ISSN 0037-4466, Siberian Mathematical Journal, 2023, Vol. 64, No. 2, pp. 424-430. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 2, pp. 441-448.

ON THE *t*-EQUIVALENCE OF GENERALIZED ORDERED SETS N. N. Trofimenko and T. E. Khmyleva

Abstract: We consider the generalized ordered spaces X and Y such that the tightness t(X) coincides with the tightness t(Y) but $T(X) = \{x \in X : t(x, X) = t(X)\}$ and $T(Y) = \{y \in Y : t(y, Y) = t(Y)\}$ have different cardinalities. Some sufficient conditions are found under which such spaces X and Y are not t-equivalent.

UDC 515.129

DOI: 10.1134/S0037446623020143

Keywords: ordered topological spaces, cofinal subsets, regular ordinals, tightness, functional tightness, Hewitt completion, homeomorphism, topology of pointwise convergence

1. Introduction

We consider the homeomorphism of the spaces of continuous functions on generalized ordered spaces. A space X is a generalized ordered space if X is a subspace of some linearly ordered topological space Y (see [1]). In fact, these are the linearly ordered spaces in which a neighborhood base of $x \in X$ is given by intervals (y, z), with $x \in (y, z)$, or by half-intervals [x, y) or (y, x] or by the singleton $\{x\}$. Among the examples of these spaces are the Sorgenfrey line, the Michael line, the Hattori spaces, etc.

In generalized ordered spaces, the tightness t(X) of a space X coincides with the functional tightness of (X). Therefore, if $t(X) \neq t(Y)$ for generalized ordered spaces X and Y then the spaces $C_p(X)$ and $C_p(Y)$ are nonhomeomorphic [2]. In the article, considering generalized ordered spaces X and Y of the same tightness but having the nonequipollent sets of the points of maximum tightness, we find the sufficient conditions for X and Y to be not t-equivalent, which means that $C_p(Y)$ and $C_p(X)$ are nonhomeomorphic.

As a consequence, using the homeomorphism theorems for $C_p[0, \alpha]$, we obtain the topological classification of $C_p(S_\alpha)$ on the "long Sorgenfrey lines S_α ." Note that the topological and linear classifications of $C_p[0, \alpha]$ depend on the *t*-equivalence of the ordinal segments $[0, \alpha]$. The theorems in this article imply that the topological classification of the spaces $C_p(S_\alpha)$ coincides with the linear homeomorphic classification of $C_p(S_\alpha)$ which was obtained in [3].

2. The Main Notations and Definitions

Throughout the sequel, \mathbb{R} and \mathbb{N} are the sets of reals and naturals respectively; \aleph_0 is a countable cardinal, \aleph_1 is the first uncountable cardinal; and |A| is the cardinality of a set A. Given a generalized linear ordered space X, as usual, we put

$$(x, \to) = \{y \in X : y > x\}$$
 and $(\leftarrow, x) = \{y \in X : y < x\}.$

The spaces $[x, \rightarrow)$, $(\leftarrow, x]$, [y, x), and (x, y] are defined likewise. Observe that every linear ordered topological space X is normal (see [4, 1.7.5]) and so is every subspace $Y \subset X$ (see [4, 2.7.5]). Therefore, all generalized ordered spaces are normal.

DEFINITION 1. Let X be a generalized ordered space. If x is a limit point of (\leftarrow, x) then the *cofinality* of x is the cardinal

 $cf x = \min\{|A| : A \text{ is a cofinal subset of } (\leftarrow, x)\}.$

Original article submitted June 8, 2022; revised August 22, 2022; accepted October 10, 2022.

If x is an isolated point in $(\leftarrow, x] \subset X$ then we put cf x = 0. The coinitiality of $x \in X$ is defined similarly: cn x = 0 if x is an isolated point in $[x, \rightarrow)$ and

 $\operatorname{cn} x = \min\{|A| : A \text{ is a coinitial subset of } (x, \to)\}$

if x is a limit point of (x, \rightarrow) .

