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OPTIMAL CONTROL FOR SYSTEMS MODELED
BY THE DIFFUSION-WAVE EQUATION

S. S. Postnov UDC 517.97

Abstract: The article deals with an optimal control problem for the model system described by the
one-dimensional inhomogeneous diffusion-wave equation that is a generalization of the wave equation
to the case when the time derivative is replaced with the fractional Caputo derivative. In the general
case, we consider both boundary and distributed controls which are Lebesgue p-summable functions,
with p > 1 and p = ∞. We state and study the two types of optimal control problems: The problem
of finding a minimal norm control for a given control time and the performance problem of finding
a control that brings the system to a given state in the minimal time for a given constraint on the
control norm. The study bases on using an exact solution to the diffusion-wave equation, which allows
us to reduce the optimal control problem to an infinite-dimensional l-moment problem. We also examine
the similar finite-dimensional l-moment problem that uses an approximate solution to the diffusion-wave
equation and analyze the well-posedness and solvability of this problem. Also, we exhibit some example
of calculating the boundary control by using the finite-dimensional l-moment problem.
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Introduction

The fractional order models of systems with distributed parameters as well as the questions of opti-
mal control for these systems are topical. These models describe the processes of heat and mass transfer,
diffusion in inhomogeneous media, diffusion-wave phenomena in complex multicomponent systems, oscil-
lations in inhomogeneous media, and so on. Previously, optimal control problems for these systems were
studied using variational methods with constraints on some quadratic functional presenting the sum of
the system state and control (see, for instance, [1–3]).

In the present article, we study an optimal control problem with a constraint on the norm of a control
for an inhomogeneous linear diffusion-wave equation. We consider the distributed and boundary control
that are Lebesgue p-summable functions on an interval with p > 1. The study of the optimal control
problem is carried out by the method of moments.

1. Statement of the Problem

We consider the system whose state is described by the equation

r(x) C0D
α
t Q(x, t) =

∂

∂x

[
w(x)

∂Q(x, t)

∂x

]
− q(x)Q(x, t) + f(x, t) + u(x, t), (1)

where Q(x, t) is the state of the system, C
0D

α
t is the left-sided operator of fractional time differentiation,

where α ∈ (1, 2), t ≥ 0, x ∈ [0, L], and (x, t) ∈ Ω = [0, L] × [0,∞). The fractional differentiation is
understood in the Caputo sense [4, Section 2.4], i.e.,

C
0D

α
t Q(x, t) = RL

0 Dα
t

[
Q(x, t)−

[α]∑
k=0

∂kQ(x, 0+)

∂tk
tk

k!

]
, (2)
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where RL
0 Dα

t is the left-sided operator of the fractional Riemann–Liouville differentiation and

RL
0 Dα

t Q(x, t) =
1

Γ(1− {α})
∂[α]+1

∂τ [α]+1

t∫
0

Q(x, τ) dτ

(t− τ){α}
,

with [α] and {α} the respective integer and fractional parts of α.
It is assumed that the function Q(x, t) is time differentiable for t ≥ 0 and twice space differentiable

on [0, L]. The functions r(x) > 0, w(x) > 0, and q(x) are continuous on [0, L]. A perturbation f(x, t) is
summable in both variables in Ω. We also assume that a distributed control u(x, t) belongs to the Lp1,p2(Ω)
space, with p1,2 > 1.

Equation (1) is called a diffusion-wave equation.
The initial conditions for (1) are given in the form

∂kQ(x, 0+)

∂tk
= ϕk(x), x ∈ [0, L], k = 0, 1. (3)

The boundary conditions for (1) are written as

[
bi

∂Q(x, t)

∂x
+ aiQ(x, t)

]
x=xi

= hi(t) + ui(t), t ≥ 0, i = 1, 2, (4)

where ai and bi are coefficients, with b1 ≤ 0 and b2 ≥ 0, while hi(t) are some known functions, and
x1 = 0, x2 = L. The boundary controls u1,2(t) are assumed to be in Lp[0, T ], with p > 1, and can be
written as the vector U(t) = (u1(t), u2(t)).

