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Abstract: Bialy and Mironov demonstrated in a recent series of works that the search for polynomial
first integrals of a geodesic flow on the 2-torus reduces to the search for solutions to a system of
quasilinear equations which is semi-Hamiltonian. We study the various properties of this system.
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1. Introduction and Statement of the Problem

Consider a two-dimensional surface M with coordinates q1 and q2 and a Riemannian metric ds2 =
gij(q) dq

idqj . The geodesic flow of this metric on M is completely integrable if the Hamiltonian system

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, H =

1

2
gij(q)pipj , i, j = 1, 2,

admits an additional first integral, i.e., a function F : T ∗M → R such that

Ḟ = {F,H} =

2∑

j=1

(
∂F

∂qj
∂H

∂pj
− ∂H

∂qj
∂F

∂pj

)
= 0

and F is functionally independent with H a.e.

The search for Riemannian metrics on two-dimensional surfaces with an integrable geodesic flow is
a classical problem of differential geometry. A survey of the known results and numerous references to
various papers on this topic can be found in [1].

On the 2-torus, which will be the only one of our interest, two types of metrics are known to exist
with an integrable geodesic flow. In the isothermal coordinates, these metrics and the additional integrals
look as follows:

(1) ds2 = f(x)(dx2 + dy2), F1 = p2;

(2) ds2 = (f(x) + g(y))(dx2 + dy2), F2 =
g(y)p21−f(x)p22

f(x)+g(y) .

In the first example, the coordinate y is cyclic and hence there is a first integral linear in momenta;
in the second example (the Liouville metric), there is a quadratic integral. The question of the existence
of other metrics on the 2-torus with an integrable geodesic flow in the class of analytic functions is still
open in the general case though it is actively studied (see, for example, [2–4] and the references therein).
We additionally mention the series [5–7] (see also [8]), where it was shown that the search for an additional
polynomial integral in this problem reduces to the search for solutions to a certain quasilinear system
with a number of remarkable properties. In particular, the following theorems were proved:

Agapov was supported by the Russian Science Foundation (Grant no. 19–11–00044–P).

Original article submitted April 14, 2023; revised May 2, 2023; accepted May 16, 2023.

1063



Theorem 1 [5]. Suppose that the geodesic flow of the Riemannian metric on the 2-torus admits
a homogeneous integral F of degree n polynomial in momenta. Then there exist global semigeodesic
coordinates (t, x) on the covering plane in which the metric has the form

ds2 = g2(t, x) dt2 + dx2

and the integral F looks as

F =
n∑

k=0

ak(t, x)

gn−k
pn−k
1 pk2,

where an−1 ≡ g and an ≡ 1. Then the relation {F,H} = 0 is equivalent to the system of quasilinear
differential equations on the functions a0, . . . , an−1 of the form

uit + vij(u)u
j
x = 0, (1.1)

where ui = (a0, . . . , an−1)
T and the matrix vij has the form

vij =

⎛

⎜⎜⎜⎝

0 0 · · · 0 0 a1
an−1 0 · · · 0 0 2a2 − na0
· · · · · · · · · · · · · · · · · ·
0 0 · · · an−1 0

(
n− 1

)
an−1 − 3an−3

0 0 · · · 0 an−1 nan − 2an−2

⎞

⎟⎟⎟⎠ . (1.2)

The functions ai and g are periodic in x and quasiperiodic in t.

Theorem 2 [5]. System (1.1) is semi-Hamiltonian; i.e.,
(1) in the hyperbolic domain (i.e., where all eigenvalues of vij are real and distinct), there is a change

of variables (Riemann invariants) (a0, . . . , an−1) → (r1, . . . , rn) that transforms system (1.1) to the diag-
onal form

(ri)t + λi(r1, . . . , rn)(ri)x = 0, i = 1, . . . , n;

(2) there is a nondegenerate change of variables

(a0, . . . , an−1) → (G1, . . . , Gn)

such that system (1.1) is written down in the form of conservation laws:

(Gi(a0, . . . , an−1))t + (Hi(a0, . . . , an−1))x = 0, i = 1, . . . , n.

