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ON THE t-EQUIVALENCE OF GENERALIZED ORDERED SETS
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Abstract: We consider the generalized ordered spaces X and Y such that the tightness t(X) coincides
with the tightness t(Y ) but T (X) = {x ∈ X : t(x,X) = t(X)} and T (Y ) = {y ∈ Y : t(y, Y ) = t(Y )}
have different cardinalities. Some sufficient conditions are found under which such spaces X and Y are
not t-equivalent.
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1. Introduction

We consider the homeomorphism of the spaces of continuous functions on generalized ordered spaces.
A space X is a generalized ordered space if X is a subspace of some linearly ordered topological space Y
(see [1]). In fact, these are the linearly ordered spaces in which a neighborhood base of x ∈ X is given
by intervals (y, z), with x ∈ (y, z), or by half-intervals [x, y) or (y, x] or by the singleton {x}. Among the
examples of these spaces are the Sorgenfrey line, the Michael line, the Hattori spaces, etc.

In generalized ordered spaces, the tightness t(X) of a space X coincides with the functional tightness
of (X). Therefore, if t(X) �= t(Y ) for generalized ordered spaces X and Y then the spaces Cp(X)
and Cp(Y ) are nonhomeomorphic [2]. In the article, considering generalized ordered spaces X and Y
of the same tightness but having the nonequipollent sets of the points of maximum tightness, we find
the sufficient conditions for X and Y to be not t-equivalent, which means that Cp(Y ) and Cp(X) are
nonhomeomorphic.

As a consequence, using the homeomorphism theorems for Cp[0, α], we obtain the topological classi-
fication of Cp(Sα) on the “long Sorgenfrey lines Sα.” Note that the topological and linear classifications
of Cp[0, α] depend on the t-equivalence of the ordinal segments [0, α]. The theorems in this article imply
that the topological classification of the spaces Cp(Sα) coincides with the linear homeomorphic classifi-
cation of Cp(Sα) which was obtained in [3].

2. The Main Notations and Definitions

Throughout the sequel, R and N are the sets of reals and naturals respectively; ℵ0 is a countable
cardinal, ℵ1 is the first uncountable cardinal; and |A| is the cardinality of a set A. Given a generalized
linear ordered space X, as usual, we put

(x,→) = {y ∈ X : y > x} and (←, x) = {y ∈ X : y < x}.

The spaces [x,→), (←, x], [y, x), and (x, y] are defined likewise. Observe that every linear ordered
topological space X is normal (see [4, 1.7.5]) and so is every subspace Y ⊂ X (see [4, 2.7.5]). Therefore,
all generalized ordered spaces are normal.

Definition 1. Let X be a generalized ordered space. If x is a limit point of (←, x) then the cofinality
of x is the cardinal

cf x = min{|A| : A is a cofinal subset of (←, x)}.
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If x is an isolated point in (←, x] ⊂ X then we put cf x = 0. The coinitiality of x ∈ X is defined similarly:
cnx = 0 if x is an isolated point in [x,→) and

cnx = min{|A| : A is a coinitial subset of (x,→)}
if x is a limit point of (x,→).

Denote by t(X) the tightness of a space X and designate as t(x,X) the tightness of X at a point x.
If X is a generalized ordered space, then clearly t(x,X) = max{cf x, cnx}. Let t(X) = τ . Consider the
set

T (X) = {x ∈ X : t(x,X) = τ}
and its subsets

Tl(X) = {x ∈ T (X) : cf x = τ, cnx < τ};
Tr(X) = {x ∈ T (X) : cnx = τ, cf x < τ};
Tlr(X) = {x ∈ T (X) : cnx = cf x = τ}.

Clearly,
T (X) = Tl(X) � Tr(X) � Tlr(X).

Definition 2. Let Z ⊂ X and let λ be a cardinal. A point x ∈ Z is λ-inaccessible in Z if from
x /∈ A ⊂ Z and |A| ≤ λ it follows that x /∈ A.

