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ON THE THEORY OF SPACES OF
GENERALIZED BESSEL POTENTIALS
A. L. Dzhabrailov and E. L. Shishkina UDC 517.98

Abstract: We define the weighted Dirichlet integral and show that this integral can be represented
by a multidimensional generalized shift. The corresponding norm does not allow us to define the
function spaces of arbitrary fractional order of smoothness, and so we introduce the new norm that is
related to a generalized Bessel potential. Potential theory originates from the theory of electrostatic
and gravitational potentials and the study of the Laplace, wave, Helmholtz, and Poisson equations.
The celebrated Riesz potentials are the realizations of the real negative powers of the Laplace and wave
operators. In the meantime, much attention in potential theory is paid to the Bessel potential generating
the spaces of fractional smoothness. We progress in generalization by considering the Laplace—Bessel
operator constructed from the singular Bessel differential operator. The theory of singular differential
equations with the Bessel operator as well as the theory of the corresponding weighted function spaces
are closely connected and belong to the areas of mathematics whose theoretical and applied significance
can hardly be overestimated.

DOTI: 10.1134/S0037446623040183
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1. Introduction

Well known is the fundamental role of the classical Bessel potentials in the general theory of function
spaces of fractional smoothness as well as applications to the theory of partial equations (see [1,2]). The
classical Bessel potentials are constructed on using the Fourier transform.

The goal of this article is to develop the theory of the space of generalized Bessel potentials BY
constructed with the Hankel transform. This space was first introduced by Lyakhov in [3] who based
on the Stein—Lizorkin approach. In [3], the B-hypersingular integrals and B-Riesz potentials, introduced
earlier by Lyakhov in [4, 5], were applied the constructing the norm on BY. In the present article, we
use another approach to BY which is based on the works [6-8] by Aronszajn and Smith. The approach
consists in introducing some norm on BY with the help of weighted Dirichlet integrals.

The spaces of generalized Bessel potentials of arbitrary order « are necessary for defining the classes
of solutions to the boundary value problem

Au=fin D, Bju=0ondD,

29 . in partic-

where A is an elliptic operator containing the Bessel differential operators B, = 88722 + e

ular, A can be the Laplace-Bessel operator Ay =" | B,.

2. Preliminaries
Let R™ be the n-dimensional Euclidean space, while
R} = {a:: (X1y...,xn) ER™, 1 >0,..., 2, >0}7
?1: {x:(ajl,...,xn) eER" 1>0,..., 7, 20}.
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Let v = (71,...,7) be the multi-index consisting of fixed positive reals 7;, with ¢« = 1,...,n, and
M =m+-

Let €2 be a finite or infinite open set in R symmetric with respect to each of the hyperplanes x; = 0,
with ¢ = 1,...,n, Q4 = QNRY, and Oy = QN ?Z We will work with the function class C™(£24)
consisting of m times differentiable functions on ;. Denote by C™(2) the subset of the functions
in C™ (1) whose all derivatives with respect to x; extend continuously to z; = 0 for all i = 1,...,n.
Let C™(€) consist of the functions in C™ () such that

92k+1
8$2k+{ =0 =V
i
for all nonnegative integers k < 52 (see [9, p. 21]). In what follows, we use the abbreviation C

for C7(R';) and put
C () = Ch@y),
where the intersection is taken over all finite m and C2°(Ry) = CS°.

Let C'2( ) be the space of compactly supported functions f € C2( Q). Put

o

C(R) = 2:(0y) and CE(Ry)=C.