The goal of an optimal control is to achieve a given state Q∗(x) at a given time T > 0 by a system

Q(x, T ) = Q∗(x), T > 0, x ∈ [0, L]. (5)

The optimal control problem is stated in two forms as in [5]. To find controls u(x, t) and/or U(t) such
that the system described by (1) with the initial conditions (3) and boundary conditions (4) achieves (5)
at t = T and the conditions hold:

• the norm of the controls u(x, t) and/or U(t) is minimal for a given T (Problem A);
• the transition time at a given state (5) is minimal under given constraints on the norm of the

controls ‖u(x, t)‖ ≤ l and ‖U(t)‖ ≤ l (with l > 0 a given real) (Problem B).

2. Representation of an Optimal Control Problem
in the Form of the Generalized l-Moment Problem

The exact solution is known to (1) with initial conditions (3) and boundary conditions (4) (see [6,
formula (18)]). Write down the solution of (5) at t = T as follows:

Q(x, T ) = Q∗(x) = R(x, T ) +
∞∑
n=1

Xn(x)

T∫
0

un(t)
Eα,α[−λn(T − t)α]

(T − t)1−α
dt+

∞∑
n=1

Xn(x)

×
T∫
0

dt
Eα,α[−λn(T − t)α]

(T − t)1−α

[(
v′1w

′
n − (q(x)v1(x))n

)
u1(t) +

(
v′2w

′
n − (q(x)v2(x))n

)
u2(t)

]

−
∞∑
n=1

Xn(x)

T∫
0

Eα,α[−λn(T−t)α] [(r(x)v1(x))n · C0Dα
t u

1(t) + (r(x)v2(x))n · C0Dα
t u

2(t)] dt

(T − t)1−α
, (6)
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where

v1(x) =
a2(x− L)− b2

a2b1 − a1b2 − a1a2L
; v2(x) =

b1 − a1x

a2b1 − a1b2 − a1a2L
;

v′1 =
dv1(x)

dx
=

a2
a2b1 − a1b2 − a1a2L

; v′2 =
dv2(x)

dx
= − a1

a2b1 − a1b2 − a1a2L
;

R(x, T ) = v1(x)u
1(T ) + v2(x)u

2(T ) + V (x, T )

+
∞∑
n=1

Eα(−λnT
α)

[
ϕ0
n − Vn(0+)− v1nu

1(0+)− v2nu
2(0+)

]
Xn(x)

+T
∞∑
n=1

Eα,2(−λnT
α)Xn(x)

[
ϕ1
n −

(
∂V (x, 0+)

∂t

)
n

− v1n

(
∂u1(0+)

∂t

)
n

− v2n

(
∂u2(0+)

∂t

)
n

]
+

∞∑
n=1

Xn(x)

T∫
0

dt
Eα,α[−λn(T − t)α]

(T − t)1−α

×
[
fn(t) + w′

n

(
∂V (x, t)

∂x

)
n

− (q(x)V (x, t))n −
(
r(x) C0D

α
t V (x, t)

)
n

]
;

where ϕ0,1
n , un(t), fn(t), Vn(t), and v(1,2)n are coefficients of the expansion of ϕ0,1(x), u(x, t), f(x, t),

V (x, t), and v1,2(x) in the system of eigenfunctions {Xn(x)}; similarly, ( . . . )n is the coefficient of the
expansion of an expression in the brackets in the system of eigenfunctions {Xn(x)}; V (x, t) = v1(x)h1(t)+
v2(x)h2(t); Eα,β(t) is the two-parameter Mittag-Leffler function; and Eα(t) = Eα,1(t). The eigenvalues λn

and eigenfunctions Xn(x) are solutions to the Sturm–Liouville problem (see [6]):

[
∂

∂x

(
w(x)

∂

∂x

)
− q(x)

]
X(x) + λr(x)X(x) = 0,

[
bi

∂X(x)

∂x
+ aiX(x)

]
x=xi

= 0, i = 1, 2.

State the l-moment problem [5]. A system of functions gn(t) ∈ Lp′ [0, T ] and a collection of reals cn
with at least one nonzero member are given as well as some l > 0. We have to find W (t) ∈ Lp(0, T ]
(1/p+ 1/p′ = 1) such that

T∫
0

gn(τ)W (τ)dτ = cn, n = 1, 2, . . . , (7)

‖W (t)‖ ≤ l. (8)

Choose W (t) and gn(t) in the form

W (t) = un(t) +
(
v′1w

′
n − (q(x)v1(x))n + λn(r(x)v1(x))n

)
u1(t)

