proof
based on the formula appeared in [8]. The latter article deals with a slightly more general situation:
the stratified constant p can take arbitrary positive values on the free strata, though still p = 0 on the
remaining strata.

As we can see, this “spherical” version of the inequality looks precisely as the classical one (see [6])
if we assume that the dimension of Br(X0) equals k + 1, meaning the dimension of the free strata σk+1i

contiguous with σkj .
The validity of the spherical Harnack’s inequality for the admissible balls centered on d- and (d− 1)-di-

mensional strata enables us to prove Harnack’s inequality for special compact sets in the case of a sturdy
stratified set Ω; cf. [9].

Lemma 5. Given a sturdy stratified set Ω = Ω◦ ∪ ∂Ω◦, if K ⊂ Ω◦ is a compact set containing
only some points in the (d − 1)-dimensional and d-dimensional strata then each nonnegative harmonic
function u on Ω◦ satisfies

sup
K

u ≤ C inf
K

u

with some constant C = C(K,Ω◦) independent of u.

4. Proof of Lemma 3

In this section we prove Lemma 3 and, as we mentioned at the end of Section 2, thereby complete
the proof of our main result, Theorem 1.

In accordance with the hypotheses of Lemma 3, henceforth we assume that the stratified set Ω is
sturdy of dimension d.
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Lemma 6. If B3r(X0) is an admissible ball and X0 ∈ σkj then there exists a constant C > 0 such
that

1

C
u(X) ≤ u(X0) ≤ Cu(X)

for all X ∈ Br(X0) ∩ σkj and all nonnegative harmonic functions u on Ω◦.

We obtain one side of the inequality by applying Remark 1 to the pair Br(X) ⊂ B2r(X0) of admissible
balls, and the other, to the pair Br(X0) ⊂ B2r(X) of admissible balls.

By analogy with the equivalence of Lemmas 2 and 3, Lemma 6 is equivalent to the following lemma
which differs from Lemma 3 by the additional condition on the points Xi and has no effect on the proof
of equivalence.

Lemma 7. Consider an admissible ball B3r(X0) with X0 ∈ σkj , a sequence {ui} for i = 1, 2, . . . of
nonnegative harmonic functions on Ω◦, and a sequence of points {Xi} in Br(X0) ∩ σkj . Then

(i) if {ui(Xi)} is bounded below by some constant then so is some subsequence of {ui(X0)};
(ii) if {ui} is uniformly bounded on Br(X0), while ui(Xi) → 0 as i → ∞; then the same holds for

some subsequence of {ui(X0)}.
The next lemma differs substantially from Lemma 3 by the additional requirement that all points Xi

coincide.

Lemma 8. Consider an admissible ball B2r(X0), a sequence {ui} of nonnegative harmonic functions
on Ω◦, and X ∈ Br(X0). Then

(i) if {ui(X)} is bounded below by a positive constant then so is {ui(X0)};
(ii) if {ui} is uniformly bounded on the ball Br(X0), while ui(X) → 0 as i → ∞; then ui(X0) → 0

as i → ∞.

Proof. Take some admissible ball B(X) ⊂ Br(X0).
Claim (i) trivially follows from Remark 1. Furthermore, there is no need to extract a subsequence.
Let us justify claim (ii). The sturdyness of Ω ensures that B(X) ∩ σdl is nonempty for some free

stratum σdl. Fix some Y ∈ B(X) ∩ σdl (see Fig. 4) and an admissible ball B(Y ) ⊂ B(X). Remark 1
applied to X and Y leads to the inequality ui(Y ) ≤ Cui(X) with some constant C depending only on
the ratio of radii. Then ui(Y ) → 0 as i → ∞.

Fix an arbitrary ε > 0. Take an open subset Gε of Br(X0) contain-

Fig. 4.

ing all points of Br(X0) lying on the strata of dimension at most d− 2,
avoiding Y , and satisfying∫

Gε

p dμ <
εμp(Br(X0))

2M
,

where M = sup{ui(Z) : Z ∈ Br(X0), i ∈ N}. Such set obviously
exists, because the measure p dμ in this case is simply the d-dimensional
Lebesgue measure. After that, define K as Br(X0) \Gε.

Since the compact set K consists of points in some strata of dimension d − 1 and d, we can apply
Lemma 5 and obtain

sup
Z∈K

ui(Z) ≤ C inf
Z∈K

ui(Z) ≤ Cui(Y ) → 0 (as i → ∞).

As a corollary, supZ∈K ui(Z) is at most ε
2 for i sufficiently large. Finally, appreciating the Mean Value

Theorem (Theorem 2), we infer that

ui(X0) =
1

μp(Br(X0))

∫

Br(X0)

pui(Z) dμ =
1

μp(Br(X0))

(∫

K

pui(Z) dμ+

∫

Gε

pui(Z) dμ

)

≤ ε

2μp(Br(X0))

∫

K

p dμ+
M

μp(Br(X0))

∫

Gε

p dμ ≤ ε

2
+

ε

2
= ε.
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Since ε is arbitrary, we conclude that ui(X0) → 0 as i → ∞. �
The following lemma in fact establishes the validity of Lemma 3 under the additional assumption

that Xi → X0.

