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TRINOMIAL EQUATIONS OF DEGREE 6 OVER Qp

M. Alp, M. Ismail, and M. Saburov UDC 511.53

Abstract: Finding roots of a single variable polynomial is among the oldest problems of mathematics.
This problem is solved in the field of reals but was paid less attention in the field of p-adic numbers,
the counterpart of the field of reals. Recently, this problem has been raised up again in considering
the p-adic lattice models of statistical mechanics. We introduce a cube root function over the p-adic
field Qp, which enables us to explicitly prescribe the roots of the trinomial equation of degree 6 over Qp.
Namely, we calculate the p-adic absolute value and the first digit of roots of the trinomial equation of
degree 6 over Qp.
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1. Introduction

The fields of p-adic numbers were introduced by the German mathematician Kurt Hensel. The p-
adic numbers were primarily motivated by attempt to bring the ideas and techniques of power series into
number theory (see [1]). The canonical representation, analogous to the expansion of analytic functions
into power series, is one of the manifestations of the analogy between algebraic numbers and algebraic
functions. Over the last century, p-adic numbers and p-adic analysis began to play a central role in
modern number theory. This is due to the fact that they afford a natural and powerful language for
talking about congruences between integers, and allow one to use the methods of analysis for studying
some problems in modern number theory such as concern elliptic curves, modular forms, and Galois
representations. Recently, the applications of p-adic functional and harmonic analysis have appeared in
theoretical physics and quantum mechanics (see [2–5]). Moreover, the general theory of p-adic probability
was applicable to the problem of the probability interpretation of quantum theories with non-Archimedean
valued wave functions (see [6–11]).

Unlike the real case (see [12–15]), the set of p-adic Gibbs measures of the lattice models on the Cayley
tree has a complex structure in a sense that it is strongly tied up with a Diophantine problem (i.e. the
finding of all solutions of a system of polynomial equations or the giving of a bound for the number of
solutions) over Qp. In general, the same Diophantine problem may have different solutions in the field
of p-adic numbers different from the field of reals because of the different topological structures. On the
other hand, the rise of the order of the Cayley tree complicates to the studying of the corresponding
Diophantine problem over Qp. In this aspect, the question arises as to whether a root of a polynomial
equation belongs to the domains Z∗

p, Zp \ Z∗
p, Zp, Qp \ Z∗

p, Qp \
(
Zp \ Z∗

p

)
, Qp \ Zp, and Qp or not.

Recently, this problem was fully studied for monomial equations (see [16]), quadratic and cubic equations
(see [17–20]).

Finding roots of polynomials is among the oldest problems of mathematics. A Diophantine problem
consists in finding all solutions of a polynomial equation or a system of polynomial equations in integers,
rationals, or sometimes more general number rings and to give a bound for those solutions. The scenario
for the field of p-adic numbers is completely different from that for the field of reals. On the one hand,
the quadratic equation x2+1 = 0 is not solvable in the real field but solvable in the p-adic field for p ≡ 1
(mod 4). On the other hand, the cubic equation x3+ p = 0 is not solvable in the p-adic field but solvable
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in the real field. Therefore, it is of interest in its own right to provide a solvability criterion for lower
degree polynomial equations over the p-adic field. In the field of reals, this problem found its own solution.
The solvability criteria and local descriptions of roots of lower degree polynomial equations over Qp with
applications were presented in the literature.

The solvability criterion of the quadratic equation over the p-adic field was provided in all classical
books on p-adic analysis (see [1, 4]). However, no information is available on the p-adic absolute value or
the first digit of the roots of the quadratic equation over Qp. The square root function over the p-adic
field was introduced in [21]. This enabled us to explicitly prescribe the roots of the quadratic equation.
Namely, the p-adic absolute value and the first digit of roots of the quadratic equation over Qp were
calculated in [21].

In this paper, we introduce the cube root function over Qp (see Definition 5.5) which enables us to
calculate the p-adic absolute value and the first digit of roots of the trinomial equation of degree 6 over Qp

(see Theorems 6.1 and 6.2).

2. Preliminaries

For a fixed prime p, the field Qp of p-adic numbers is a completion of the rational numbers Q under
the non-Archimedean norm | · |p : Q → R given by

|x|p =
{

p−k, x �= 0,

0, x = 0,

where x = pk m
n with k,m ∈ Z, n ∈ N, and (m, p) = (n, p) = 1. The number k is a p-order of x and we

write ordp(x) = k.
Each p-adic number x ∈ Qp can be uniquely represented in canonical form

x = pordp(x)
(
x0 + x1 · p+ x2 · p2 + · · ·

)
,

where x0 ∈ {1, 2, . . . , p− 1} and xi ∈ {0, 1, 2, . . . , p− 1} for i ∈ N.
We respectively denote the set of all p-adic integers and p-adic units of Qp by

Zp = {x ∈ Qp : |x|p ≤ 1} and Z∗
p = {x ∈ Qp : |x|p = 1}.

Each p-adic unit x ∈ Z∗
p has the unique canonical form

x = x0 + x1 · p+ x2 · p2 + · · · ,

where x0 ∈ {1, 2, . . . , p− 1} and xi ∈ {0, 1, 2, . . . , p− 1} for i ∈ N.

Each nonzero p-adic number x ∈ Qp has the unique representation x = x∗

|x|p , where x∗ ∈ Q∗
p.

3. Square Root Functions

In this section, we recall a definition and some properties of a square root function over Fp and Qp

which was introduced and studied in [21]. We will always assume that p > 3, unless otherwise specified.

3.1. The square root function over Fp. We recall the definition of square root function on
a finite field Fp := {[0]p, [1]p, . . . , [p− 1]p} for a prime p > 3. Here [a]p := {b ∈ Z : b ≡ a (mod p)} for all
0 ≤ a ≤ p − 1. We always use the canonical representation of Fp. Let [a]p ∈ Fp be a nonzero element.
We know that the quadratic equation

[x]2p = [a]p (3.1)

is solvable in Fp if and only if a
p−1
2 ≡ 1 (mod p) or, equivalently, a is a quadratic residue. In this

case, (3.1) has the two roots [x1]p and [x2]p in Fp where 1 ≤ x1, x2 ≤ p− 1.

444



Definition 3.1 [21]. Let [a]p ∈ Fp be a nonzero quadratic residue, and let [x1]p and [x2]p be the
roots of the quadratic equation [x]2p = [a]p such that 1 ≤ x1, x2 ≤ p− 1. An element [min{x1, x2}]p of Fp

is a square root of [a]p denoted by
√
[a]p .