The present article studies the various properties of system (1.1). In Section 2, we recall how the
generalized godograph method works. In Section 3, we rewrite system (1.1) for n = 2 in Riemann
invariants and demonstrate for completeness how to construct its general solution by the generalized
godograph method. We also study the partial solution to (1.1) for n = 4 which was constructed in [9]
and prove that the geodesic flow of the constructed metric does not admit polynomial integrals of degree 1
or 2. In Section 4, basing on [10], we prove that system (1.1) is not weakly nonlinear for any n > 2.
Finally, in Section 5 we study the symmetries of system (1.1) for n = 2.

2. Semi-Hamiltonian Systems and the Generalized Godograph Method

The diagonal system of quasilinear equations

rit = vi(r)r
i
x, i = 1, . . . , n, vi �= vj , (2.1)

is semi-Hamiltonian [11] if it satisfies the relations

∂i

(
∂jvk

vj − vk

)
= ∂j

(
∂ivk

vi − vk

)
, i �= j �= k.
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Note that if a generally nondiagonal system of quasilinear equations has Riemann invariants and also
can be written in the form of conservation laws (see Theorem 2 above) then it is automatically semi-
Hamiltonian (see [12]).

Semi-Hamiltonian systems (2.1) admit infinitely many symmetries, i.e., flows of the form riτ =
wi(r)r

i
x, i = 1, . . . , n, commuting with (2.1), where wi and vi satisfy the relations

∂kvi
vk − vi

=
∂kwi

wk − wi
, i �= k. (2.2)

Suppose that wi(r), i = 1, . . . , n, satisfy (2.2), i.e., they define some symmetry of (2.1). Write the
following system of n equations:

wi(r) = vi(r)t+ x. (2.3)

It was proved in [11] that if one solves system (2.3) in respect to ri(t, x), i = 1, . . . , n; then these functions
automatically satisfy the original semi-Hamiltonian system (2.1). This is the contents of the generalized
godograph method.

For a semi-Hamiltonian system written down in the nondiagonal form

uit =
n∑

j=1

vij(u)u
j
x, i = 1, . . . , n, (2.4)

we can search for symmetries in the form

uiτ =
n∑

j=1

wi
j(u)u

j
x, i = 1, . . . , n,

taking into account the equality of the mixed derivatives:

∂τ
(
uit
)
= ∂τ

(
n∑

j=1

vij(u)u
j
x

)
= ∂t

(
uiτ

)
= ∂t

(
n∑

j=1

wi
j(u)u

j
x

)
. (2.5)

In this case the solution to (2.4) can be found from the system

xδik + tvik = wi
k. (2.6)

3. Solutions to System (1.1) for Small Degrees n

In this section, we recall how to construct general solutions to system (1.1) in the cases of n = 1
and n = 2 and also study the particular solution in case of n = 4 which is constructed in [9].

Case n = 1. From Theorem 1, for n = 1, we have

ds2 = g2(t, x) dt2 + dx2, H =
1

2

(
p21

g2(t, x)
+ p22

)
, F =

a0(t, x)

g(t, x)
p1 + a1(t, x)p2,

where a0(t, x) ≡ g(t, x) and a1(t, x) ≡ 1. The condition {F,H} = 0 is equivalent to

gt + gx = 0; (3.1)

i.e.,
g(t, x) = f(t− x),

where f is an arbitrary function of one argument. In result, we obtain

F = p1 + p2, H =
1

2

(
p21

f2(t− x)
+ p22

)
, {F,H} = 0.
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Case n = 2. From Theorem 1, for n = 2, we have

ds2 = g2(t, x) dt2 + dx2, H =
1

2

(
p21

g2(t, x)
+ p22

)
,

F =
a0(t, x)

g2
p21 +

a1(t, x)

g
p1p2 + a2(t, x)p

2
2.

Since a1(t, x) ≡ g(t, x) and a2(t, x) ≡ 1 we see that the condition {F,H} = 0 is equivalent to the system

(a0)t + ggx = 0, gt + 2(1− a0)gx + g(a0)x = 0. (3.2)

Note that system (3.2) is semi-Hamiltonian. We can rewrite it in the form of conservation laws:

(a0)t +

(
g2

2

)

x

= 0,

(
1

2g2

)

t

+

(
1− a0
g2

)

x

= 0.