Let L)(R%) = Ly}, with 1 < p < oo, consists of the measurable functions on R’ even in each of the
variables x;, with ¢ = 1,...,n, such that

/ |f(z)[PxVdz < oo.
RY

Here and in the sequel 27 = [, 2. For every p > 1, the norm of f € L} is defined as
=14 y p

||f|\L;([R1) = | fllpry = ( /If(a:)|p1:7da:>
RY

It is know that L} is a Banach space (see [9]).
The multidimensional Hankel transform of f € L](R") is defined as

3=

FﬁWQZEM@MQ=ﬂQ=/ﬂ@h@@ﬁM,
®]

where .
Jy(@:€) = H]wT—l (zi&)-
i=1

_ 2'D(v+1)

TV

Denote by j, the normalized Bessel function of the first kind j, () Jy(x), where J,, is a Bessel
function of the first kind (see [10]).
Let f € L7(R4) be a function of bounded variation in a neighborhood of a continuity point z of f.

Then for v > 0 the inversion formula for the transformation looks as

P O] @) = ) = QMH [i@oF©¢de
jl;[1 r (%T) R
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The Hankel transform reduces the Bessel operator to the multiplication of the square of the corre-
sponding argument with the minus sign (see [9]):

Fy, [(By)a, £1(6) = 1617 F, [£1(6), (1)

where (B,,)s, = 6962 + 2 is the Bessel operator, i = 1,...,n.

Parseval’s 1dent1ty for the one-dimensional Hankel transform (see [9, p. 20]) and the fact that f €
LY(R") yield F,f € LY(R") and

:c@m

2 n e v +1 2
/ ’va(f)! £rde = 2N H F2< j . ) / \f(x)| 2Vde. 2)
R™ j:1 R™
The multidimensional generalized shift is defined as
(OTLf) () = "TLf(x) = (MTE) ... T f) (), (3)
where each one-dimensional generalized shift 7Ty i =1,... n, acts by the formula

(%—%—1
fF ’Y’L

In what follows, put

(%T%f)( T) = /f Llyeees Ti— 1,\/$ +7— _2$zyzcoswz,xz+1w-w$n) sin” ! p; dp;.

Capp DO
=TT 2
Hr@>
The generalized convolution generated by the multidimensional generalized shift 7T% has the form
(F+9)(a) = (£ ), = [ FW)(TLg) @) dy. ()
]

The multidimensional Poisson operator P} acts an integrable function f by the formula
Pl f(x / /f T1COS ¥, . .., Ty COS Oy Hsm’“ o; dog. (5)

3. The Weighted Dirichlet Integral

Let i = (i1,...,im) be a multi-index consisting of the integers from 1 to n, with [i| = i1 + -+ +iy;
while & = [T} &k, £ = (§1,-..,&), and

B; = (B%m )Iim e (B’Yil )Iilv

2 i . . .
where (B%.k )ka = ai? + Zl: 83% is a Bessel operator for all k = 1,...,m. Given an integer o > 0, define

the weighted Dirichlet integral of order « as

doqy(u) = / |Bsu|z7 dz.

i|l=a
[4] R

In the image of (1), we obtain

=/m“@mmﬁ&a (6)

Formula (6) can be used for defining the weighted Dirichlet integral dg for an arbitrary « > 0.
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Lemma 1. Given 0 < a < 1/2 and u € C’OO(IR”), we have

u) = / 1 By [l (6) 2 e
J

_ 1 s .
= Gt | [ 10 = ol (O e e, @
R? R7
where C( ) 21—|'y|—4aﬂ_
n,vy,o) = _ '
i=1
Proor. If 2
| "Thu(z) — u(z)]
I= / / ‘y’n+|7\+4a zydzdy,
R R
then

™

r 73 2 72— 22nyn 2) — u(z)|?
I:C('y)////‘u(\/xl x1y1 cos B + y5, ,\/wn Tny COSBl—i-yn) u(x)‘

|y|n+|7\+4a

R R} O 0

n
X H sin ! B; dB; 7y dady.
i=1
Passing to the coordinates
y1=yi1cosPB1, Yo =yisinfBi, Y3 =yzcosfy,
Ya=y2sinBo, ..., Yan—1 = Yn €08 Bn, Yon = Ypsin fBp,

we infer that

— )2+ 2 — Y
[ [ TR o TR ) - Ihzw@m

|§‘“+|V|+40¢
RY Ren
2
’u(x/z% + YL 2 T yfn) —u(x)
=C(v) nety]+4a

B mon (@1 =207 405+ + (20— 2201)° + 05,) °
+
X H Yo aﬂdzl .. dzop_1Yop dz,

where {y2;—1 — x; = 29;-1, ¢ = 1,...,n} and [R%r” ={y € R® : % >0, i=1,...,n}. Putting