+
(
v′2w

′
n − (q(x)v2(x))n + λn(r(x)v2(x))n

)
u2(t), (9)

gn(t, T ) =
Eα,α[−λn(T − t)α]

(T − t)1−α
. (10)
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The reals cn are chosen as

cn(T )=Q∗
n−Vn(T )−

[
ϕ0
n−Vn(0+)

]
Eα(−λnT

α)−
[
ϕ1
n−

(
∂V (x, 0+)

∂t

)
n

]
TEα,2(−λnT

α)

−
T∫
0

gn(t, T )

[
fn(t) + w′

n

(
∂V (x, t)

∂x

)
n

− (q(x)V (x, t))n −
(
r(x) C0D

α
t V (x, t)

)
n

]
dt

+
[
(v1(x)r(x))n − v1n

]
u1(T ) +

[
(v2(x)r(x))n − v2n

]
u2(T )

−
([
(v1(x)r(x))n − v1n

]
u1(0+) +

[
(v2(x)r(x))n − v2n

]
u2(0+)

)
Eα(−λnT

α)

−
([

(v1(x)r(x))n − v1n
] ∂u1(0+)

∂t
+
[
(v2(x)r(x))n − v2n

] ∂u2(0+)

∂t

)
TEα,2(−λnT

α). (11)

Theorem 1. Assume that W (t) in (9) is pointwise discontinuous and has at most countably many
discontinuity points and continuity intervals. Moreover, suppose that α ∈ (1, 2), the expression on the
right-hand side of (11) is defined and bounded and does not vanish at least for one value of n. Then (6)
is equivalent to (7), whenever (9)–(11) are taken into account.

Proof. Expand Q∗(x) and R(x, T ) in the system of eigenfunctions {Xn(x)} and insert the result
in (6). Since the system {Xn(x)} is complete by definition; therefore, (6) is equivalent to the corresponding
collection of expressions for coefficients of the expansion for every n.

Consider the integral in (6) containing the fractional derivatives of boundary controls (which is
a weighted sum of moments of the fractional derivatives of boundary controls relative gn(t)). The formula
of fractional integration by parts [7] and necessary calculations yield

T∫
0

gn(t, T )
[
(r(x)v1(x))n · C0Dα

t u
1(t) + (r(x)v2(x))n · C0Dα

t u
2(t)

]
dt

=

T∫
0

[
(r(x)v1(x))nu

1(t) + (r(x)v2(x))nu
2(t)

]
· RL
t Dα

T gn(t, T ) dt

+

[[
(r(x)v1(x))n

∂u1(t)

∂t
+ (r(x)v2(x))n

∂u2(t)

∂t

]
· RL
t I

1−{α}
T gn(t, T )

]∣∣∣∣∣
T

0

+

[[
(r(x)v1(x))nu

1(t) + (r(x)v2(x))nu
2(t)

]
· RL
t D

{α}
T gn(t, T )

]∣∣∣∣∣
T

0

, (12)

where RL
t Dσ

T and RL
t IσT are the respective right-sided operators of the fractional differentiation and inte-

gration of order σ in the Riemann–Liouville sense.
The definitions of the right-sided Riemann–Liouville operators [4] and (10) imply that

RL
t Dα

T gn(t, T ) =
1

Γ(1− {α})
∂2

∂t2

T∫
t

(τ − t)−{α}(T − τ)α−1Eα,α

[
− λn(T − τ)α

]
dτ, (13)

RL
t D

{α}
T gn(t, T ) = − 1

Γ(1− {α})
∂

∂t

T∫
t

(τ − t)−{α}(T − τ)α−1Eα,α

[
− λn(T − τ)α

]
dτ, (14)

RL
t I

1−{α}
T gn(t, T ) =

1

Γ(1− {α})

T∫
t

(τ − t)−{α}(T − τ)α−1Eα,α

[
− λn(T − τ)α

]
dτ. (15)
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The integral on the right-hand side of (13)–(15) can be calculated on using the representation of the
Mittag-Leffler function in the form of a power series [4]:

Eα,β(t) =
∞∑
k=0

tk

Γ(αk + β)
. (16)

Series (16) converges uniformly on the real axis and thereby we can change the order of summation and
integration while calculating the integrals on the right-hand side of the expressions (13)–(15). Finally,

Kα(T, t) =

T∫
t

(τ − t)−{α}(T − τ)α−1Eα,α

[
− λn(T − τ)α

]
dτ

=
∞∑
k=0

(−λn)
k

Γ[α(k + 1)]