Remark 3.2. We know that if [a]p ∈ Fp with 1 ≤ a ≤ p−1 is a quadratic residue then the quadratic
equation [x]2p = [a]p has the two roots [x1]p and [x2]p in which 1 ≤ x1, x2 ≤ p − 1. Moreover, it is

easy to check that [max{x1, x2}]p = [p − min{x1, x2}]p. By definition
√
[a]p := [min{x1, x2}]p. We use

the notation −
√
[a]p := [max{x1, x2}]p. Hence,

√
[a]p and −

√
[a]p are the two roots of the quadratic

equation [x]2p = [a]p. In what follows, for the convenience, we use the notation
√
a instead of

√
[a]p

whenever we deal with Fp.

3.2. The square root function over Qp. We recall the square root function over Qp for primes
p > 3. To this end, we need some auxiliary notations.

Let a ∈ Z∗
p be such that

a = a0 + a1p+ a2p
2 + · · ·+ anp

n + · · · ,

where a0 ∈ {1, 2, . . . , p− 1} and ai ∈ {0, 1, . . . , p− 1} for i ∈ N. We use the notations

a[n,m] = anp
n + an+1p

n+1 + · · ·+ ampm,

a∗[n,m] = an + an+1p+ an+2p
2 + · · ·+ ampm−n,

a∗[n,+∞) = an + an+1p+ an+2p
2 + · · ·+ an+kp

k + · · · .

It is clear that a[n,m] and a∗[n,m] are integers and a∗[n,+∞) is a p-adic integer.

Theorem 3.3 [1, 21 ]. Let a belong to Z∗
p with a = a0 + a1p+ a2p

2 + · · ·+ anp
n + · · · and let a0 be

a quadratic residue modulo p. Then the quadratic equation

x2 = a (3.2)

has the two roots x† and x‡ over Z∗
p which are defined as follows:

x† = x†0 + x†1p+ x†2p
2 + · · · and x‡ = x‡0 + x‡1p+ x‡2p

2 + · · · ,

where

x†0 ≡
√
a0 (mod p) and x‡0 ≡ −√

a0 (mod p), (3.3)

x†k ≡ (2x†0)
p−2

⎛

⎜
⎝
a[0,k−1] −

(
x†[0,k−1]

)2

pk
+ ak

⎞

⎟
⎠ (mod p) for all k ∈ N, (3.4)

x‡k ≡ (2x‡0)
p−2

⎛

⎜
⎝
a[0,k−1] −

(
x‡[0,k−1]

)2

pk
+ ak

⎞

⎟
⎠ (mod p) for all k ∈ N. (3.5)

Remark 3.4. We know that if x† and x‡ are the two roots of (3.2) then x‡ = −x†. It is worth
mentioning that using the representations of (3.3)–(3.5) of x† and x‡, it is also possible to show that

x‡ = −x†. To this end, it suffices to note that x‡0 ≡ −x†0 (mod p) and x‡k ≡ −(x†k + 1) (mod p) for

any k ≥ 1. In fact, it is true for k = 0, i.e., x‡0 ≡ −√
a0 (mod p) and x†0 ≡

√
a0 (mod p). We assume that
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it is true for all k = 1, 2, . . . , n − 1. We would like to show it for k = n; i.e., x‡n ≡ −(x†n + 1) (mod p).

Indeed, it follows from the assumption and 0 ≤ x†k, x‡k ≤ p− 1 that x‡[0,n−1] = pn − x†[0,n−1] and

(
x‡[0,n−1]

)2
≡
(
x†[0,n−1]

)2
− 2pnx†[0,n−1] ≡

(
x†[0,n−1]

)2
− 2x†0p

n (mod pn+1),

a[0,n−1] −
(
x‡[0,n−1]

)2

pn
+ ak ≡

a[0,n−1] −
(
x†[0,n−1]

)2

pn
+ ak + 2x†0 (mod p).

Since p > 2; therefore,

(2x‡0)
p−2 ≡ −(2x†0)

p−2 (mod p) and x‡n ≡ −(x†n + 1) (mod p).

Hence, we are now free to say that the property x‡ = −x† of the roots x† and x‡ of (3.2) is well captured
in the representations of (3.3)–(3.5) of x† and x‡.

Let x ∈ Qp and x = x∗

|x|p where x∗ ∈ Z∗
p such that x∗ = x0 + x1p+ x2p

2 + · · · . We introduce the set

Qsroot
p = {x ∈ Qp : logp |x|p − even, x

p−1
2

0 ≡ 1 (mod p)}.

Definition 3.5 [21]. The square root function f : Qsroot
p → Qp, y = f(x) =

√
x is defined as y = y∗

|y|p
such that |y|p =

√
|x|p and

y0 =
√
x0, yk ≡ (2y0)

p−2

(
x[0,k−1] − y2[0,k−1]

pk
+ xk

)

(mod p) for all k ∈ N.

Remark 3.6. It follows from Theorem 3.3 that one root of (3.2) is
√
a in which (

√
a)

∗ ≡ √
a0

(mod p). Moreover, it follows from Remark 3.4 that another root of (3.2) is −√
a in which (−√

a)
∗ ≡

−√
a0 (mod p). In this sense, Definition 3.5 elegantly captures the property that the quadratic equation

x2 = a has the two roots ±√
a, which was the case for the reals.

4. Quadratic Equations

In this section, we are aiming to overview the main results of the papers [10, 21] which will be used
in the upcoming sections.

Let us consider the quadratic equation

x2 + ax = b. (4.1)

We assume that ab �= 0. Otherwise, it is easy to study (4.1).
Let D = a2 + 4b be a discriminant of (4.1). Then D = D∗

|D|p where D∗ ∈ Z∗
p such that D∗ =

d0 + d1p + d2p
2 + · · · . We know that (4.1) is solvable in Qp if and only if logp |D|p is even and d0 is

a quadratic residue modulo p or equivalently D ∈ Qsroot
p (see [1]). In this case

√
D =

1
√
|D|p

(δ0 + δ1p+ δ2p
2 + · · · ),

where

δ0 =
√
d0 andδk ≡ (2δ0)

p−2

(
d[0,k−1] − δ2[0,k−1]

pk
+ dk

)

(mod p) for all k ≥ 1.

Moreover, the roots of (4.1) have the form

x(1) =
−a +

√
D

2
, x(2) =

−a−
√
D

2
. (4.2)

The solvability criterion of the quadratic equation (4.1) in terms of a and b was given in [10].
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Theorem 4.1 [10]. Quadratic equation (4.1) is solvable in Qp if and only if one of the following
holds:

(i) |a|2p < |b|p and b ∈ Qsroot
p ;

(ii) |a|2p = |b|p and D ∈ Qsroot
p ;

(iii) |a|2p > |b|p.
The set Δ := Δ1 ∪Δ2 ∪Δ3 is called the solvability domain (see [10]) where
(i) Δ1 = {(a, b) ∈ Q2

p: |a|2p < |b|p, b ∈ Qsroot
p };

(ii) Δ2 = {(a, b) ∈ Q2
p: |a|2p = |b|p, D ∈ Qsroot

p };
(iii) Δ3 = {(a, b) ∈ Q2

p: |a|2p > |b|p}.
We describe the p-adic absolute values and the first digits of the roots x(1) and x(2) of (4.1).
Let

a =
a∗

|a|p
, b =

b∗

|b|p
, D =

D∗

|D|p
, D = a2 + 4b,

a∗ = a0 + a1p+ a2p
2 + · · · , b∗ = b0 + b1p+ b2p

2 + · · · , D∗ = d0 + d1p+ d2p
2 + · · · ,

√
D =

1
√
|D|p

(δ0 + δ1p+ δ2p
2 + · · · ).