Definition 3. A function f : X → R is λ-continuous if, for every A ⊂ X, with |A| ≤ λ, the
function f |A is continuous on A. If for every set A ⊂ X such that |A| ≤ λ, there exists a continuous
function h : X → R such that f |A = h|A then f is strictly λ-continuous.

Note that for a normal space X, every λ-continuous function is strictly λ-continuous (see [5]).
It is not hard to see that the characteristic function χ{x} : X → R is λ-continuous if and only

if x is λ-accessible in X. As usual, Cp(X) means the space of all real-valued continuous functions
on X which is endowed with the topology of pointwise convergence, while Cω(X) is the space of all
ω-continuous functions on X which is also endowed with the topology of pointwise convergence. The
notation Cp(X) ∼ Cp(Y ) means that Cp(X) and Cp(Y ) are homeomorphic.

Given a Tychonoff space X, denote the Hewitt completion of X by νX. The following are well
known:

Theorem 1 [4]. If X and Y are Tychonoff spaces and ϕ : X → Y is a homeomorphism then there
exists a homeomorphism ϕ̃ : νX → νY such that ϕ̃|X = ϕ. �

Theorem 2 [5]. If X is a normal space then

νCp(X) = {f ∈ RX : f is ω-continuous on X}. �

3. The Main Results

Lemma 1. Let X be a generalized ordered space, t(X) > ℵ0, and let Pl ⊂ Tl(X) be a right discrete
space in Tl(X); i.e., every x ∈ Pl is isolated in Tl(X)∩ [x,→). Then there exists A(Pl) ⊂ Cω(X)\Cp(X),
with A(Pl) = {fx : x ∈ Pl}, such that for every x ∈ Pl the function fx is continuous on X \ {x}, right
continuous at x ∈ X, and

f−1
x
′ (R \ {0}) ∩ f−1

x′′ (R \ {0}) = ∅

for all x′, x′′ ∈ Pl, x
′ �= x′′.

Proof. Since Pl is a right discrete set in Tl(X), for every x ∈ Pl there exists a neighborhood U(x)
such that U(x) ∩ [x,→) ∩ Tl(X) = {x}. Putting fx(x) = 1 and fx(t) = 0 if t < x or t ∈ [x,→) \ U(x),
we extend fx by continuity to [x,→). It is not hard to see that fx is left discontinuous at x, continuous
on [x,→), and ω-continuous since cf x = τ > ℵ0. The set A(Pl) = {fx : x ∈ Pl} satisfies the hypotheses
of the lemma. �

Obviously, if Tr(X) contains a left discrete set Pr; then, as in Lemma 1, we can construct A(Pr) ⊂
Cω(X) \ C(X).
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Lemma 2. Suppose that Y is a generalized ordered space, y0 ∈ Y , cf y0 > ℵ0, and there exists
a cofinal countably compact set A ⊂ (←, y0). Then for every function f ∈ Cω(Y ) there exists yf ∈ Y
such that yf < y0 and f(y) = f(yf ) for every y ∈ [yf , y0). The same holds for y0 ∈ Y such that cn y0 > ℵ0.

Proof. Show that
(∗) for every ε > 0 there is yε < y0 such that |f(y′′)− f(y′)| < ε if y′, y′′ ∈ (yε, y0).
Indeed, if (∗) fails then there is ε0 > 0 such that for every y < y0 we have points y′, y′′ > y for which

|f(y′)− f(y′′)| ≥ ε0. By induction, we can choose some increasing sequence of points

y1 < y′1 < y′′1 < · · · < yn < y′n < y′′n < · · ·

such that {yn}∞n=1 ⊂ A and |f(y′′n) − f(y′n)| ≥ ε0 for each n ∈ N. Since A is countably compact, there
exists a = sup{yn : n ∈ N} ∈ A. Clearly, a is also a limit point of {y′n : n ∈ N} and {y′′n : n ∈ N}. We
come to a contradiction to the continuity of f on the countable set {y′n : n ∈ N} ∪ {y′′n : n ∈ N} ∪ {a}.
Consequently, (∗) holds.