Moreover, (3.2) admits the Riemann invariants r1 and r2:

a0(t, x) = 1− r1(t, x)− r2(t, x), g2(t, x) = −4r1(t, x)r2(t, x),

in which it takes the diagonal form
(
r1

r2

)

t

+

(
2r2 0
0 2r1

)(
r1

r2

)

x

= 0; (3.3)

i.e.,
rit + vi(r)r

i
x = 0,

where v1 = 2r2 and v2 = 2r1.
To construct solutions to system (3.3) we apply the generalized godograph method. We will search

for the symmetries of system (3.3) in the form
(
r1

r2

)

τ

=

(
w1 0
0 w2

)(
r1

r2

)

x

,

where w1(r) and w2(r) are still unknown functions. Relations (2.2) take the form

∂w1

∂r2
=

w1 − w2

r2 − r1
,

∂w2

∂r1
=

w2 − w1

r1 − r2
,

which implies in particular that ∂w1/∂r
2 = ∂w2/∂r

1. Consequently, there exists a function Ψ(r1, r2)
such that Ψr1 = w1 and Ψr2 = w2; moreover, Ψ satisfies the Euler–Poisson–Darboux equation

Ψr1r2 +
Ψr1 −Ψr2

r1 − r2
= 0.

The general solution to this equation has the form (see, for instance, [13])

Ψ(r1, r2) = 2u(r1) + 2v(r2) + (r1 − r2)(v′(r2)− u′(r1)),

where u(r1) and v(r2) are two arbitrary functions of one argument. Finding w1 and w2 and inserting
them in (2.3), we obtain the general solution to system (3.3) (and to system (1.1) at the same time) for
n = 2, in the implicit form

t = −1

2
(u′′(r1) + v′′(r2)), x = u′(r1) + v′(r2)− r1u′′(r1)− r2v′′(r2). (3.4)

Case n = 4. The exact local solutions to system (1.1) were constructed in [9] in case of n = 4 by
the generalized godograph method.
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Theorem 3 [9]. For n = 4, system (1.1) has the solution

a0 =
3
(
c2 + t+ 3c23

)

5c23
, a1 = −

3
√
c23
(
−5c1 − 4(3c2 + 8t)− 18c23 + 5x

)
− 12(c2 + t)2

5c23
,

a2 =
−6

(
2c2 + 2t+ c23

)

5c23
, g =

2
√
c23(−5c1 − 4(3c2 + 8t)− 18c23 + 5x)− 12(c2 + t)2

5c23
;

where c1, c2, and c3 are arbitrary constants.

Let us check whether the constructed integral of degree 4 is irreducible. Namely, we check whether
the geodesic flow of the metric in [9] admits an additional polynomial integral of degree 1 or 2.

Theorem 4. Under the conditions of Theorem 1, the geodesic flow of the metric

ds2 = g2(t, x) dt2 + dx2, (3.5)

g(t, x) =
2
√

c23(−5c1 − 4(3c2 + 8t)− 18c23 + 5x)− 12(c2 + t)2

5c23

admits no first integrals linear or quadratic in momenta.

Proof. As shown above (the case n = 1), a linear integral exists only for metrics of the form
ds2 = g2(t, x) dt2 + dx2 satisfying (3.1). Metric (3.5) does not satisfy this equation, which implies the
absence of linear integrals.

In the case of a quadratic integral (the case n = 2), the conditions of (3.2) hold true. Insert (3.5)
in (3.2) to obtain

a0(t, x) = − 2t

5c23
+A(x),

where the function A(x) must satisfy the equation

12c2 + 11c23 + 10t+ 5c23A(x)

+
(
5c1c

2
3 + 2

(
6c22 + 9c43 + 16c23t+ 6t2 + 6c2

(
c23 + 2t

))
− 5c23x

)
A′(x) = 0.

Rewrite this equation as

t2
(
12A′(x)

)
+ t

(
10 + 8

(
3c2 + 4c23

)
A′(x)

)
+ 5c1c

2
3A

′(x) + 12c32A
′(x)

+18c43A
′(x) + 12c2c

2
3A

′(x)− 5c23xA
′(x) + 5c23A(x) + 12c2 + 11c23 = 0.

For this expression to be identically zero, it is necessary that the coefficients at all degrees of t vanish.
We see that this is impossible for any A(x). Consequently, (3.5) admits no quadratic integrals.

Theorem 4 is proved.