Let x(1) and x(2) be the roots of (4.1) defined by (4.2) where

x(1) =
(x(1))∗

|x(1)|p
, x(2) =

(x(2))∗

|x(2)|p
,

and
(x(1))∗ = x

(1)
0 + x

(1)
1 p+ x

(1)
2 p2 + · · · , (x(2))∗ = x

(2)
0 + x

(2)
1 p+ x

(2)
2 p2 + · · · .

Theorem 4.2 [21]. Let (a, b) ∈ Δ. The following are true:

(i) If (a, b) ∈ Δ1 then |x(1)|p = |x(2)|p =
√
|b|p > |a|p and

2x
(1)
0 ≡

√
4b0 (mod p), 2x

(2)
0 ≡ −

√
4b0 (mod p);

(ii) If (a, b) ∈ Δ2 and a20 �≡ −4b0 (mod p) then

|x(1)|p = |x(2)|p =
√
|b|p = |a|p,

2x
(1)
0 ≡ −a0 +

√
a20 + 4b0 (mod p), 2x

(2)
0 ≡ −a0 −

√
a20 + 4b0 (mod p);

(iii) If (a, b) ∈ Δ2 and a20 ≡ −4b0 (mod p) then

|x(1)|p = |x(2)|p =
√
|b|p = |a|p, 2x

(1)
0 = 2x

(2)
0 ≡ −a0 (mod p);

(iv) If (a, b) ∈ Δ3 then

max
{
|x(1)|p, |x(2)|p

}
= |a|p >

|b|p
|a|p

= min
{
|x(1)|p, |x(2)|p

}
,

x
(max)
0 ≡ −a0 (mod p), a0x

(min)
0 ≡ b0 (mod p),

where x(max), x(min) ∈ {x(1), x(2)} are such that
∣
∣x(max)

∣
∣
p
= max

{
|x(1)|p, |x(2)|p

}
and

∣
∣x(min)

∣
∣
p
= min

{
|x(1)|p, |x(2)|p

}
.

Remark 4.3. Let (a, b) ∈ Δ3. In this case, |D|p = |a|2p and D∗ = (a∗)2 + 4b|a|p. Hence, d0 ≡ a20
(mod p) and δ0 =

√
d0 =

√
a20 = min{a0, p− a0}. Consequently,

if a0 <
p

2
then

{
x(max) = −a−

√
D

2

x(min) = −a+
√
D

2

and if a0 >
p

2
then

{
x(max) = −a+

√
D

2

x(min) = −a−
√
D

2

.

The next corollary, ensuing from the proof of Theorem 4.2 and Remark 4.3, might be useful in the
study of p-adic Gibbs measures over the Cayley trees (see [9–11]).
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Corollary 4.4 [21]. Let (a, b) ∈ Δ and let x(1) and x(2) be the roots of (4.1) defined by (4.2). Then
the following are true:

Case (a, b) ∈ Δ1. We have |D|p = |b|p, D∗ = 4b∗ + a2|b|p, d0 ≡ 4b0 (mod p) and |
√
D|p =

√
|D|p =√

|b|p > |a|p,
(√

D
)∗

=
√
4b∗ + a2|b|p, δ0 ≡

√
4b0 (mod p). Moreover, |x(1)|p = |x(2)|p =

√
|b|p > |a|p,

2x
(1)
0 ≡

√
4b0 (mod p), and 2x

(2)
0 ≡ −

√
4b0 (mod p).

Case (a, b) ∈ Δ2, |D|p = |a|2p = |b|p. We have
∣
∣ (a∗)2 + 4b∗

∣
∣
p
= 1, D∗ = (a∗)2 + 4b∗, d0 ≡

a20 + 4b0 (mod p) and |
√
D|p =

√
|D|p = |a|p =

√
|b|p,

(√
D
)∗

=
√
(a∗)2 + 4b∗, δ0 ≡

√
a20 + 4b0 (mod p).

Moreover, |x(1)|p = |x(2)|p =
√
|b|p = |a|p, 2x

(1)
0 ≡ −a0 +

√
a20 + 4b0 (mod p), and 2x

(2)
0 ≡ −a0 −√

a20 + 4b0 (mod p).

Case (a, b) ∈ Δ2, |D|p < |a|2p = |b|p. We have | (a∗)2 + 4b∗|p < 1, |D|p = |b|p| (a∗)2 + 4b∗|p, and
D∗ = ((a∗)2 + 4b∗)∗. Moreover, |x(1)|p = |x(2)|p =

√
|b|p = |a|p and 2x

(1)
0 ≡ 2x

(2)
0 ≡ −a0 (mod p).

Case (a, b) ∈ Δ3, a0 < p
2 . We have |D|p = |a|2p, D∗ = (a∗)2 + 4b|a|p, d0 ≡ a20 (mod p) and

|
√
D|p =

√
|D|p = |a|p,

(√
D
)∗

=
√
(a∗)2 + 4b|a|p, δ0 ≡ a0 (mod p). Moreover, |x(1)|p =

|b|p
|a|p , a0x

(1)
0 ≡ b0

(mod p), |x(2)|p = |a|p, and x
(2)
0 ≡ −a0 (mod p).

Case (a, b) ∈ Δ3, a0 > p
2 . We have |D|p = |a|2p, D∗ = (a∗)2 + 4b|a|p, d0 ≡ a20 (mod p) and |

√
D|p =

√
|D|p = |a|p,

(√
D
)∗

=
√
(a∗)2 + 4b|a|p, δ0 ≡ −a0 (mod p). Moreover, |x(1)|p = |a|p, x

(1)
0 ≡ −a0

(mod p), |x(2)|p = |b|p
|a|p , and a0x

(2)
0 ≡ b0 (mod p).

5. Cube Root Functions

In this section, we introduce to the cube root functions over Fp and Qp. We always assume that
p > 3 unless otherwise specified.

5.1. The cube root function over Fp. We first introduce the cube root function over Fp :=
{[0]p, [1]p, . . . , [p− 1]p}. We always use this canonical representation of Fp.