Z2i—1 = y; cos B; and ”y}i = y;sin 5;, with ¢ = 1,...,n, we obtain
2
|u(y) — u(z)]
nt|y|+4o
R R7 _2$1y1 cos 31 +y1 +"'+x% — 225,y cOS 1 +y121) 2

X Hsm% Bi dB; xVy dxdy = //}u —u( x)‘2 (7T5W> zy" dzdy.

i=1 |Rn |R'n
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Therefore,

‘WT%U(:I:) - u(:l:)‘2 N
y
/ |y [t l+a aly’drdy

R? R}

z//\U(y)—U(fE)}Q(VTgm) o7y dzdy. ®

R? R

If 0 < @ < 1/2; then, using Parseval’s identity for (2) and formula 3.170 in [11, p. 155], we get

‘VT )‘ xVy dxdy
‘y|n+|“f|+4a

R RY

yldy 2
- Wmm/ITM w(@)["2"dw

on—v| Td
) H r2 (1) /\y!ilvim/‘ o [ TYu(@)] (§) — F [ul(§)]° €7de
j=

on—|v| 7d
- /|y’3+»yy+4a/‘jv(%f)—1‘2}F7[U](5)‘257d§
R

N ﬁ 1—\2 'Y]+1
on—|v| / 13+ (y
- B, [ul(©)] € de / ML b
n+|7|+4a
H F2 ’YJ+1 |
J_
2
- / o (©)|F,[ul(©) P e,
where . ,
bl e -1
A (§) = y'dy
ki +1 n+|y|+da ‘
e e
Since
2n—N gy (y; €) — 1) z
. Y Y _ _~
SO =7y ) s Y dy‘{y‘ m}
H Fz(% ) " Yy
N on— o] ‘ny ; ‘ N
= l¢f* / n'j'm 2z = Cln, 7, )€,
H F2 ’)’]+1 ’Z‘
j=
where ‘
on—1l v (2 ’Iﬁ\
”
Clny, ) = e / b e o)

]_
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we see that &7 () is a homogeneous function of order 4« which is invariant under orthogonal transforma-
tions and

2
// "YT|y|n+h+4§ gl ﬂﬂ?ﬂdﬂ:dyzC(n,%a)/|£|4a|F7[u](g)}2£vd§‘ (10)
En

R} RY

Let us calculate C(n,~,a). Using the representation for j, of the form j,(z,§) = Pg [e‘“x@] (see [11,
p. 137, formula 3.138]), where Pg is as in (5), we infer

HCE R N | Gk |
AR L g, = 2Vdz
‘Z‘n+\7|+4a ‘Z|n+|'y|+4oc ’

R™ R?

Introduce the new coordinates in the last integral on the right-hand side as follows:
T1 = 2z1C08Q1, T9 = z18inay, T3 = 29COS a9,
Ty = 298N, ..., Top_1 = Zp COS Oy, Top = Zp SIN Q.