4. Weakly Nonlinear Systems

The diagonal system (2.1) is called weakly nonlinear if it satisfies the condition

∂vi
∂ri

= 0

for each i = 1, . . . , n (see, for instance, [14]). The following fact demonstrates the remarkable feature of
such systems: If a solution to a weakly nonlinear system is bounded on every finite time interval then
the derivatives are also bounded. Thus, the absence of a gradient catastrophe for solutions is typical for
the solutions to such systems (see [15]).
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Weakly nonlinear semi-Hamiltonian systems (2.1) written down in Riemann invariants were com-
pletely described in [10]. In particular, it was shown in [10] that the characteristic velocities vi(r) of such
system can be expressed explicitly in terms of the Riemann invariants r. In [10] were described various
methods for constructing solutions to the systems (see also [16, 17]).

System arising in applications usually have nondiagonal form (2.4). Therefore, the natural question
appears how we can understand, without finding Riemann invariants explicitly, whether a system of
the form (2.4) is weakly nonlinear or not. The following procedure for checking weak nonlinearity was
proposed in [10].

Consider the nondiagonal system

uit + vij(u)u
j
x = 0, i, j = 1, . . . , n. (4.1)

Calculate the characteristic polynomial of vij ; i.e.,

det
(
λE − vij

)
= λn + f1(u)λ

n−1 + f2(u)λ
n−2 + · · ·+ fn(u), (4.2)

and consider the covector
(∇f1)v

n−1 + (∇f2)v
n−2 + · · ·+ (∇fn), (4.3)

where

∇fk =

(
∂fk
∂u1

, . . . ,
∂fk
∂un

)

and vn means the nth power of vij .

Proposition 1 [10]. System (4.1) is weakly nonlinear if and only if covector (4.3) is identically zero.

Apply this procedure to checking whether system (1.1) is weakly nonlinear. We have

(u1, . . . , un) = (a0, . . . , an−1), ∇f =

(
∂f

∂a0
, . . . ,

∂f

∂an−1

)
.

Assertion 1. System (1.1) is weakly nonlinear for n = 2.

Proof. The assertion holds since for n = 2, system (1.1) in Riemann invariants has the form (3.3),
which obviously satisfies weak nonlinearity. We will verify however that the above criterion gives the
correct answer as well. For n = 2, matrix (1.2) has the form

vij =

(
0 a1
a1 2− 2a0

)
.

Find the characteristic polynomial

det(λE − vij) =

∣∣∣∣

(
λ 0
0 λ

)
−

(
0 a1
a1 2− 2a0

)∣∣∣∣

=

∣∣∣∣

(
λ −a1

−a1 λ+ 2a0 − 2

)∣∣∣∣ = λ2 + (2a0 − 2)λ− a21,

where f1(u) = 2a0 − 2 and f2(u) = −a21; ∇f1 = (2, 0) and ∇f2 = (0,−2a1). Construct covector (4.3)

∇f1 ·
(

0 a1
a1 2− 2a0

)
+∇f2 ·

(
0 a1
a1 2− 2a0

)0

= (2, 0) ·
(

0 a1
a1 2− 2a0

)
+ (0,−2a1) ·

(
1 0
0 1

)
= (0, 2a1) + (0,−2a1) = (0, 0).

Therefore, system (1.1) is weakly nonlinear for n = 2.
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Assertion 2. System (1.1) is not weakly nonlinear for n = 3.

Proof. For n = 3, matrix (1.2) has the form

vij =

(
0 0 a1
a2 0 2a2 − 3a0
0 a2 3− 2a1

)
.

Find the characteristic polynomial

det
(
λE − vij

)
=

∣∣∣∣∣

(
λ 0 0
0 λ 0
0 0 λ

)
−
(

0 0 a1
a2 0 2a2 − 3a0
0 a2 3− 2a1

)∣∣∣∣∣

=

∣∣∣∣∣

(
λ 0 −a1

−a2 λ 3a0 − 2a2
0 −a2 λ+ 2a1 − 3

)∣∣∣∣∣

= λ3 + (−3 + 2a1)λ
2 + (3a0a2 − 2a22)λ− a1a

2
2;

i.e.,
f1(u) = −3 + 2a1, f2(u) = 3a0a2 − 2a22, f3 = −a1a

2
2.

Consequently,

∇f1 = (0, 2, 0), ∇f2 = (3a2, 0, 3a0 − 4a2), ∇f3 =
(
0,−a22,−2a1a2

)
.