Let [a]p ∈ Fp be a nonzero element. We know that the cubic congruent equation

[x]3p = [a]p (5.1)

is solvable in Fp if and only if a
p−1

(3,p−1) ≡ 1 (mod p) or equivalently, a is a cubic residue. In this case, if
p ≡ 2 (mod 3) then (5.1) has a unique root [x1]p, 1 ≤ x1 ≤ p− 1 for all 1 ≤ a ≤ p− 1 (this is due to the

fact that (a
2p−1

3 )3 ≡ a (mod p)). If p ≡ 1 (mod 3) with a
p−1
3 ≡ 1 (mod p) then (5.1) has three distinct

roots [x1]p, [x2]p, and [x3]p where 1 ≤ x1, x2, x3 ≤ p− 1.

Definition 5.1. Let [a]p ∈ Fp be a nonzero cubic residue and let [x1]p, [x2]p, and [x3]p be (possibly
one or three) roots of the cubic congruent equation [x]3p = [a]p such that 1 ≤ x1, x2, x3 ≤ p − 1. The

element [min{x1, x2, x3}]p of Fp is a cube root of [a]p denoted by 3
√
[a]p.

Example 5.2. Let us consider some primes p ≡ 1 (mod 3).

• Let p = 7. In this case, [1]7 and [6]7 are cubic residues modulo 7. Thus, 3
√
[1]7 = [1]7 and

3
√
[6]7 = [3]7.

• Let p = 19. In this case, [1]19, [7]19, [8]19, [11]19, [12]19, and [18]19 are cubic residues modulo 19.

Consequently, 3
√
[1]19 = [1]19,

3
√
[7]19 = [4]19,

3
√
[8]19 = [2]19,

3
√

[11]19 = [5]19,
3
√

[12]19 = [10]19, and
3
√
[18]19 = [8]19.
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Remark 5.3. Obviously, the cubic congruent equation [x]3p = [1]p for a prime p ≡ 2 (mod 3) always
has a unique root [ε1]p where ε1 := 1. Moreover, if p ≡ 1 (mod 3) then the equation has two more

roots [ε2]p and [ε3]p such that ε1 < ε2 < ε3. In both cases, 3
√

[1]p = [ε1]p for every prime p. It is worth

mentioning that if p ≡ 1 (mod 3) with a
p−1
3 ≡ 1 (mod p) then ε1

3
√

[a]p, ε2
3
√
[a]p, and ε3

3
√
[a]p are roots

of the cubic congruent equation [x]3p = [a]p. In what follows, for the convenience, we use the notation 3
√
a

instead of 3
√

[a]p whenever we deal with Fp.

5.2. The cube root function over Qp. We need the following auxiliary result:

Theorem 5.4. Let p > 3 and a ∈ Z∗
p. The cubic equation

x3 = a (5.2)

is solvable in Z∗
p if and only if a0 is a cubic residue modulo p or equivalently a

p−1
(3,p−1)

0 ≡ 1 (mod p).
Moreover, the root of (5.2) takes the form

x = x0 + x1p+ x2p
2 + · · · ,

where

x0 ∈
{ {ε1 3

√
a0, ε2 3

√
a0, ε3 3

√
a0, }, if p ≡ 1 (mod 3),

{ε1 3
√
a0}, if p ≡ 2 (mod 3),

xk ≡ (3x20)
p−2

(
a[0,k−1] − x3[0,k−1]

pk
+ ak

)

(mod p) for all k ∈ N.

Proof. Only if part: We suppose that (5.2) has some solution in Z∗
p of the form of x = x0 +

x∗[1,+∞)p. Then

x3 =
(
x0 + x∗[1,+∞)p

)3

= x30 +
(
x∗[1,+∞)

)3
p3 + 3x20x

∗
[1,+∞)p+ 3x0

(
x∗[1,+∞)

)
p2

= a0 + a∗[1,+∞)p.

We have x30 ≡ a0 (mod p), which means that a0 is a cubic residue modulo p.

If part: Suppose now that a0 is a cubic residue modulo p. It means that there exists x0 ∈ Z such
that x30 ≡ a0 (mod p). This implies that

x0 ∈
{ {ε1 3

√
a0, ε2 3

√
a0, ε3 3

√
a0, }, if p ≡ 1 (mod 3),

{ε1 3
√
a0}, if p ≡ 2 (mod 3).

Show that each of these roots can be lifted to Z∗
p. Let x = x[0,k−1] + xkp

k +x∗[k+1,+∞)p
k+1. Suppose that

x0, x1, . . . , xk−1 were already found. We have to find xk. Our aim is to obtain some recurrent formula to
calculate xk in terms of x0, x1, . . . , xk−1 for all k ≥ 1. It is easy to see that

x3 = x3[0,k−1] + x3kp
3k +

(
x∗[k+1,+∞)

)3
p3k+3 + 3x2[0,k−1]xkp

k + 3x2[0,k−1]x
∗
[k+1,+∞)p

k+1

+3x[0,k−1]x
2
kp

2k + 3x[0,k−1]

(
x∗[k+1,+∞)

)2
p2k+2 + 3x2kx

∗
[k+1,+∞)p

3k+1

+3xk

(
x∗[k+1,+∞)

)2
p3k+2 + 6x[0,k−1]xkx

∗
[k+1,+∞)p

2k+1

= a[0,k−1] + akp
k + a∗[k+1,+∞)p

k+1.
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This implies that

x3[0,k−1] ≡ a[0,k−1] (mod pk),

x3[0,k−1] + 3x2[0,k−1]xkp
k ≡ a[0,k−1] + akp

k (mod pk+1),

3x2[0,k−1]xk ≡
a[0,k−1] − x3[0,k−1]

pk
+ ak (mod p).

Since x2[0,k−1] ≡ x20 (mod p); therefore,

xk ≡ (3x20)
p−2

(
a[0,k−1] − x3[0,k−1]

pk
+ ak

)

(mod p).

Consequently, we derive a formula to calculate xk in terms of x0, x1, . . . , xk−1. �
Let us now consider the cubic equation

x3 = a (5.3)

where a ∈ Qp is a nonzero p-adic number.

Put a = a∗

|a|p where a∗ = a0 + a1p + a2p
2 + · · · . Cubic equation (5.3) is solvable in Qp if and only

if logp |a|p is divisible by 3 and a0 is a cubic residue modulo p (see [16]). Moreover,
(i) if p ≡ 1 (mod 3) then (5.3) has the three roots

x(1) =
(x(1))∗

|x(1)|p
, x(2) =

(x(2))∗

|x(2)|p
x(3) =

(x(3))∗

|x(3)|p
,

where |x(i)|p = 3
√
|a|p and (x(i))∗ = x

(i)
0 + x

(i)
1 p+ x

(i)
2 p2 + · · · for all i = 1, 2, 3 such that

x
(i)
0 ≡ εi 3

√
a0 (mod p),

x
(i)
k ≡ (3(x

(i)
0 )2)p−2

(
a[0,k−1] − x3[0,k−1]

pk
+ ak

)

(mod p) for all k ∈ N;

(ii) if p ≡ 2 (mod 3), then the cubic equation (5.3) has the unique root

x(1) =
(x(1))∗

|x(1)|p
,

where |x(1)|p = 3
√
|a|p and (x(1))∗ = x

(1)
0 + x

(1)
1 p+ x

(1)
2 p2 + · · · such that

x
(1)
0 ≡ ε1 3

√
a0 (mod p),

x
(1)
k ≡ (3(x

(1)
0 )2)p−2

(
a[0,k−1] − x3[0,k−1]

pk
+ ak

)

(mod p) for all k ∈ N.