Applying (∗) to ε = 1
n , we obtain some sequence y1 < y2 < · · · such that yn ∈ A and |f(y′′) −

f(y′)| < 1
n for y′, y′′ ∈ (yn, y0). Then for yf = sup{yn : n ∈ N} we have f(y) = f(yf ) for all y ∈

[yf , y0). �
Lemma 3. Suppose that X and Y be generalized ordered sets, t(X) = t(Y ) = τ > ℵ0, and

Φ : Cω(X) → Cω(Y ) is a homeomorphism such that Φ(Cp(X)) = Cp(Y ). If fx ∈ A(Pl) (or fx ∈ A(Pr))
then Φ(fx) is λ-continuous for all λ < τ .

Proof. Suppose that there exists a subset Y0 ⊂ Y , with |Y0| < τ , and Φ(fx)|Y0 is discontinuous at
some point y0 ∈ Y0. Given y ∈ Y0 and n ∈ N , consider the standard neighborhoods of Φ(fx); i.e.,

U(y, n) = U

(
Φ(fx), y, y0,

1

n

)

=

{
g ∈ Cω(Y ) : |g(y)− Φ(fx)(y)| <

1

n
, |g(y0)− Φ(fx)(y0)| <

1

n

}
.

Then for every g ∈
⋂
{U(y, n) : y ∈ Y0, n ∈ N}, we have g|Y0 = Φ(fx)|Y0 . Hence,

(⋂
{U(y, n) : y ∈ Y0, n ∈ N}

)
∩ C(Y ) = ∅.

Since Φ(Cp(X)) = Cp(Y ); therefore,

(⋂
{Φ−1U(y, n) : y ∈ Y0, n ∈ N}

)
∩ Cp(X) = ∅. (1)

On the other hand, for every neighborhood Φ−1U(y, n) of fx, there exists a neighborhood

V

(
fx, F (y, n),

1

k(y, n)

)
⊂ Φ−1U(y, n),

where F (y, n) ⊂ X is a finite subset and k(y, n) ∈ N. Obviously, |
⋃
{(F (y, n) : y ∈ Y0, n ∈ N}| < τ

and hence F =
⋃
{F (y, n) : y ∈ Y0, n ∈ N} is not cofinal to x. Since fx ∈ A(Pl) is λ-continuous for all

λ < τ and hence strictly λ-continuous (see [5]), there exists a continuous function h ∈ Cp(X) such that
fx|F = h|F . Clearly,

h ∈
⋂{

V

(
fx, F (y, n),

1

k(y, n)

)
: y ∈ Y0, n ∈ N

}
⊂

⋂
{Φ−1U(y, n) : y ∈ Y0, n ∈ N},

which contradicts (1). �
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Lemma 4. Suppose that X and Y are generalized ordered spaces, t(X) = t(Y ) = τ > ℵ0, and
Φ : Cω(X) → Cω(Y ) is a homeomorphism such that Φ(Cp(X)) = Cp(Y ). If x ∈ Tlr(X) then Φ(χ{x}) is
λ-continuous for all λ < τ .

Proof. Observe that the function χ{x} is λ-continuous for λ < τ provided that x ∈ Tlr(X). The
rest of the proof is finished as in Lemma 3. �

Theorem 3. Suppose that X and Y are generalized ordered spaces, t(X) = t(Y ) = τ > ℵ0,
|T (X)| > |T (Y )| ≥ ℵ0, and the following are fulfilled:

(1) Either |Tlr(X)| > |T (Y )| or there exists a right discrete subset Pl ⊂ Tl(X) such that |Pl| > |T (Y )|
or there exists a left discrete set Pr ⊂ Tr(X) such that |Pr| > |T (Y )|.