Construct covector (4.3)

∇f1 ·
(

0 0 a1
a2 0 2a2 − 3a0
0 a2 3− 2a1

)2

+∇f2 ·
(

0 0 a1
a2 0 2a2 − 3a0
0 a2 3− 2a1

)1

+∇f3 ·
(

0 0 a1
a2 0 2a2 − 3a0
0 a2 3− 2a1

)0

= (0,−a2(3a0 + a2), a0(−9 + 6a1) + 3a1a2).

Therefore, system (1.1) is not weakly nonlinear for n = 3.

Theorem 5. System (1.1) is not weakly nonlinear for n > 2.

Proof. It suffices to prove that covector (4.3) has a nonzero component. For convenience, put

Al
n = lal − (n− l + 2)al−2, l = 1, n;

here aj = 0 for j < 0.

Lemma 1. For 1 < m ≤ n− 1, the matrix
(
vij
)m

has the block form

(
vij
)m

=

(
Om×l

Dl×l

∣∣∣∣A · am−1
n−1

∣∣∣∣
· · ·
· · ·

)
.

Here l = n − m, Om×l is the zero matrix of m rows and l columns, Dl×l is the diagonal matrix with

an element amn−1 on the diagonal, and A is the column vector A =
(
A1

n, A
2
n, . . . , A

n
n

)T
.

Proof. We will proceed by induction.

Step 1. Check the claim for m = 2. We have

(
vij
)2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 A1
n

an−1 0 · · · 0 A2
n

0 an−1 · · · 0 A3
n

0 0 · · · 0 A4
n

· · · · · · · · · · · · · · ·
0 0 · · · 0 An−2

n

0 0 · · · 0 An−1
n

0 0 · · · an−1 An
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 A1
n

an−1 0 · · · 0 A2
n

0 an−1 · · · 0 A3
n

0 0 · · · 0 A4
n

· · · · · · · · · · · · · · ·
0 0 · · · 0 An−2

n

0 0 · · · 0 An−1
n

0 0 · · · an−1 An
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 A1
n · an−1 ∗

0 0 · · · 0 0 A2
n · an−1 ∗

a2n−1 0 · · · 0 0 A3
n · an−1 ∗

0 a2n−1 · · · 0 0 A4
n · an−1 ∗

· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 An−2

n · an−1 ∗
0 0 · · · a2n−1 0 An−1

n · an−1 ∗
0 0 · · · 0 a2n−1 An

n · an−1 ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
O2×(n−2)

D(n−2)×(n−2)

∣∣∣∣A · an−1

∣∣∣∣
∗
∗

)
.

Step 2. Suppose that the lemma holds for m = k, i.e.,

(
vij
)k

=

(
Ok×(n−k)

D(n−k)×(n−k)

∣∣∣∣A · ak−1
n−1

∣∣∣∣
· · ·
· · ·

)
.

Step 3. Prove that the lemma holds for m = k + 1. It is easy to see that

(
vij
)k+1

=
(
vij
)k ·

(
vij
)
=

(
Ok×(n−k)

D(n−k)×(n−k)

∣∣∣∣A · ak−1
n−1

∣∣∣∣
· · ·
· · ·

)
·
(

O1×(n−1)

D(n−1)×(n−1)

∣∣∣∣A
)
.

Lemma 1 is proved. �

Note that, by Lemma 1, the matrix
(
vij
)n−1

has the form

(
vij
)n−1

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A1
n · an−2

n−1 · · ·
0 A2

n · an−2
n−1 · · ·

0 A3
n · an−2

n−1 · · ·
· · · · · · · · ·
0 An−2

n · an−2
n−1 · · ·

0 An−1
n · an−2

n−1 · · ·
an−1
n−1 An

n · an−2
n−1 · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
O(n−1)×1

D1×1

∣∣∣∣A · an−2
n−1

∣∣∣∣
· · ·
· · ·

)
.

Let us find the characteristic polynomial of (1.2).

Lemma 2. The characteristic polynomial of (1.2) is

λn +
n−1∑

k=1

(
fk · λn−k

)
+ fn,

where fk = (k + 1)an−(k+1)a
k−1
n−1 − (n− (k − 1))an−(k−1)a

k−1
n−1 for all k = 1, . . . , n− 1, and fn = −an−1

n−1a1.