Let x ∈ Qp, x = x∗

|x|p where x∗ ∈ Z∗
p such that x∗ = x0 + x1p+ x2p

2 + · · · . We introduce the set

Qcroot
p =

{
a ∈ Qp : logp |a|p is divisible by 3 and a

p−1
(3,p−1)

0 ≡ 1 (mod p)

}
.

Definition 5.5. The cube root function f : Qcroot
p → Qp, y = f(x) = 3

√
x is defined as y = y∗

|y|p such

that |y|p = 3
√
|x|p, y0 = 3

√
x0, and yk = (3y20)

p−2

(
x[0,k−1]−y3

[0,k−1]

pk
+ xk

)
(mod p) for all k ∈ N.
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Example 5.6. Let p = 7 and x = −1. Thus, x0 = 6 and xk = 6 for all k ∈ N. We know that
3
√
[6]7 = [3]7 (see Example 5.2) and y0 = 3. We can find yk by using the recurrent formula

yk = (3y20)
p−2

(
x[0,k−1] − y3[0,k−1]

pk
+ xk

)

(mod p) for all k ∈ N.

For instance, y1 = 4, y2 = 6, y3 = 3, y4 = 0 and so on. Also, |y|p = 3
√
|x|p = 3

√
1 = 1. Hence,

3
√
−1 = y0 + y1p+ y2p

2 + · · ·
such that y0 = 3, y1 = 4, y2 = 6, y3 = 3, y4 = 0, and so on.

Remark 5.7. Let p ≡ 1 (mod 3) and let e1, e2, and e3 be the roots of the cubic equation x3 = 1
over Qp where e1 := 1. If a ∈ Qcroot

p then e1 3
√
a, e2 3

√
a, and e3 3

√
a are the roots of the cubic equation

x3 = a. Moreover, for all i = 1, 2, 3 we have
(
ei

3
√
a
)∗

= e
(i)
0 + e

(i)
1 p+ e

(i)
2 p2 + · · · ,

e
(i)
0 ≡ εi 3

√
a0 (mod p),

e
(i)
k ≡ (3(e

(i)
0 )2)p−2

(
a[0,k−1] − e3[0,k−1]

pk
+ ak

)

(mod p) for all k ∈ N.

6. The Trinomial Equations of Degree 6

In this section, we provide an application of the cube root function in describing the roots of polyno-
mial equations over p-adic fields. All results of Section 6 are new and can potentially have applications
to the study of the p-adic Gibbs measures over the Cayley trees.

Let us now study the trinomial equation of degree 6; i.e.,

x6 + ax3 = b, (6.1)

where ab �= 0 and a,b ∈ Qp. The case ab = 0 was studied in [16, 17].
We use the following notations for A,B ∈ Qp:
• (A

∨
B)− ∃ means that there exists at least one of the members A and B;

• (A
∧
B)− ∃ means that there exists only one of the members A and B.

• (A
∧
B)− ∃ means that there exist both members A and B.

In this sense,

(A
∨

B)− ∃ =

[
(A
∧

B)− ∃
]
∪
[
(A
∧

B)− ∃
]
.

Theorem 6.1 (Solvability Criteria). Let D = a2 + 4b. Equation (6.1) is solvable in Qp if and only
if either one of the conditions hold:

(I) |a|2p < |b|p,
(√

b− ∃
)
and
(

3
√√

b
∨ 3
√
−
√
b− ∃

)
;

(II) |a|2p = |b|p = |D|p,
(√

D − ∃
)
and

(
3

√
−a+

√
D

2

∨ 3

√
−a−

√
D

2 − ∃
)
;

(III) |a|2p = |b|p > |D|p, and
(√

D
∧

3
√
−a

2 − ∃
)
;

(IV) |a|2p > |b|p, and
(

3
√
−a
∨

3

√
b
a − ∃

)
.

Proof. Let x3 = t. In this case, we have the quadratic equation

t2 + at=b. (6.2)
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Equation (6.2) is solvable if and only if (a,b) ∈ Δ. Let t(1) = (t(1))∗

|t(1)|p and t(2) = (t(2))∗

|t(2)|p be the roots of (6.2),

where
(t(1))∗ = t

(1)
0 + t

(1)
1 p+ t

(1)
2 p2 + · · · , (t(2))∗ = t

(2)
0 + t

(2)
1 p+ t

(2)
2 p2 + · · · .

Then, (6.1) is solvable in Qp if and only if one of the cubic equation is solvable

x3 = t(1), (6.3)

x3 = t(2). (6.4)

Case (I). Let (a,b) ∈ Δ1. In this case, by Theorem 4.2

|t(1)|p = |t(2)|p =
√
|b|p > |a|p,

t
(1)
0 ≡

√
b0 (mod p), t

(2)
0 ≡ −

√
b0 (mod p).

Equation (6.3) (respectively (6.4)) is solvable if and only if 3 | logp |t(1)|p and t
(1)
0 is a cubic residue

(respectively 3 | logp |t(2)|p and t
(2)
0 is a cubic residue). We know that

logp |t(1)|p = logp |t(2)|p = logp

√
|b|p =

1

2
logp |b|p.

It follows from the last equality that

3 | logp |t(1)|p = logp |t(2)|p

if and only if 3 | 1
2 logp |b|p or equivalently 6 | logp |b|p.

Moreover, t
(1)
0 (respectively t

(2)
0 ) is a cubic residue if and only if there exist

3
√√

b0 (respectively
3
√
−
√
b0). Consequently, |a|2p < |b|p,

√
b− ∃, and

(√
3
√
b
∨ 3
√
−
√
b
)
− ∃.

Case (II). Let (a, b) ∈ Δ2 and |a|2p = |b|p = |D|. In this case, by Theorem 4.2

|t(1)|p = |t(2)|p =
√
|b|p = |a|p =

√
|D|p,

2t
(1)
0 ≡ −a0 +

√
a20 + 4b0 (mod p), 2t

(2)
0 ≡ −a0 −

√
a20 + 4b0 (mod p).

Equation (6.3) (respectively (6.4)) is solvable if and only if 3 | logp |t(1)|p and t
(1)
0 is a cubic residue

(respectively 3 | logp |t(2)|p and t
(2)
0 is a cubic residue). We know that

logp |t(1)|p = logp |t(2)|p = logp

√
|b|p = logp |a|p = logp

√
|D|p =

∣
∣−a±

√
D

2

∣
∣
p
.