In these coordinates,
3+ (2 v|§| 1‘ x, i
/ ’z‘n+h\+4a /’ < IE' _1‘ Hac dx
R2n

where & = (T1,...,32,) € R™, Ty > 0y i = Ln, [7] = 2], § = (£1,0,6.0,....6,0) € R, [¢'| = [¢],
and R¥" = {z € R* : wy; > 0, i = 1,...,n}. As the integrand in C(n,~, ), we have some function

of the type of a planar wave. Choosing integration over r; = p, noticing that <%, %> = p, and putting

' = (Zo,...,T2,), we obtain
3 (s ) — 1 e~ — 12 "~%
/ P 2dz = C(v) / X EEEGIEE H Ldpdz’
bEZn |p + ’ ‘ ‘ =1
+
n
vi—1
{ } C ‘efzp _ 1’2 11:[175271—1 dt
=z =pt / T pldatl p / — nt|y|+da
P o (1+]¢2) ™
R =%, t2;1>0
i=1,..,n
Since -
le=P — 1|2 sin? p
/ e = — 934 e dp = —4 cos(2ma)l(—4a),
0
we have
[T t5 dt % nt[y]—2
(1 + ‘t‘2>7z+|72\+4a - (1 + 2)n+\'y2\+4a p 21 1
[R2n.71it2i71>0 0 P §T(2n—1) -
i=1,...,n
ra+ HregEt) o
X S (2 1)|M71

QF(”H’Y\ +2a )
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for t = pf. Here S’f(Zn — 1) is the part of the unit sphere centered at the origin in R?"~! for Zy; > 0,
with i = 1,...,n. Applying formula (107) in [11, p. 49], we set

n nei _
e i) WA
031 dS = = = = =|SF(2n—1 .
~+/ 1;[ 2i—1 Qn—lr‘(”+|g|*1) Qn—ll"(”+|;|*1) ‘ 1 (2n )‘M—l
ST (2n—1)
Consequently,

n
e tat
/‘J7 ’\él 1‘ / |€_”D—1|2 / il;ll et
Z|n+|'y|+4a | |4a+1 (1 n |t‘2)n+|'y2\+4a .

R27 1 ¢5,_1>0
i=1,...n

Finally, using Legendre’s duplication formula and Euler’s reflection formula, simplify C(n,~,«) to see

that 1]t
21=l—da
C(n,7,a) = u

sin(2am) I'(2ac + 1) I’(%M + 204) ﬁ (%TH) |

=1
Taking into account (8), (10), and the form of the constant C(n,~,«), we complete the proof of the
lemma. O
The constant C(n,~, ) possesses the properties

1 1
lim —— =0, hm — =0.
a—0+ C(TL v, & ) Oé—>*—0 C(” v, & )

Therefore,
daqy(u) = Z IB;u|?27dz  if a is an integer;

i|l=«
[ R?

in the remaining cases,

2 " 1
da’v(u):C’(n fy,oz—l Z //’[Bu )l (WTyW‘H%f)xvyﬂ/’

H l|Rn|Rn

where | = [a]. The weighted integral d, is continuous in o and is independent of the orthogonal
coordinates in R}.

4. Finding a Suitable Norm for oo (RT)

From the practical and theoretical standpoints, it is important to ﬁnd out in what space and with what

o
norm C g5(R?) is dense.
In [3], there was introduced some function space that is connected with multiplication by |z|~% in the
images of the Hankel transform. This was called the space of Riesz B-potentials. Recall that in the theory
of B-potentials a Riesz B-potential has the form (see [4])

(U2 f)(x) = u(z) = Coy / F@) T2l iy, o> 0.
Ry
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An analog of Sobolev’s Theorem holds for US' (see [4, Theorem 1]). Namely, for 0 < a < n+M ,p > 1, the

operator UY with density f € L} is bounded from L) into Lj, where % = ;1) — - H E For o > n;h' the
potential U can be defined in the sense of weighted distributions. As a consequence of this fact, in 3,

(o]
Theorem 5], C 25 (R"}) was shown to be dense in the space of Riesz B-potentials only for 0 < a < ntbl,

Therefore, it is inconvenient to use the norm that bases on a Riesz B-potential in differential problems
since these problems need potentials of arbitrarily large order.
We will prove that since norm convergence does not imply the pointwise convergence of a sequence

[¢]
in the spaces with the norm y/d ~; therefore, C gy (R") is not a function space for o > %M.