T∫
t

(τ − t)−{α}(T − τ)α(k+1)−1 dτ

=
∞∑
k=0

(−λn)
k

Γ[α(k + 1)]
(T − t)αk+[α]B(1− {α}, α(k + 1))

= Γ(1− {α})(T − t)[α]Eα,1+[α]

[
− λn(T − t)α

]
, (17)

where B(α, β) is the Euler beta function B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

In our case α ∈ (1, 2), i.e., [α] = 1. Using (15), we infer from (17) that

[[
(r(x)v1(x))n

∂u1(t)

∂t
+ (r(x)v2(x))n

∂u2(t)

∂t

]
· RL
t I

1−{α}
T gn(t, T )

] ∣∣∣∣∣
T

0

= −TEα,2

[
− λnT

α
] [

(r(x)v1(x))n
∂u1(0+)

∂t
+ (r(x)v2(x))n

∂u2(0+)

∂t

]
. (18)

Calculate the first and second derivatives of (17) on using (16). The first derivative is written as

− ∂

∂t
Kα(T, t) = − ∂

∂t
Γ(1− {α})(T − t)[α]Eα,1+[α]

[
− λn(T − t)α

]

= Γ(1− {α})
∞∑
k=0

(−λn)
k

Γ[αk + 1 + [α]]
(αk + [α])(T − t)αk+[α]−1

= Γ(1− {α})(T − t)[α]−1
∞∑
k=0

(−λn)
k

Γ[αk + [α]]
(T − t)αk

= Γ(1− {α})(T − t)[α]−1Eα,[α]

[
− λn(T − t)α

]
.

Using (14) and the equality [α] = 1, we infer that

RL
t D

{α}
T gn(t, T ) = Eα

[
− λn(T − t)α

]
.

Hence,

[[
(r(x)v1(x))nu

1(t) + (r(x)v2(x))nu
2(t)

]
· RL
t D

{α}
T gn(t, T )

]∣∣∣T
0

= (r(x)v1(x))nu
1(T ) + (r(x)v2(x))nu

2(T )

−
[
(r(x)v1(x))nu

1(0+) + (r(x)v2(x))nu
2(0+)

]
Eα

[
− λnT

α
]
. (19)
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Similar arguments justify the following formula for the second derivative of (17):

∂2

∂t2
Kα(T, t) =

∂2

∂t2
Γ(1− {α})(T − t)[α]Eα,1+[α]

[
− λn(T − t)α

]

= Γ(1− {α})
∞∑
k=0

(−λn)
k

Γ[αk + 1 + [α]]
(αk + [α])(αk + [α]− 1)(T − t)αk+[α]−2

= Γ(1− {α})(T − t)[α]−2
∞∑
k=0

(−λn)
k(αk + [α]− 1)

Γ[αk + [α]]
(T − t)αk

= Γ(1− {α})(T − t)[α]−2

[
[α]− 1

Γ([α])
+

∞∑
k=1

(−λn)
k(αk + [α]− 1)

Γ[αk + [α]]
(T − t)αk

]
.

After the change k = m+ 1 of the index, we derive that

∂2

∂t2
Kα(T, t) = Γ(1− {α})(T − t)[α]−2

[
[α]− 1

Γ([α])
+

∞∑
m=0

[−λn(T − t)α]m+1

Γ[α(m+ 1) + [α]− 1]

]

= Γ(1− {α})(T − t)[α]−2

[
[α]− 1

Γ([α])
− λn(T − t)αEα,[α]+α−1

[
− λn(T − t)α

]]
.

Inserting this expression into (13) and accounting for (10) and the equality [α] = 1, we conclude that

RL
t Dα

T gn(t, T ) = −λngn(t, T ). (20)

Inserting (18)–(20) into the right-hand side of (12), we find that

T∫
0

gn(t, T )
[
(r(x)v1(x))n · C0Dα

t u
1(t) + (r(x)v2(x))n · C0Dα

t u
2(t)

]
dt

= −λn

T∫
0

[
(r(x)v1(x))nu

1(t) + (r(x)v2(x))nu
2(t)

]
gn(t, T ) dt− TEα,2

[
− λn(T − t)α

]

×
[
(r(x)v1(x))n

∂u1(0+)

∂t
+ (r(x)v2(x))n

∂u2(0+)

∂t

]

+(r(x)v1(x))nu
1(T ) + (r(x)v2(x))nu

2(T )

−
[
(r(x)v1(x))nu

1(0+) + (r(x)v2(x))nu
2(0+)

]
Eα

[
− λnT

α
]
.