Proof. Calculate the determinant decomposing it by the last row

det(λE − vij) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 0 · · · 0 0 0 −A1
n

−an−1 λ 0 · · · 0 0 0 −A2
n

0 −an−1 λ · · · 0 0 0 −A3
n

0 0 −an−1 · · · 0 0 0 −A4
n

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · λ 0 0 −An−3

n

0 0 0 · · · −an−1 λ 0 −An−2
n

0 0 0 · · · 0 −an−1 λ −An−1
n

0 0 0 · · · 0 0 −an−1 λ−An
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (λ− (nan − 2an−2))λ
n−1 + an−1((−(n− 1)an−1 + 3an−3)λ

n−2

+an−1((−(n− 2)an−2 + 4an−4)λ
n−3 + · · ·+ an−1((−3a3 + (n− 1)a1)λ

2

+an−1((−2a2 + na0)λ− an−1a1)) · · · ))
= λn + (2an−2 − nan)λ

n−1 + an−1(3an−3 − (n− 1)an−1)λ
n−2

+a2n−1(4an−4 − (n− 2)an−2)λ
n−3 + · · ·+ an−4

n−1((n− 2)a2 − 4a4)λ
3

+an−3
n−1((n− 1)a1 − 3a3)λ

2 + an−2
n−1(na0 − 2a2)λ− an−1

n−1a1

= λn +
n−1∑

k=1

(
ak−1
n−1((k + 1)an−(k+1) − (n− (k − 1))an−(k−1))λ

n−k
)
− an−1

n−1a1

= λn +
n−1∑

k=1

(fk · λn−k) + fn,

where fk = (k+1)an−(k+1)a
k−1
n−1− (n− (k−1))an−(k−1)a

k−1
n−1 for all k = 1, . . . , (n−1), and fn = −an−1

n−1a1.
Lemma 2 is proved. �
Lemma 3. The gradients ∇fi, i = 1, . . . , n, look as

∇f1 = (0, . . . , 0︸ ︷︷ ︸
n−2

, 2, 0), ∇f2 = (0, . . . , 0︸ ︷︷ ︸
n−3

, 3an−1, 0, 3an−3 − 2(n− 1)an−1),

∇fk =
(
0, . . . , 0︸ ︷︷ ︸
n−(k+1)

, (k + 1)ak−1
n−1, 0, −(n− (k − 1))ak−1

n−1, 0, . . . , 0︸ ︷︷ ︸
k−3

,

(k2 − 1)an−(k+1)a
k−2
n−1 − (k − 1)(n− (k − 1))an−(k−1)a

k−2
n−1

)

for 2 < k < n,
∇fn =

(
0, −an−1

n−1, 0, . . . , 0︸ ︷︷ ︸
n−3

, −(n− 1) · a1 · an−2
n−1

)
.

Proof. 1. If k = 1 then an ≡ 1 which implies f1 = 2an−2 − n, and hence

∇f1 =

(
∂f1
∂a0

,
∂f1
∂a1

, . . . ,
∂f1

∂an−2
,

∂f1
∂an−1

)
= (0, . . . , 0︸ ︷︷ ︸

n−2

, 2, 0).

2. If k = 2 then n− (k − 1) = n− 1. In this case, f2 = 3an−3 · an−1 − (n− 1) · a2n−1 and

∇f2 =

(
∂f2
∂a0

, . . . ,
∂f2

∂an−4
,

∂f2
∂an−3

,
∂f2

∂an−2
,

∂f2
∂an−1

)
= (0, . . . , 0︸ ︷︷ ︸

n−3

, 3an−1, 0, 3an−3 − 2(n− 1)an−1).

3. If 2 < k < n then

fk = (k + 1)an−(k+1)a
k−1
n−1 − (n− (k − 1))an−(k−1)a

k−1
n−1,

∂fk
∂an−1

= (k − 1)(k + 1)an−(k+1)a
k−2
n−1 − (k − 1)(n− (k − 1))an−(k−1)a

k−2
n−1,

∂fk
∂an−(k−1)

= −(n− (k − 1))ak−1
n−1,

∂fk
∂an−(k+1)

= (k + 1)ak−1
n−1,

∂fk
∂ai

= 0 for i �= n− 1 and i �= n− (k ± 1).
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Then

∇fk =

(
∂fk
∂a0

, . . . ,
∂fk

∂an−(k+1)
,

∂fk
∂an−k

,
∂fk

∂an−(k−1)
, . . . ,

∂fk
∂an−2

,
∂fk

∂an−1

)

=
(
0, . . . , 0︸ ︷︷ ︸
n−(k+1)

, (k + 1)ak−1
n−1, 0,−(n− (k − 1))ak−1

n−1, 0, . . . , 0︸ ︷︷ ︸
k−3

,

(k2 − 1)an−(k+1)a
k−2
n−1 − (k − 1)(n− (k − 1))an−(k−1)a

k−2
n−1

)
.