It follows from the last equality that 3 |
(
logp |t(1)|p = logp |t(2)|p

)
if and only if

3 | logp
∣
∣
∣
∣
−a±

√
D

2

∣
∣
∣
∣
p

.

Moreover, t
(1)
0 (respectively t

(2)
0 ) is a cubic residue if and only if

−a0+
√

a20+4b0
2 (respectively

−a0−
√

a20−4b0
2 )

is a cubic residue. Consequently, |a|2p = |b|p = |D|,
√
D− ∃, and

(
3

√
−a+

√
D

2

∨ 3

√
−a−

√
D

2

)
− ∃.
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Case (III). Let (a, b) ∈ Δ2 and |a|2p = |b|p > |D|. In this case, by Theorem 4.2

|t(1)|p = |t(2)|p =
√
|b|p = |a|p >

√
|D|p,

2t
(1)
0 ≡ 2t

(2)
0 ≡ −a0 (mod p).

Equation (6.3) (respectively (6.4)) is solvable if and only if 3 | logp |t(1)|p and t
(1)
0 is a cubic residue

(respectively 3 | logp |t(2)|p and t
(2)
0 is a cubic residue). We know (see Corollary 4.4) that

logp |t(1)|p = logp |t(2)|p = logp

√
|b|p = logp |a|p = logp

∣
∣
∣
∣
∣
−a±

√
D

2

∣
∣
∣
∣
∣
p

.

It follows from the last equality that 3 | logp |t(1)|p = logp |t(2)|p if and only if

3 | logp
√
|b|p = logp |a|p = logp

∣
∣
∣
∣
∣
−a±

√
D

2

∣
∣
∣
∣
∣
p

.

Moreover, t
(1)
0 (respectively t

(2)
0 ) is a cubic residue if and only if

−a0
2

is a cubic residue. Consequently,

|a|2p = |b|p > |D|, and
(√

D
∧

3
√
−a

2

)
− ∃.

Case (IV). Let (a,b) ∈ Δ3. In this case, by Theorem 4.2

|t(max)|p = |a|p >
|b|p
|a|p

= |t(min)|p,

t
(max)
0 ≡ −a0 (mod p), a0t

(min)
0 ≡ b0 (mod p).

Equation (6.3) (respectively (6.4)) is solvable if and only if 3 | logp |t(max)|p and t
(max)
0 is a cubic residue

(respectively 3 | logp |t(min)|p and t
(min)
0 is a cubic residue). We know that logp |t(max)|p = logp |a|p

and logp |t(min)|p = logp
|b|p
|a|p . It follows from the last equality that 3 | logp |t(max)|p if and only if 3 |

logp |a|p and 3 | logp |t(min)|p if and only if 3 | logp
|b|p
|a|p or equivalently 3 | logp |a2b|p. Moreover, t

(max)
0

(respectively t
(min)
0 ) is a cubic residue if and only if −a0 (respectively

b0
a0

) is a cubic residue. Consequently,

|a|2p > |b|p, and
(

3
√
−a
∨

3

√
b
a

)
− ∃. �

Theorem 6.2 (Description of Roots). Let (a,b) ∈ Δ. The following hold:

(I) Let |a|2p < |b|p,
√
b− ∃, and

(
3
√√

b
∨ 3
√
−
√
b− ∃

)
.

(I.1) Let
(

3
√√

b
∧ 3
√
−
√
b
)
− ∃. Equation (6.1) has a root, x(1) such that

x
(1)
0 ≡

(
3

√√
b0 ∧ 3

√
−
√
b0

)
(mod p) and |x(1)|p = 6

√
|b|p.

Moreover, if p ≡ 1 (mod 3) then (6.1) has two more roots x(2) and x(3) such that

x
(i)
0 ≡ εi

(
3

√√
b0 ∧ 3

√
−
√
b0

)
(mod p) and |x(i)|p = 6

√
|b|p, i = 2, 3.
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(I.2) Let
(

3
√√

b
∧ 3
√
−
√
b
)
− ∃. Equation (6.1) has two roots x(1) and x(2) such that x

(1)
0 ≡ 3

√√
b0

(mod p), x
(2)
0 ≡ 3

√
−
√
b0 (mod p) and |x(1)|p = |x(2)|p = 6

√
|b|p. Moreover, if p ≡ 1 (mod 3) then (6.1)

has four more roots x(3), x(4), x(5), and x(6) such that

x
(2i−1)
0 ≡ εi

3

√√
b0 (mod p), x

(2i)
0 ≡ εi

3

√
−
√
b0 (mod p), i = 2, 3,

|x(2i−1)|p = |x(2i)|p = 6

√
|b|p, i = 2, 3.

(II) Let |a|2p = |b|p = |D|,
√
D− ∃, and

(
3

√
−a+

√
D

2

∨ 3

√
−a−

√
D

2

)
− ∃.

(II.1) Let
3

√
−a+

√
D

2

∧ 3

√
−a−

√
D

2 − ∃. Equation (6.1) always has some root x(1) such that

x
(1)
0 ≡

⎛

⎝ 3

√
−a0 +

√
a20 + 4b0
2

∧ 3

√
−a0 −

√
a20 + 4b0
2

⎞

⎠ (mod p),

|x(1)|p = 3

√
|a|p = 6

√
|b|p = 6

√
|D|p.

Moreover, if p ≡ 1 (mod 3) then (6.1) has two more roots x(2) and x(3) such that

|x(i)|p = 3

√
|a|p = 6

√
|b|p = 6

√
|D|p,

x
(i)
0 ≡ εi

⎛

⎝ 3

√
−a0 +

√
a20 + 4b0
2

∧ 3

√
−a0 −

√
a20 + 4b0
2

⎞

⎠ (mod p), i = 2, 3.

(II.2) Let

(
3

√
−a+

√
D

2

∧ 3

√
−a−

√
D

2

)
−∃. Equation (6.1) always has two roots x(1) and x(2) such that

x
(1)
0 ≡ 3

√
−a0 +

√
a20 + 4b0
2

(mod p), x
(2)
0 ≡ 3

√
−a0 −

√
a20 + 4b0
2

(mod p),

|x(1)|p = |x(2)|p = 3

√
|a|p = 6

√
|b|p = 6

√
|D|p.

Moreover, if p ≡ 1 (mod 3) then (6.1) has four more roots x(3), x(4), x(5), and x(6) such that

x
(2i−1)
0 ≡ εi

3

√
−a0 +

√
a20 + 4b0
2

(mod p), i = 2, 3,

x
(2i)
0 ≡ εi

3

√
−a0 −

√
a20 + 4b0
2

(mod p), i = 2, 3,

|x(2i−1)|p = |x(2i)|p = 3

√
|a|p = 6

√
|b|p = 6

√
|D|p, i = 2, 3.