Inserting the above expression in (6) and accounting for (9), (11) and (10), we justify the desired expres-
sion (7). �

Corollary 1. The optimal control problem considered in Section 1 for given l and T is equivalent
to the one-dimensional countable l-moment problem (7)–(8) for (9), moments (11), and functions (10).

Remark 1. Expressions (11) contain the initial and final values of boundary controls and their
derivatives. In the general case these values can be defined from some additional conditions or assump-
tions. For r(x) = 1, the coefficients of these values vanish and we need not involve any additional
information.
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3. The Finite-Dimensional l-Moment Problem

As was shown in the previous section, the optimal control problem under consideration can be reduced
to a countable l-moment problem. However, for this problem there are no lucid criteria that allow us to
establish its solvability and find some algorithms for constructing a solution. For the finite-dimensional
l-moment problem, such criteria algorithms exist [5]; and, thereby, it is reasonable to consider them. The
finite-dimensional l-moment problem (7)–(8) can be obtained by analogy with the countable problem.
Instead of the exact solution (6), we use an approximate one obtained by truncating the series in the
formula. In this case a solution (6) in which the series is replaced with a partial sum contains not a finite
rather than countable set of N equalities for the expansion coefficients. This set can be rewritten as
a finite-dimensional moment problem which in this case can be called an {l, N}-moment problem.

We say that a finite-dimensional {l, N}-moment problem is well-posed if the norms of the func-
tions gn(t) in Lp′ [0, T ] are defined.

As is known, a finite-dimensional l-moment problem is solvable if gn(t) ∈ Lp′ [0, T ] are linearly
independent or have a subsystem of linearly independent functions among them [5].

Theorem 2. Problem (7)–(8) with (9)–(11) is well-posed and solvable for every fixed N and every
given l > 0.

Proof. Estimate in Lp′ [0, T ] the norms of gn(t) given by (10) as follows:
∥∥g̃n(t, T )∥∥ ≤

∥∥Eα,α

[
− λn (T − τ)α

]∥∥ ·
∥∥(T − t)α−1

∥∥, n = 1, . . . , N.

The first factor on the right-hand side is bounded [4, p. 42]. The latter can be calculated explicitly
for p′ ≥ 1 and α ∈ (1, 2), which yields

∥∥(T − t)α−1
∥∥ =

(T − t)[p
′(α−1)+1]/p′

[p′(α− 1) + 1]1/p′

∣∣∣∣∣
T

0

, t ∈ [0, T ].

This norm is bounded for the real T > 0, p′ ≥ 1, and α ∈ (1, 2). Hence, the {l, N}-moment problem is
well-posed.

The functions, defined by (10), are linearly independent, which can be verified directly. Therefore,
our problem of moments is solvable. �

As is known, the finite-dimensional l-moment problem (which is well-posed and solvable) is equivalent
the conditional optimization problem [5]: Find

min
ξ1,...,ξN

⎛
⎝

T∫
0

∣∣∣∣∣
N∑
i=1

ξigi(t)

∣∣∣∣∣
p′

dt

⎞
⎠

1/p′

=

⎛
⎝

T∫
0

∣∣∣∣∣
N∑
i=1

ξ∗i gi(t)

∣∣∣∣∣
p′

dt

⎞
⎠

1/p′

(21)

satisfying
N∑
i=1

ξici =
N∑
i=1

ξ∗i ci = 1, (22)

where ξi are arbitrary reals, and the reals ξ∗i (i = 1, . . . , N) correspond to a solution of the problem.
Employing a solution to problem (21)–(22), we can construct a solution to a finite-dimensional l-

moment problem and thereby to the optimal control problem [5]. This solution for W (t) ∈ Lp[0, T ],

p > 1 is unique. In the case of Problem A, the function W̃ (t), presenting a unique solution to the
finite-dimensional l-moment problem, is defined as

W̃ (t) = Λp′

N

∣∣∣∣∣
N∑
i=1

ξ∗i gi(t)

∣∣∣∣∣
p′−1

sign

[
N∑
i=1

ξ∗i gi(t)