4. For k = n, we have fn = −an−1
n−1a1 and

∇fn =

(
∂fn
∂a0

,
∂fn
∂a1

,
∂fn
∂a2

, . . . ,
∂fn

∂an−2
,

∂fn
∂an−1

)
=

(
0, −an−1

n−1, 0, . . . , 0︸ ︷︷ ︸
n−3

,−(n− 1) · a1 · an−2
n−1

)
.

Lemma 3 is proved. �
For proving Theorem 5, it suffices to show that covector (4.3) has at least one nonzero component.

Let us show that its second component is nonzero. By Lemmas 1 and 3, for 2 < k < n− 1 we have

∇fk · (vij)n−k =
(
0, . . . , 0︸ ︷︷ ︸
n−(k+1)

, (k + 1)ak−1
n−1, 0,−(n− (k − 1))ak−1

n−1, 0, . . . , 0︸ ︷︷ ︸
k−3

,

(k2 − 1)an−(k+1)a
k−2
n−1 − (k − 1)

(
n− (k − 1)

)
an−(k−1)a

k−2
n−1

)
·
(
O(n−k)×k

Dk×k

∣∣∣∣A · an−k−1
n−1

∣∣∣∣
· · ·
· · ·

)

=
(
0,
(
−(n− (k − 1))ak−1

n−1

)
· an−k

n−1, . . .
)
.

Consequently, covector (4.3) looks as

(∇f1)v
n−1 + (∇f2)v

n−2 +
n−1∑

k=3

∇fk ·
(
vij
)n−k

+ (∇fn) = (0, . . . , 0︸ ︷︷ ︸
n−2

, 2, 0) ·
(
O(n−1)×1

D1×1

∣∣∣∣A · an−2
n−1

∣∣∣∣
· · ·
· · ·

)

+(0, . . . , 0︸ ︷︷ ︸
n−3

, 3an−1, 0, 3an−3 − 2(n− 1)an−1

)
·
(
O(n−2)×2

D2×2

∣∣∣∣A · an−3
n−1

∣∣∣∣
· · ·
· · ·

)

+

(
0,

n−1∑

k=3

((
− (n− (k − 1))ak−1

n−1

)
· an−k

n−1

)
, . . .

)
+
(
0, −an−1

n−1, 0, . . . , 0︸ ︷︷ ︸
n−3

,−(n− 1) · a1 · an−2
n−1

)

=
(
0, 2an−2

n−1 · ((n− 1)an−1 − 3an−3), . . .
)
+
(
0, an−2

n−1 · (3an−3 − 2(n− 1)an−1), . . .
)

+

(
0,

n−1∑

k=3

((
− (n− (k − 1)) · ak−1

n−1

)
· an−k

n−1

)
, . . .

)
+
(
0,−an−1

n−1, 0, . . . , 0︸ ︷︷ ︸
n−3

,−(n− 1) · a1 · an−2
n−1

)

=

(
0, −an−2

n−1 ·
(
3an−3 +

(n− 1)(n− 2)

2
· an−1

)
, . . .

)
.

Thus, for every n > 2, the second component of covector (4.3) is equal to

−an−2
n−1 ·

(
3an−3 +

(n− 1)(n− 2)

2
· an−1

)
,

i.e., the component is nonzero in general.
Theorem 5 is proved. �
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5. Description of Commuting Flows

Let us study the structure of commuting flows (symmetries) of system (1.1). In case of n = 2, for
the system written in Riemann invariants (3.3), symmetries were described in Section 3. For n > 2, the
search for Riemann invariants and an explicit diagonalization of the system in general become a difficult
problem. Therefore, in this case, for constructing solutions by the generalized godograph method, it is
reasonable to try to describe the symmetries of the initial nondiagonal system (1.1). In this section, we
demonstrate how it can be done for n = 2.

For n = 2, system (1.1) has the form

uit + vij(u)u
j
x = 0, vij =

(
0 a1
a1 2− 2a0

)
.