(2) If y ∈ Y and cf y = τ then there exists a cofinal countably compact subset in (←, y). If cn y = τ
then there exists a coinitial countably compact subset in (y,→).

Then Cp(Y ) and Cp(X) are not homeomorphic.

Proof. Suppose that Pl ⊂ Tl(X) is right discrete in Tl(X) and |Pl| > |T (Y )|. Consider

A(Pl) ⊂ Cω(X) \ Cp(X)

and suppose that there exists a homeomorphism Φ : Cp(X) → Cp(Y ). Without loss of generality, we may
assume that Φ(0) = 0. Using Theorems 1 and 2, we can extend Φ to a homeomorphism Φ : Cω(X) →
Cω(Y ). Since the function f ≡ 0 is a limit point of the nonstationary sequence {fxn}∞n=1 ⊂ A(Pl), we see
that

|{x ∈ Pl : Φ(fx)(y) �= 0}| ≤ ℵ0 for all y ∈ Y.

Since |T (Y )| < |Pl|, there exists Pl1 ⊂ Pl such that |Pl1| = |Pl| and Φ(fx)(y) = 0 for all x ∈ Pl and
y ∈ T (Y ).

Since all Φ(fx) do not belong to Cp(Y ) and are λ-continuous for λ < τ by Lemma 3, for every
x ∈ Pl1 there exists y ∈ T (Y ) at which Φ(fx) is left discontinuous if y ∈ Tl(Y ) and right discontinuous
if y ∈ Tr(Y ).

Let y ∈ T (Y ) and

Ply = {x ∈ Pl1 : Φ(fx) is discontinuous at y}.

Since
⋃
{Ply : y ∈ T (Y )} = Pl1 and |Pl1| = |Pl| > T (Y ), there exists y0 ∈ T (Y ) such that |Ply0 | > ℵ0.

Without loss of generality, we may assume that all functions {Φ(fx) : x ∈ Ply0} are left discontinuous
at y0. By Lemma 2, for every Φ(fx) there exists a point yx ∈ Y such that Φ(fx)(y) = Φ(fx)(yx) for all
y ∈ [yx, y0); moreover, Φ(fx)(yx) �= 0 because Φ(fx) is discontinuous at y0 and Φ(fx)(y0) = 0. Since
|Ply0 | > ℵ0, for some n ∈ N there is an uncountable set Ply0n =

{
x ∈ Ply0 : Φ(fx)(yx) ≥ 1

n

}
.

Consider an arbitrary countable subset B ⊂ Ply0n. Since {yx : x ∈ B} is not cofinal to (←, y0),
there exists a point y1 such that yx < y1 < y0 for every x ∈ B; i.e., the identically zero function is not
limit point of {Φ(fx) : x ∈ B}. This contradicts the fact that the function f ≡ 0 is a limit point of
{fx : x ∈ B}.

For the case of the existence of a left discrete subset Pr in Tr(X) such that |Pr| > |T (Y )|, the proof
is similar. If |Tlr(X)| > |T (Y )|; then, instead of A(Pl), we must consider the set {χ{x} : x ∈ Tlr(x)} and
use Lemma 4. �

4. On the t-Equivalence of the Spaces Xα

Let X be a separable generalized ordered spaces and let α be an ordinal. Endow the product
[0, α) × X with the order relation (γ1, x1) ≤ (γ2, x2) if γ1 < γ2 or γ1 = γ2 and x1 ≤ x2. Let B(x) be
a neighborhood base of x ∈ X and let x0 be the first element in X (if existent). Define the neighborhood
base of (γ, x) ∈ [0, α)×X as follows:

B(γ, x) = {{γ} ×O(x) : O(x) ∈ B(x)}
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if x �= x0
B(γ, x0) = {(β, γ)×X � {γ} ×O(x0) : β < γ, O(x0) ∈ B(x0)},

if γ is a limit ordinal and

B(γ, x0) = {{γ − 1} × (x,→) � {γ} ×O(x0) : x ∈ X, O(x0) ∈ B(x0)}
if γ is a nonlimit ordinal.