Theorem 1. If o > "+|V| then the space COO([R”) normalized by +/dn is not a function space
with respect to any exceptwna] class.

PROOF. Letu € C'%(R%) and let u be identically 1 in a neighborhood of zero in R . Put u, = u(z/p).
We have

Qo (1) = / €1 By ul (¢ ) [2 €1de = {€/p = y)
Ry

— 2 -
:mem/Mmmmmﬂw@:wm“%ww.
Rn
+

Consequently, for a > ntﬂ'y , we see that

lim do(u,) =0, but lim wu,(x) =1.

p—00 p—00

This shows that the space under consideration cannot be a function space (since otherwise the whole
of R must be an exceptional set).

Now, consider the case of o = %M. Choosing € € (0,a) and v € Cgy(R"}), for the bilinear norm

corresponding to the quadratic form d, ,(u), we see that

Aoy (Up, V)

=/MWFwa L[] (€) dg = /MW“%W%KMw“%F[MMMf
o

g(/#“ﬂﬂ%ﬂ @%)(/@M%w |@&)
RY
= \/da+s,'y (Up) \/da—e,w (v)

Here we used the Cauchy—Bunyakovsky inequality. Since

ph_frolo datey(up) =0,

the equality lim, o day(up, v) = 0 is fulfilled for every v € C’ oo(R™). We consider the Hilbert space that
is a complete metric space with respect to the distance function induced by the inner product dq - (u,v).

This space is the abstract completion of C ov(R™) under the norm /dq . Thus, u, converges weakly to 0
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as p — oo in this Hilbert space because dq ,(u,) is bounded. Then there exists a sequence py — oo such
that the arithmetic means of {u,, } converges strongly to 0 (see [12]). But the equality lim,_,oc u,(z) =1
o

implies that the sequence of the arithmetic means pointwise converges everywhere to 1. Thus, C 25 (R"})
normalized by /d, cannot be a function space. [
[¢]

One of the simplest norms on C 29 (R" ) equivalent to y/dq.~ looks as
ev\" N+ q Y

[l = [ (@ +16P)" [P e )

R}

Below we prove that (11) is representable by the convolution kernels generating a generalized Bessel
potential.

5. The Class of Generalized Bessel Potentials

In this section, we obtain a special representation of (11) which is most convenient for classes of gen-
eralized Bessel potentials. The generalization of the spaces of Bessel potentials has a rich history. In [13],
for functions in the space of generalized Bessel potentials which is constructed from rearrangement invari-
ant spaces, some equivalent description was obtained for the cone of decreasing rearrangements. In [14],
some equivalent characterizations were established for the cones of decreasing rearrangements for the
spaces of generalized Riesz and Bessel potentials.

A generalized Bessel potential is defined by the relation (see [15,16])

u = (Go)(x) = / () ("TYp()) y7dy, (12)
R
where .
Gu(w) =M (1 + 1) " F (@) (13)

is a generalization of the Bessel kernel. The two forms of the inverse operator of (12) were constructed
in [16].

In [3], the space BS(L)) = {u : u = GSp, ¢ € Lj} with the norm HUHBQ;(L;Z) = |l¢l| Ly was introduced
by using B-hypersingular integrals.