We will search for symmetries of this system in the form

uiτ + bij(u)u
j
x = 0, bij =

(
b11 b12
b21 b22

)
, (5.1)

where bij(u) = bij(a0, a1). By the definition of symmetries,

∂

∂τ

(
vij(u)u

j
x

)
=

∂

∂t

(
bij(u)u

j
x

)

for all i = 1, 2. Straightforward calculations give the relations

b21 = b12, b22 = b11 −
2(−1 + a0)b12

a1
,

(b11)a1 − (b12)a0 = 0, b12 − a1(b12)a1 + a1(b11)a0 − 2(−1 + a0)(b12)a0 = 0.

Therefore, there exists a function Ψ(a0, a1) such that

b11 = Ψa0 , b12 = Ψa1 ; (5.2)

here Ψ(a0, a1) satisfies the second-order linear partial differential equation

a1Ψa0a0 − 2(a0 − 1)Ψa0a1 − a1Ψa1a1 +Ψa1 = 0. (5.3)

This equation has the hyperbolic type everywhere but one point:

D = (a0 − 1)2 + a21 ≥ 0.

Reduce (5.3) to a canonical form. The characteristic equation looks as

a1(da1)
2 + 2(a0 − 1) da0da1 − a1(da0)

2 = 0,

i.e.,
da1
da0

=
1− a0 ±

√
(1− a0)2 + a21
a1

. (5.4)

After the change of variables
1− a0 = r cosφ, a1 = r sinφ, (5.5)

equation (5.4) takes the form
r sinφ dφ = (cosφ± 1) dr.

The variables are separated, and after integration we obtain

r =
C

cosφ± 1
. (5.6)
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Taking into account (5.5) and (5.6), find the general solution to (5.4) in the form

a1 = ±
√
C2 + 2C(a0 − 1).

Squaring both sides of this equation and solving the resulting quadratic equation in C, we obtain

C1 = 1− a0 −
√

(1− a0)2 + a21, C2 = 1− a0 +
√
(1− a0)2 + a21. (5.7)

Note that the so-found C1 and C2 are in fact Riemann invariants of (1.1) (see Section 3, the case n = 2).
Now, performing the corresponding change of variables in (5.3), write it down in the canonical form. We
obtain the Euler–Poisson–Darboux equation

ΨC1C2 +
ΨC1 −ΨC2

C1 − C2
= 0. (5.8)

The general solution to (5.8) has the form (see [13]):

Ψ(C1, C2) = 2u(C1) + 2v(C2) + (C1 − C2)(v
′(C2)− u′(C1)),

where u and v are arbitrary functions of one argument. Owing to (5.2), we obtain the final form of the
symmetries of (5.1):

b11 = −2(u′(C1) + v′(C2)− C1u
′′(C1)− C2v

′′(C2)),

b12 = b21 = −2a1(u
′′(C1) + v′′(C2)),

b22 = −2(u′(C1) + v′(C2) + C2u
′′(C1) + C1v

′′(C2)).

The general solution to (1.1) is defined by (2.6) and, in view of the above-found symmetries, takes the
form

x = −2(u′(C1) + v′(C2)− C1u
′′(C1)− C2v

′′(C2)), t = −2(u′′(C1) + v′′(C2)),

which agrees completely with the general solution (3.4). Here C1 and C2 are of the form (5.7).
Thus, for system (1.1) for n = 2, we have the general description of the symmetries and the general

solution constructed by the generalized godograph method.

6. Conclusion

In the present article, we consider the problem of integrable geodesic flows on the 2-torus. In accor-
dance with the fundamental observation of [5], the search for an additional polynomial integral of this
flow reduces to the search for solutions to the quasilinear system of differential equations (1.1) which
possesses a number of remarkable properties. In particular, it was proved in [5] that this system is
semi-Hamiltonian.

The aim of this article is to study various properties of system (1.1). In particular, we obtained the
following results:

1. We proved that the solution to (1.1) for n = 4 in [9] is nontrivial; i.e., the geodesic flow of the
metric in [9] admits no polynomial integrals of degree 1 and 2.

2. We proved that system (1.1) is weakly nonlinear only for n = 2.
3. We described the symmetries of system (1.1) for n = 2.
It would be very interesting to construct the solution to system (1.1) for n = 3 or n = 5. Maybe this

can be done by describing the symmetries of (1.1) in general form and using the generalized godograph
method (by analogy with Section 5 of this article in case n = 2).

Acknowledgment. The authors thank an anonymous referee for useful remarks.
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