Lemma 9. Consider an admissible ball B(X0), a sequence {ui} of nonnegative harmonic functions
on B(X0), and a sequence {Xi} of points in B(X0) converging to X0. Then

(i) if {ui(Xi)} is bounded below by a positive constant then so is some subsequence of {ui(X0)};
(ii) if {ui} is uniformly bounded on B(X0), while ui(Xi) → 0 as i → ∞, then the same holds for

some subsequence of {ui(X0)}.
Proof. Induct on the decreasing dimension of the stratum containing the center of B(X0). The

maximal possible dimension is d, precisely the dimension of the free strata. If X0 lies in some free
stratum σdl then all terms of the sequence {Xi} will eventually lie in σdl. Then the conclusion of the
lemma follows from Lemma 7. We do not even have to extract a subsequence.

Assume now that all claims are valid in the case that the cen-

Fig. 5.

ter X0 lies in a stratum of dimension greater than k. We must
show that all these claims are also valid in the case that X0 lies in
a stratum σkj of dimension k. We can suppose that infinitely many
entries of {Xi} lie outside σkj ; otherwise we are under the hypotheses
Lemma 7 for some subsequence of {Xi}, and therefore we can assert
that the claim of Lemma 9 is valid. Consequently, we can pass to
the case that infinitely many entries of the sequence lie outside σkj .
Assume for simplicity that all entries of {Xi} lie outside σkj .

Denote by L the k-dimensional affine plane in Rn such that L ⊃ σkj . The orthogonal projection Yi
of Xi onto L lies in the stratum σkj∩B(X0) because all Xi lie in B(X0) which projects entirely inside σkj .
Take the ball Bri(Yi) with ri = 3d(Yi, Xi). Since Xi → X0; therefore, Yi → X0 and so ri → 0 as i → ∞.
Fig. 5 illustrates our geometric construction.

Each ball Bri(Yi) can be transformed into B(X0) by the homothety

X = X0 +
r

ri

−−→
YiY (Y ∈ Bri(Yi)), where r is the radius of B(X0).

This transformation preserves harmonicity for the new functions u�i (X) = ui(Y ).
Denote by X�

i the image of Xi under this transformation. Then we have

ui(Yi) = u�i (X0), ui(Xi) = u�i (X
�
i ). (6)

It is not difficult to observe that the images X�
i of Xi cannot lie in σkj . We can extract some subse-

quence of {X�
i } converging to someX�

0 which cannot lie in σkj because d(X
�
i , X0) = (r/ri)d(Xi, Yi) = r/3.

But then all these points and their partial limits lie in a stratum of dimension greater than k be-
cause B(X0) is an admissible ball. All assumptions of the lemma hold if we take this subsequence
of {X�

i } and the corresponding functions u�i on some admissible ball B(X�
0 ).

Without loss of generality assume that B(X�
0 ), the sequence {u�i } of functions, and the sequence {X�

i }
satisfy the hypotheses of the lemma. Thus, resting on the base of induction and the inductive assumption,
we can conclude that

(i∗) if {u�i (X�
i )} is bounded below by a positive constant then so is some subsequence of {u�i (X�

0 )};
(ii∗) if {u�i } is uniformly bounded on the ball B(X�

0 ), while u�i (X
�
i ) → 0 as i → ∞, then the same

holds for some subsequence of {u�i (X�
0 )}.

Lemma 8 applied to B(X0), the sequence {u�i }, and X�
0 as X implies that

(i∗∗) if {u�i (X�
0 )} is bounded below by some positive constant then so is some subsequence of {u�i (X0)};

(ii∗∗) if {u�i } is uniformly bounded on B(X0), while u�i (X
�
0 ) → 0 as i → ∞, then the same holds for

some subsequence of {u�i (X0)}.
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Combining (i∗) and (ii∗) with (i∗∗) and (ii∗∗), as well as taking (6) into account, we infer that
(i′) if {ui(Xi)} is bounded below by some positive constant then so is some subsequence of {ui(Yi)};
(ii′′) if {ui} is uniformly bounded on B(X0), while ui(Xi) → 0 as i → ∞, then the same holds for

some subsequence of {ui(Yi)}.
By construction, X0 and all points Yi lie in one stratum, and furthermore, Yi → X0. Applying

Lemma 7 to B(X0), the sequence {ui}, and the sequence {Yi}, while using (i′) and (i′′), we justify
claims (i) and (ii), and thus fulfill the step of induction and the proof of Lemma 9. �

Let us finish the proof of Lemma 3, thus completing the proof of our main Theorem 1.

Proof of Lemma 3. Without loss of generality we may assume that {Xi} converges to some

X� ∈ Br(X0). Then we can take some admissible ball B(X�) and, applying Lemma 2, conclude that
some subsequence of {ui(X�)} is bounded below by a positive constant provided that the same holds for
some subsequence of {ui(Xi)}. Then we can apply Lemma 8 and assert the same about some subsequence
of {ui(X0)}, which proves claim (i). Claim (ii) is justified similarly. �
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