(III) Let |a|2p = |b|p > |D| and
(√

D
∧

3
√
−a

2

)
− ∃. Equation (6.1) always has two roots x(1) and x(2)

such that

x
(1)
0 ≡ x

(2)
0 ≡ 3

√
−a0
2

(mod p), |x(1)|p = |x(2)|p = 3

√
|a|p = 6

√
|b|p.
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Moreover, if p ≡ 1 (mod 3) then (6.1) has four more roots x(3), x(4), x(5), and x(6) such that

x
(2i−1)
0 ≡ x

(2i)
0 ≡ εi

3

√
−a0
2

(mod p), |x(2i−1)|p = |x(2i)|p = 3

√
|a|p = 6

√
|b|p, i = 2, 3.

(IV) Let |a|2p > |b|p and

(
3
√
−a
∨

3

√
b
a

)
− ∃.

(IV.1) Let 3
√
−a
∧

3

√
b
a − ∃. Equation (6.1) always has a root x(1) such that

x
(1)
0 ≡

(
3
√
−a0

∧
3

√
b0
a0

)

(mod p), |x(1)|p = 3

√
|a|p
∧

3

√
|b|p
|a|p

.

Moreover, if p ≡ 1 (mod 3) then (6.1) has two more roots x(2) and x(3) such that

x
(i)
0 ≡ εi

(
3
√
−a0

∧
3

√
b0
a0

)

(mod p), |x(i)|p = 3

√
|a|p
∧

3

√
|b|p
|a|p

, i = 2, 3.

(IV.2) Let
(

3
√
−a
∧

3

√
b
a

)
− ∃. Equation (6.1) always has two roots x(1) and x(2) such that

x
(1)
0 ≡ 3

√
−a0 (mod p), |x(1)|p = 3

√
|a|p,

x
(2)
0 ≡ 3

√
b0
a0

(mod p), |x(2)|p = 3

√
|b|p
|a|p

.

Moreover, if p ≡ 1 (mod 3) then (6.1) has four more roots x(3), x(4), x(5), and x(6) such that

x
(2i−1)
0 ≡ εi

3
√
−a0 (mod p), |x(2i−1)|p = 3

√
|a|p, i = 2, 3,

x
(2i)
0 ≡ εi

3

√
b0
a0

(mod p), |x(2i)|p = 3

√
|b|p
|a|p

, i = 2, 3.

Proof. Let (a,b) ∈ Δ. We will consider the several cases:

(I) Let |a|2p < |b|p,
√
b−∃, and

(
3
√√

b
∨ 3
√
−
√
b
)
−∃. In this case, since x3 = t(1) or x3 = t(2) and

|t(1)|p = |t(2)|p =
√
|b|p, we have x =

3
√
t(1) or x =

3
√
t(2) and |x|p = 3

√
|t(1)|p = 3

√
|t(2)|p = 6

√
|b|p.

(I.1) Let
(

3
√√

b
∧ 3
√

−
√
b
)
− ∃. If p ≡ 2 (mod 3) then (6.3) or (6.4) has a unique root x(1). Since

3 | logp
√
|b|p and

√
b0 ∧(−

√
b0) is a cubic residue, the first digit of the root x(1) of the trinomial

equation (6.1) is x
(1)
0 ≡

(
3
√√

b0
∧ 3
√
−
√
b0

)
(mod p) and its norm is |x(1)|p = 6

√
|b|p. If p ≡ 1 (mod 3)

then (6.3) or (6.4) has two more roots x(2) and x(3). Since 3 | logp
√
|b|p and

√
b0 ∧(−

√
b0) is a cubic

residue, the first digit of the roots x(2) and x(3) are x
(i)
0 ≡ εi

(
3
√√

b0
∧ 3
√
−
√
b0

)
(mod p) and their

norms are |x(i)|p = 6
√
|b|p for i = 2, 3.

(I.2) Let
(

3
√√

b
∧ 3
√
−
√
b
)
−∃. If p ≡ 2 (mod 3) then each equation (6.3) (respectively (6.4)) has

a unique root x(1) (respectively x(2)). Since 3 | logp
√
|b|p and

√
b0 ∧ (−

√
b0) is a cubic residue, the first

455



digit of the root x(1) (respectively x(2)) is x
(1)
0 ≡ 3

√√
b0 (mod p) (respectively x

(2)
0 ≡ 3

√
−
√
b0 (mod p))

and its norm is |x(1)|p = 6
√
|b|p (respectively |x(2)|p = 6

√
|b|p). If p ≡ 1 (mod 3) then each equation (6.3)

(respectively (6.4)) has two more roots x(3) and x(5) (respectively x(4) and x(6)). Since 3 | logp
√
|b|p and√

b0 ∧ (−
√
b0) is a cubic residue, the first digits of the roots x(3) and x(5) (respectively x(4) and x(6))

are x
(2i−1)
0 ≡ εi

3
√√

b0 (mod p) (respectively x
(2i)
0 ≡ εi

3
√
−
√
b0 (mod p)) and their norms are |x(2i−1)|p =

6
√
|b|p (respectively |x(2i)|p = 6

√
|b|p) for i = 2, 3.

(II) Let |a|2p = |b|p = |D|p,
√
D− ∃, and

(√
[3]−a+

√
D2∨
√
[3]−a−

√
D

2

)
− ∃. In this case, since x3 = t(1)

or x3 = t(2) and |t(1)|p = |t(2)|p = |a|p =
√
|b|p =

√
|D|p, we have x =

3
√
t(1) or x =

3
√
t(2) and

|x|p = 3

√
|t(1)|p = 3

√
|t(2)|p = 3

√
|a|p = 6

√
|b|p = 6

√
|D|p.

(II.1) Let
3

√
−a+

√
D

2

∧ 3

√
−a−

√
D

2 − ∃. If p ≡ 2 (mod 3) then (6.3) or (6.4) has a unique root x(1).

Since

3 |

⎛

⎝logp

∣
∣
∣
∣
∣
−a +

√
D

2

∣
∣
∣
∣
∣
p

∧
logp

∣
∣
∣
∣
∣
−a−

√
D

2

∣
∣
∣
∣
∣
p

⎞

⎠

and
−a0+

√
a20+4b0
2

∧ −a0−
√

a20+4b0
2 is a cubic residue, the first digit of the root x(1) of (6.1) is

x
(1)
0 ≡ 3

√
−a0 +

√
a20 + 4b0
2

∧ 3

√
−a0 −

√
a20 + 4b0
2

(mod p)

and its norm is |x(1)|p = 3
√
|a|p = 6

√
|b|p = 6

√
|D|p. If p ≡ 1 (mod 3) then (6.3) or (6.4) has two more

roots x(2) and x(3). The first digit of the roots x(2) and x(3) are

x
(i)
0 ≡ εi

⎛

⎝ 3

√
−a0 +

√
a20 + 4b0
2

∧ 3

√
−a0 −

√
a20 + 4b0
2

⎞

⎠ (mod p)

and their norms are |x(i)|p = 3
√
|a|p = 6

√
|b|p = 6

√
|D|p, i = 2, 3.