It was shown in [15] that

2 +1
)= —————y Koo (Jo)) (14)
o5 (5) T ()

where K nijy-o is a modified Bessel function of the second kind (see [10]).
2

Since G4 is integrable with the weight 27 (see [15, 16]), its Hankel transform exists for every ¢. The
kernel G7, is an analytic function of « for a > 0. Thus, from (13), by analytic continuation, we conclude
that the Hankel transform of the generalized Bessel kernel for a > 0 is equal to

F,[GI](€) = (1 +[¢)

Moreover, the kernel G7, satisfies the properties

2, (15)

/Gg(:n)xvdm =1 and (G)*G})y=Gl,5 a>0, >0
R%

(see [15,16]), where (G * Gg)y is the generalized convolution; see (4).
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To obtain (11) for 0 < a < 1/2, we first introduce the function
'n—\'y|—a+1

n+|y|—a
Wary(|2]) = - 2] K opa (2])
r(g) 1T ’
=1
gn—a+2 7 ntly|—a |2
= /t2_1e_t_4t dt. (16)
NG ) F(%“)

va:l:

Then the generalized Bessel potential in (

of (4):

is representable as the generalized convolution operator

oY _ ( wan(|])
(G () = <W|v|_a ) > 0.

Below we will need w_4q~(|z]) for 0 < a < 1/2. The asymptotic properties of the modified Bessel
function K, guarantee that the kernel function w_4,(|2|) decreases exponentially at infinity and turns
into a constant at the origin:

n-lyltda

, , ntlylta
i oo (ol) = e i (ol Ko (o)
I'(—2a) le(%T)
1=
7L7\'y\+4a+1
= . \/? lim o] ek <,
I (—2a) [[ T(22) V 2 leloee
i=1 2
nolyltde g
LA
‘illm w— 4a,'y(’x|) n 1 |a];1|210 |=T’ Kn+|v2\+4a(|x‘)
I'(—2a) le(%T)
1=
nebptie . ntlyl+4a F(%) _ ntly|+a
= — im [z|7 27 —— 2z 2
I (~2a) [] I(2f) 70 2l= =
i=1
4 +[v[+4
_ on+ al—\(n ’YQ Oé)
— .
i+1
r(-20) 1 1(25)
i—
Consequently,
gn+da 1‘*(”"‘\72\4‘406)
|ml|1inoow sany(|2]) =0, ‘gglow—ﬁlaﬁ(’ﬂ): n (17)
r(-20) 1 1(5)
i=
Theorem 2. The norm |lul|o~ admits the representation
n
2 —n+1 2 7i+1
Jull, =27 T (F5)
i=1
[ Tu) + u(y)|’ Y
|x‘”+\7\+40¢ (w_4a’7"/(|x’) _w_40¢77(0)) x dmy dy
R’!L [Rn
2
"Thu(x) — u(y)
_//l ||t l+a | (w-tany(2]) + w-105(0)) 27dzy7dy |. (18)
R R
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PRroOOF. Let v,41 > 0 be arbitrary and

2
\JW 1 (z0)u(z) — u(y)| .
v v n
/// e v dry'dy zy"" dzo,
2

0 |Rn |Rn VTy ‘:L'|2 =+ z ]

where
2T'(v + 1)

:L‘V

Ju(@) = Ju (@),

and J,, is the Bessel function of the first kind. Acting as in proving (8) and applying (2) to the integral
over y, we infer

2
‘]vm-l 1(20) T%u(:ﬁ)—u(y)‘ _—
n+
/// T xVdxy dy zy" " dzo

0 Rn R [|z]? + 22] ?
n xr'ax .
= [ [ [ Do (o) o) — uty)] 0y
0 R? [|z|? + 23] : R?

b ] / / 2Vdx /
20
n+\'y|+1+2a
1
s [|z|? +

H 1"2 ’YJ Rn

+

a1 ()3 ) = 1| By (O €

Putting (x z0) = § (€,1), and v = (777n+1)7 we have

[e. 9]

on—1|vl
J= /z%*ldz
102252 )
7j=1
zVdx . . 2 2
x / [ Q]nﬂﬁ, — / mrl(zo)h(x;s)—l\ B (ul() "6 de
[z + 2
= \F @d& / i Wcr
n+ +1+4a
Hr? T e 7] '7'

Jj=

- / B() |F,u)(€)* 1de.