Denote the space [0, α)×X with the topology base {B(γ, x) : γ ∈ [0, α), x ∈ X} by Xα.
Considering the segment [0, α], we obtain the space Xα+1. In particular, if X = [0, 1) ⊂ R and α = ω1

then we get a “long line,” and if S is a Sorgenfrey line with neighborhood base B(x) = {(a, x] : a < x}
and X = [0, 1) ⊂ S then [0, α)×X = Sα is a “long Sorgenfrey line.” As X, we can take the “two arrows”
or [0, 1) ⊂ H(A), where H(A) is the Hattori space (see [6]). Note that the existence of the first element
x0 ∈ X makes it possible to define some mapping ϕ(γ) = (γ, x0) that is a homeomorphic embedding of
the ordinal interval [0, α) onto the closed subspace {(γ, x0) : γ ∈ [0, α)} ⊂ [0, α) × X. If τ and σ are
initial ordinals, ω ≤ σ ≤ τ , and τ is a regular ordinal; then t(Xτσ+1) = τ and |T (Xτσ+1)| = |σ|. It is not
hard to see that T (Xτσ+1) has the form

{(τ(γ + 1), x0) : 1 ≤ γ < σ},
is right discrete, and T (Xτσ+1) = Tl. (In case σ = τ , we must add the point (τ · τ, x0).)

The set {(τ · γ + β, x0) : 1 ≤ β < τ} is homeomorphic to the ordinal interval [1, τ) and, hence,
it is countably compact. Moreover, this is a cofinal subset of (←, (τ(γ + 1)), x0). Thus, Xτσ+1 satisfy
conditions (1) and (2) of Theorem 3. Consequently, we have the following

Theorem 4. Suppose that X is a separable generalized ordered space with the first element; τ , λ,
and σ are initial ordinals, and τ is a regular ordinal. If ω ≤ σ < λ ≤ τ then Cp(Xτσ+1) and Cp(Xτλ+1)
are nonhomeomorphic. �

Theorem 5. Let α and β be infinite ordinals and let X be a separable generalized ordered space
with the first element. The space Cp(Xα+1) is homeomorphic to Cp(Xβ+1) if and only if Cp[0, α] is
homeomorphic to Cp[0, β].

Proof. Consider the closed subset A = [0, α]×{x0} ⊂ Xα+1 and show that there exists a continuous

linear extension operator Ψ : Cp(A)
in→ Cp(Xα+1). On every segment Iγ = [(γ, x0), (γ+1, x0)], 0 ≤ γ < α,

fix x1 ∈ X, with x1 > x0. By Urysohn’s Lemma, there is a linear function g0 : Iγ → [0, 1] such that
g0([(γ, x0), (γ, x1)]) ⊂ {1} and g0(γ + 1, x0) = 0. In a similar fashion, define the function g1 : Iγ → [0, 1],
g1([(γ, x1), (γ + 1, x0)]) ⊂ {1}, and g1(γ, x0) = 0. Putting f0 = g0

g0+g1
and f1 = g1

g0+g1
, we obtain the

partition of unity {f0, f1}. Consider the operator Ψ : Cp(A) → Cp(Xα+1) defined by the formula

Ψ(f)(γ, x) = f(γ, x0)f0(γ, x) + f(γ + 1, x0)f1(γ, x)

if 0 ≤ γ < α and Ψ(f)(α, x) = f(α, x0). The function Ψ(f)|A is equal to f , whereas Ψ(f) takes values
between f(γ, x0) and f(γ + 1, x0) on Iγ and hence Ψ(f) is continuous on Xα+1. It is easy to check
that Ψ is linear and continuous. In this event (see [5, 1.5]) Cp(Xα+1) is linearly homeomorphic to
Cp(A)× C0

p(Xα+1, A), where C0
p(Xα+1, A) = {f ∈ Cp(Xα+1) : f(A) ⊂ {0}}.