]
, t ∈ [0, T ]. (23)
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Similarly, in the case of Problem B,

W̃ (t) = lp
′

∣∣∣∣∣
N∑
i=1

ξ∗i gi(t)

∣∣∣∣∣
p′−1

sign

[
N∑
i=1

ξ∗i gi(t)

]
, t ∈ [0, T ∗], (24)

where T ∗ is a minimal nonnegative real satisfying the condition

ΛN (T ) ≤ l, (25)

where

1

ΛN (T )
=

⎛
⎝

T∫
0

∣∣∣∣∣
N∑
i=1

ξ∗i gi(t)

∣∣∣∣∣
p′

dt

⎞
⎠

1/p′

.

Example 1. Consider an approximate solution to Problem B of an optimal boundary control for
the superdiffusion equation to which (1) is reduced provided that

f(x, t) = u(x, t) = 0, r(x) = w(x) = 1, q(x) = 0,

b1 = b2 = 0, a1 = a2 = 1, h1(t) = h2(t) = 0,

u1(t) = u2(t) = u(t), ϕ0(x) = Q0 = const, ϕ1(x) = Q1 = const .

We define the finite state (5) to which the system is transferred in the minimal time in the form

Q∗(x) = QT = const, QT > Q0.

The eigenfunctions Xn(x) and the eigenvalues λn in our case are written as follows:

Xn(x) = sin
πnx

L
, λn =

(πn
L

)2
.

We consider essentially bounded boundary controls u(t) ∈ L∞[0, T ].
In general, the problem of this section is similar to the problem of optimal boundary control for the

subdiffusion equation with α ∈ (0, 1] which was studied in [8].
Moments (11) in this case are defined as

cn =
2

πn

(
1− (−1)n

)[
QT −Q0Eα(−λnT

α)−Q1TEα,2(−λnT
α)
]
.

Function (9) is proportional to the boundary control

W (t) =
2λn

πn

(
1− (−1)n

)
u(t).

The finite-dimensional {l, N}-moment problem in this case is written as follows:

T∫
0

gn(t, T )u(t) dt =
QT −Q0Eα(−λnT

α)−Q1TEα,2(−λnT
α)

λn
= c̃n. (26)

Take N = 3 and find a solution to (26). Using (22), we reduce the conditional minimization prob-
lem (21) to a similar problem of the form

1

Λ3(T )
= min

ξ1, ξ2
ρξ(T ),
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and

ρξ(T ) =

T∫
0

∣∣∣∣ξ1g1(t) + ξ2g2(t) +
1− ξ1c1 − ξ2c2

c3
g3(t)

∣∣∣∣ dt.

This problem can be solved numerically, for instance, by using the algorithm of [5, Chapter 4, § 1].
The so-found estimates T ∗ and ξ∗1,2 allow us to calculate an optimal control and the state of the system

at final moment of time by (24) and

QN (x, T ∗) =
N∑

n=1

Qn(T
∗)Xn(x),

where

Qn(T
∗)=

2

πn

(
1− (−1)n

)[
λn

T ∗∫
0

gn(t, T
∗)u(t)dt+Q0Eα(−λn(T

∗)α)+Q1T ∗Eα,2(−λn(T
∗)α)

]
.

u t( )

100

0

-100

100

50

0
0 0 2 0 0 6 0 8 x

0 0 1 0 2 0 3 0 4 t

Q x,T*( )

Fig. 1. An example of the optimal control calculated numerically (the upper picture)

and the final state of the system (lower picture).

In Fig. 1 the optimal control and final state for the values of parameters l = 100, α = 1, 8, Q0 = 10,
QT = 30, and Q1 = 0 (the accuracy of numerical calculation of control time is equal to 5 × 10−2) are
displayed. In Fig. 2 the dependence of control time T ∗ on the exponent α for Q1 = 0 (solid line) and
Q1 = 5 (dashed line) are displayed; the corresponding lines are very close.
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Fig. 2. Dependence of the control time on the exponent α.

Conclusion

In the present article, the optimal control problem is studied for a system whose behavior is described
by a diffusion-wave equation containing the fractional Caputo time derivative. The problem reduces to
a countable l-moment problem on the base of an exact solution to the diffusion-wave equation and to
a finite-dimensional l-moment problem on the base of an approximate solution. In the latter case, we
prove the well-posedness and solvability of the problem.
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