Performing the change of variables Z = z/|£|, we obtain

2l iy (5:6) — 12

2y
— z7dz
[T () I

[R
J=1

A(E) =

-1

2 ey / ) "d
= + 2z dz
+1 n+ly'[+14+4a

]1;[1F2(% Ry i
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and
3= D(nrsa) [ (14 16)" B @) e

R%
It follows from (9) that
~ 2 n+1
: +1
3y (z; 5~|> -1 ‘Hl FQ(%T)
’y’ _ J= !
/ 2|t T Zhdz = ont1—]7] Cln+1,7,0)
R+
and
(25 :
D(n,,a) = i Gt 17, q),
where |4
91-1|-a
Cln+1,7,a)= T

, n+1 ’
sin(20m) T'(20 + 1) T ("2 4 20) T T(24)
=1

Hence, for every v,+1 > 0, we infer

, [ms1-1 (20)u(a) = u(w)|
ol = 5o / |/ gy sz,

0 [Rn IRn Ty ‘ﬂf|2 + 22] 2

Passing to v,4+1 = 0 and putting

T/ 21—

B(n,,0) = Do)l o=

we write

2 }e’zou u(y)‘2 , ,
HuHa,fy n ,7 /// 120 T dl’y ddeO

o R R TY [z + 23] 2
i )
2 2
- / / / e +|u(gf>}2 2V dw y dydzo
E(n % Y12 nﬂ%
,Oo Rn R [T |x] + 23]
YT u(y)|? cos?
- E(n % / / / 9 E+Iv\+1+2a aldry’ dydzo
—oo R R |(IZ’ + Z :

///‘WT nt] ‘I+1Sf2~1a wldx y dydzo.
E(n,7,q) Vf

—OO [Rn Rn ’x|2 +Z

Using the Wolfram Mathematica and (17), we get

e}

cos? Z dz
n+\’y|+1+2a
[lzf? + 28]

V2T (—20) ﬁ I(%H)

_ =1
a |zt F("+Iv\;r4a+1) (w-107(0) + w-say(|2])),

n
sin(2am) I'(2a + 1) F(W) HIF(%TH)
1=
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o0

/ sin? Fdz
n+|y|+14+2a
oo [P+
n
V2t miar(—2a) [] T(%H)
i=1

= e p (e (#-tar(0) ~w-san (j2))

Since
n
Vr2re (o) [T 1)
i=1
E(n,v,a)  |g[pthitde p(nthitdatl)
: dot1y T ; o n )
sin(2am) I'(2a + l)F(%) HIF(LY ;rl) Jr2l-ndap(_9q) HIF(’Y;l)
B /T 2~ -4 ||t +H4a F(%)
- _ et ﬁr2<%+ 1)
‘$’n+|’y|+4a " 2 ’
1=
we have

n
Jul2, = 2li=n+ HFQ(% ; 1)
=1

PT?,’;u(x) + u(y)}Q
* ( // ||t (W—4aﬂ/<‘9€’) - w—4a,'y(0)) xVdx ydy
R7 R?

" Thu(z) — u(y)|?
B / ||t +e (w—4am(’x\) + w—4a,7(0)) 2Vdxydy |.

R7 R
Thus, we have validated (18). O

6. Conclusion

In conclusion, we observe that the two approaches are possible to defining the class of generalized
Bessel potentials BS(Ly) of order o in R, The first is that u € BS(Ly) if u is a generalized convolu-
tion (G * @)y for some ¢ € LJ(R"). This approach was presented in [3], which used B-hypersingular

integrals. The second approach consists in endowing BY (L)) with the norm

lall, = [ @+ 1€P)° sl €vae,

R

which can be written down on using the convolution kernel that generates the generalized Bessel potential.
This expression shows that the quadratic interpolation between |lu|lo,, and ||u||g~ gives ||u||5, where ¢
is the interpolation order «(l —t) 4+ ft. The norm ||u||q,, is most convenient for studying the class of

generalized Bessel potentials in R’}
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