Denote by t(X) the tightness of a space X and designate as t(x, X) the tightness of X at a point x. If X is a generalized ordered space, then clearly $t(x, X) = \max{cf x, cn x}$. Let $t(X) = \tau$. Consider the set

$$T(X) = \{x \in X : t(x, X) = \tau\}$$

and its subsets

$$T_{l}(X) = \{ x \in T(X) : \text{cf } x = \tau, \text{cn } x < \tau \}; T_{r}(X) = \{ x \in T(X) : \text{cn } x = \tau, \text{cf } x < \tau \}; T_{lr}(X) = \{ x \in T(X) : \text{cn } x = \text{cf } x = \tau \}.$$

Clearly,

$$T(X) = T_l(X) \sqcup T_r(X) \sqcup T_{lr}(X).$$

DEFINITION 2. Let $Z \subset X$ and let λ be a cardinal. A point $x \in Z$ is λ -inaccessible in Z if from $x \notin A \subset Z$ and $|A| \leq \lambda$ it follows that $x \notin \overline{A}$.

DEFINITION 3. A function $f : X \to \mathbb{R}$ is λ -continuous if, for every $A \subset X$, with $|A| \leq \lambda$, the function $f|_A$ is continuous on A. If for every set $A \subset X$ such that $|A| \leq \lambda$, there exists a continuous function $h: X \to \mathbb{R}$ such that $f|_A = h|_A$ then f is strictly λ -continuous.

Note that for a normal space X, every λ -continuous function is strictly λ -continuous (see [5]).

It is not hard to see that the characteristic function $\chi_{\{x\}} : X \to \mathbb{R}$ is λ -continuous if and only if x is λ -accessible in X. As usual, $C_p(X)$ means the space of all real-valued continuous functions on X which is endowed with the topology of pointwise convergence, while $C_{\omega}(X)$ is the space of all ω -continuous functions on X which is also endowed with the topology of pointwise convergence. The notation $C_p(X) \sim C_p(Y)$ means that $C_p(X)$ and $C_p(Y)$ are homeomorphic.

Given a Tychonoff space X, denote the Hewitt completion of X by νX . The following are well known:

Theorem 1 [4]. If X and Y are Tychonoff spaces and $\varphi : X \to Y$ is a homeomorphism then there exists a homeomorphism $\tilde{\varphi} : \nu X \to \nu Y$ such that $\tilde{\varphi}|_X = \varphi$. \Box

Theorem 2 [5]. If X is a normal space then

 $\nu C_p(X) = \{ f \in \mathbb{R}^X : f \text{ is } \omega \text{-continuous on } X \}. \quad \Box$

3. The Main Results

Lemma 1. Let X be a generalized ordered space, $t(X) > \aleph_0$, and let $P_l \subset T_l(X)$ be a right discrete space in $T_l(X)$; i.e., every $x \in P_l$ is isolated in $T_l(X) \cap [x, \rightarrow)$. Then there exists $A(P_l) \subset C_{\omega}(X) \setminus C_p(X)$, with $A(P_l) = \{f_x : x \in P_l\}$, such that for every $x \in P_l$ the function f_x is continuous on $X \setminus \{x\}$, right continuous at $x \in X$, and

$$f_{x'}^{-1}(\mathbb{R}\setminus\{0\})\cap f_{x''}^{-1}(\mathbb{R}\setminus\{0\})=\varnothing$$

for all $x', x'' \in P_l, x' \neq x''$.

PROOF. Since P_l is a right discrete set in $T_l(X)$, for every $x \in P_l$ there exists a neighborhood U(x)such that $U(x) \cap [x, \to) \cap T_l(X) = \{x\}$. Putting $f_x(x) = 1$ and $f_x(t) = 0$ if t < x or $t \in [x, \to) \setminus U(x)$, we extend f_x by continuity to $[x, \to)$. It is not hard to see that f_x is left discontinuous at x, continuous on $[x, \to)$, and ω -continuous since cf $x = \tau > \aleph_0$. The set $A(P_l) = \{f_x : x \in P_l\}$ satisfies the hypotheses of the lemma. \Box

Obviously, if $T_r(X)$ contains a left discrete set P_r ; then, as in Lemma 1, we can construct $A(P_r) \subset C_{\omega}(X) \setminus C(X)$.

Lemma 2. Suppose that Y is a generalized ordered space, $y_0 \in Y$, cf $y_0 > \aleph_0$, and there exists a cofinal countably compact set $A \subset (\leftarrow, y_0)$. Then for every function $f \in C_{\omega}(Y)$ there exists $y_f \in Y$ such that $y_f < y_0$ and $f(y) = f(y_f)$ for every $y \in [y_f, y_0)$. The same holds for $y_0 \in Y$ such that cn $y_0 > \aleph_0$.