(II.2) Let
3

√
−a+

√
D

2

∧ 3

√
−a−

√
D

2 − ∃. If p ≡ 2 (mod 3) then each (6.3) (respectively (6.4)) has

a unique root x(1) (respectively x(2)). Since

3 |

⎛

⎝logp

∣
∣
∣
∣
∣
−a +

√
D

2

∣
∣
∣
∣
∣
p

∧
logp

∣
∣
∣
∣
∣
−a−

√
D

2

∣
∣
∣
∣
∣
p

⎞

⎠

and
−a0+

√
a20+4b0
2

∧ −a0−
√

a20+4b0
2 is a cubic residue, the first digit of the root x(1) (respectively x(2)) is

x
(1)
0 ≡ 3

√
−a0+

√
a20+4b0
2 (mod p) (respectively x

(2)
0 ≡ 3

√
−a0−

√
a20+4b0
2 (mod p)) and its norm is |x(1)|p =

3
√
|a|p = 6

√
|b|p = 6

√
|D|p. (respectively |x(2)|p = 3

√
|a|p = 6

√
|b|p = 6

√
|D|p). If p ≡ 1 (mod 3) then

each (6.3) (respectively (6.4)) has two more roots x(3) and x(5) (respectively x(4) and x(6)). The first digits

of the roots x(3) and x(5) (respectively x(4) and x(6)) are x
(2i−1)
0 ≡ εi

3

√
−a0+

√
a20+4b0
2 (mod p) (respectively

x
(2i)
0 ≡ εi

3

√
−a0−

√
a20+4b0
2 (mod p)) and their norms are |x(2i−1)|p = 3

√
|a|p = 6

√
|b|p = 6

√
|D|p (respectively

|x(2i)|p = 3
√

|a|p = 6
√
|b|p = 6

√
|D|p) for i = 2, 3.

(III) Let |a|2p = |b|p > |D|p and
(√

D
∧

3
√
−a

2

)
− ∃. In this case, since x3 = t(1) or x3 = t(2) and

|t(1)|p = |t(2)|p =
√
|b|p = |a|p, we have x =

3
√
t(1) or x =

3
√
t(2) and |x|p = 3

√
|t(1)|p = 3

√
|t(2)|p = 3

√
|a|p =
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6
√
|b|p. If p ≡ 2 (mod 3) then each (6.3) (respectively (6.4)) has a unique root x(1) (respectively x(2)).

Since 3 | logp |a2 |p and −a0
2 is a cubic residue, the first digit of the root x(1) (respectively x(2)) is x

(1)
0 ≡

3

√
−a0
2 (mod p) (respectively x

(2)
0 ≡ 3

√
−a0
2 (mod p)) and its norm is |x(1)|p = 3

√
|a|p = 6

√
|b|p (respectively

|x(2)|p = 3
√
|a|p = 6

√
|b|p). If p ≡ 1 (mod 3) then each (6.3) (respectively (6.4)) has two more roots

x(3) and x(5) (respectively x(4) and x(6)). The first digits of the roots x(3) and x(5) (respectively x(4)

and x(6)) are x
(2i−1)
0 ≡ εi

3

√
−a0
2 (mod p) (respectively x

(2i)
0 ≡ εi

3

√
−a0
2 (mod p)) and their norms are

|x(2i−1)|p = 3
√
|a|p = 6

√
|b|p (respectively |x(2i)|p = 3

√
|a|p = 6

√
|b|p) for i = 2, 3.

(IV) Let |a|2p > |b|p and
(

3
√
−a
∨

3

√
b
a

)
− ∃.

(IV.1) Let 3
√
−a
∧

3

√
b
a − ∃. In this case, since x3 = t(max) ∧ t(min) and

|t(max)|p ∧ |t(min)|p = |a|p ∧ |b|p
|a|p

,

we have x =
3
√
t(max) ∧ 3

√
t(min) and |x|p = 3

√
|a|p
∧

3

√
|b|p
|a|p . If p ≡ 2 (mod 3) then the equation x3 =

t(max) ∧ t(min) has a unique root x(1). Since

3 |
(
logp |a|p

∧
logp

|b|p
|a|p

)

and
(
− a0 ∧̄ b0

a0

)
is a cubic residue, the first digit of the root x(1) is x

(1)
0 ≡

(
3
√−a0 ∧̄ 3

√
b0
a0

)
(mod p)

and its norm is |x(1)|p =
(

3
√
|a|p ∧̄ 3

√
|b|p
|a|p

)
. If p ≡ 1 (mod 3) then the equation x3 = t(max) ∧ t(min) has

two more roots x(2) and x(3). The first digits of the roots x(2) and x(3) are x
(i)
0 ≡ εi

(
3
√−a0 ∧ 3

√
b0
a0

)

(mod p) and their norms are |x(i)|p = 3
√
|a|p
∧

3

√
|b|p
|a|p for i = 2, 3.

(IV.2) Let 3
√
−a
∧

3

√
b
a − ∃. In this case, since x3 = t(max) ∧ t(min) and

|t(max)|p ∧ |t(min)|p = |a|p ∧ |b|p
|a|p

,

we have

x =
3
√
t(max) ∧ 3

√
t(min) and |x|p = 3

√
|a|p
∧

3

√
|b|p
|a|p

.

If p ≡ 2 (mod 3) then each equation x3 = t(max) (respectively x3 = t(min)) has a unique root x(1)

(respectively x(2)). Since 3 | logp |a|p (respectively 3 | logp
|b|p
|a|p ) and −a0 (respectively b0

a0
) is a cubic

residue, the first digit of the root x(1) (respectively x(2)) is x
(1)
0 ≡ 3

√−a0 (mod p) (respectively x
(2)
0 ≡ 3

√
b0
a0

(mod p)) and its norm is |x(1)|p = 3
√
|a|p (respectively |x(2)|p = 3

√
|b|p
|a|p ). If p ≡ 1 (mod 3) then each

equation x3 = t(max) (respectively x3 = t(min)) has two more roots x(3) and x(5) (respectively x(4) and x(6)).

The first digits of the roots x(3) and x(5) (respectively x(4) and x(6)) are x
(2i−1)
0 ≡ εi 3

√−a0 (mod p)

(respectively x
(2i)
0 ≡ εi

3

√
b0
a0

(mod p)) and their norms are |x(2i−1)|p = 3
√

|a|p (respectively |x(2i)|p =

3

√
|b|p
|a|p ) for i = 2, 3. �
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