By the compactness of the ordinal segment [0, α], the set {γ : supx∈X |f(γ, x)| ≥ ε} is finite
for all f ∈ C0

p(Xα+1, A) and ε > 0. Therefore, C0
p(Xα+1, A) is linearly homeomorphic to the space(∏

0≤γ≤αC
0
p(Iγ)

)
c0

defined as follows:

( ∏
0≤γ≤α

C0
p(Iγ)

)
c0

=

{
f = {fγ}γ≤α ∈

∏
0≤γ≤α

C0
p(Iγ) : {γ : sup

(γ,x)∈Iγ
|fγ(γ, x)| ≥ ε} is finite for any ε > 0

}
,
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where

C0
p(Iγ) = {f ∈ Cp(Iγ) : f(γ, x0) = f(γ + 1, x0) = 0}

if 0 ≤ γ < α and

C0
p(Iα) = {f ∈ Cp(Iα) : f(α, x0) = 0}.

Since all Iγ ’s, with 0 ≤ γ < α, are homeomorphic to I0 and Iα is homeomorphic to X, the space

( ∏
0≤γ≤α

C0
p(Iγ)

)
c0

is linearly homeomorphic to

( ∏
0≤γ<α

C0
p(I0)

)
c0

× C0
p(Iα) ∼

(∏
|α|

C0
p(I0)

)
c0

× C0
p(X).

Suppose that Cp[0, α] is homeomorphic to Cp[0, β]. Clearly, in this case |α| = |β|. Since A is
homeomorphic to [0, α], we obtain

Cp(Xα+1) ∼ Cp(A)× C0
p(Xα+1, A) ∼ Cp[0, α]×

(∏
|α|

C0
p(I0)

)
c0

× C0
p(X)

∼ Cp[0, β]×
(∏

|β|
C0
p(I0)

)
c0

× C0
p(X) ∼ Cp(Xβ+1).

If Cp[0, α] is not homeomorphic to Cp[0, β] then this means that (see [7, 8]) either

(a) |α| �= |β|
or

(b) |α| = |β| = |τ |, where τ is an initial regular ordinal and there exist initial ordinals σ, λ, σ < λ ≤ τ
such that τσ ≤ α < τσ+ and τλ ≤ β < τλ+.

In case (a), granted the separability of X, we obtain

d(Xα+1) �= d(Xβ+1),

and so Cp(Xα+1) and Cp(Xβ+1) are nonhomeomorphic.

In case (b), Cp[0, α] ∼ Cp[0, τσ] and Cp[0, β] ∼ Cp[0, τλ]; therefore, by the above,

Cp(Xα+1) ∼ Cp(Xτσ+1),

and, respectively, Cp(Xβ+1) ∼ Cp(Xτλ+1). By Theorem 4, we conclude that Cp(Xα+1) and Cp(Xβ+1)
are nonhomeomorphic. �

Remark. If m,n ∈ N and m �= n; then, essentially repeating the proof in [9], we can prove
that Cp(Xτn+1) and Cp(Xτm+1) are nonhomeomorphic.

If σ = n ∈ N and ω ≤ λ < τ then Cp(Xτσ+1) is nonhomeomorphic to its square, whereas Cp(Xτλ+1) is
homeomorphic to its square by Theorem 5. Therefore, Cp(Xτσ+1) and Cp(Xτλ+1) are nonhomeomorphic.

Corollary 6. Let α and β be infinite ordinals and let Sα+1 and Sβ+1 be “long Sorgenfrey lines.”
The spaces Cp(Sα+1) and Cp(Sβ+1) are homeomorphic if and only if so are Cp[0, α] and Cp[0, β]. �
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