PROOF. Show that

(*) for every $\varepsilon > 0$ there is $y_{\varepsilon} < y_0$ such that $|f(y'') - f(y')| < \varepsilon$ if $y', y'' \in (y_{\varepsilon}, y_0)$.

Indeed, if (*) fails then there is $\varepsilon_0 > 0$ such that for every $y < y_0$ we have points y', y'' > y for which $|f(y') - f(y'')| \ge \varepsilon_0$. By induction, we can choose some increasing sequence of points

$$y_1 < y'_1 < y''_1 < \dots < y_n < y'_n < y''_n < \dots$$

such that $\{y_n\}_{n=1}^{\infty} \subset A$ and $|f(y''_n) - f(y'_n)| \ge \varepsilon_0$ for each $n \in \mathbb{N}$. Since A is countably compact, there exists $a = \sup\{y_n : n \in \mathbb{N}\} \in A$. Clearly, a is also a limit point of $\{y'_n : n \in \mathbb{N}\}$ and $\{y''_n : n \in \mathbb{N}\}$. We come to a contradiction to the continuity of f on the countable set $\{y'_n : n \in \mathbb{N}\} \cup \{y''_n : n \in \mathbb{N}\} \cup \{a\}$. Consequently, (*) holds.

Applying (*) to $\varepsilon = \frac{1}{n}$, we obtain some sequence $y_1 < y_2 < \cdots$ such that $y_n \in A$ and $|f(y'') - f(y')| < \frac{1}{n}$ for $y', y'' \in (y_n, y_0)$. Then for $y_f = \sup\{y_n : n \in \mathbb{N}\}$ we have $f(y) = f(y_f)$ for all $y \in [y_f, y_0)$. \Box

Lemma 3. Suppose that X and Y be generalized ordered sets, $t(X) = t(Y) = \tau > \aleph_0$, and $\Phi: C_{\omega}(X) \to C_{\omega}(Y)$ is a homeomorphism such that $\Phi(C_p(X)) = C_p(Y)$. If $f_x \in A(P_l)$ (or $f_x \in A(P_r)$) then $\Phi(f_x)$ is λ -continuous for all $\lambda < \tau$.

PROOF. Suppose that there exists a subset $Y_0 \subset Y$, with $|Y_0| < \tau$, and $\Phi(f_x)|_{Y_0}$ is discontinuous at some point $y_0 \in Y_0$. Given $y \in Y_0$ and $n \in N$, consider the standard neighborhoods of $\Phi(f_x)$; i.e.,

$$U(y,n) = U\left(\Phi(f_x), y, y_0, \frac{1}{n}\right)$$
$$= \left\{g \in C_{\omega}(Y) : |g(y) - \Phi(f_x)(y)| < \frac{1}{n}, |g(y_0) - \Phi(f_x)(y_0)| < \frac{1}{n}\right\}.$$

Then for every $g \in \bigcap \{ U(y,n) : y \in Y_0, n \in \mathbb{N} \}$, we have $g|_{Y_0} = \Phi(f_x)|_{Y_0}$. Hence,

 $\left(\bigcap\{U(y,n): y \in Y_0, n \in \mathbb{N}\}\right) \cap C(Y) = \emptyset.$

Since $\Phi(C_p(X)) = C_p(Y)$; therefore,

$$\left(\bigcap \{\Phi^{-1}U(y,n): y \in Y_0, \ n \in \mathbb{N}\}\right) \cap C_p(X) = \emptyset.$$
(1)

On the other hand, for every neighborhood $\Phi^{-1}U(y,n)$ of f_x , there exists a neighborhood

$$V\left(f_x, F(y, n), \frac{1}{k(y, n)}\right) \subset \Phi^{-1}U(y, n),$$

where $F(y,n) \subset X$ is a finite subset and $k(y,n) \in \mathbb{N}$. Obviously, $|\bigcup\{(F(y,n) : y \in Y_0, n \in \mathbb{N}\}| < \tau$ and hence $F = \bigcup\{F(y,n) : y \in Y_0, n \in \mathbb{N}\}$ is not cofinal to x. Since $f_x \in A(P_l)$ is λ -continuous for all $\lambda < \tau$ and hence strictly λ -continuous (see [5]), there exists a continuous function $h \in C_p(X)$ such that $f_x|_F = h|_F$. Clearly,

$$h \in \bigcap \left\{ V\left(f_x, F(y, n), \frac{1}{k(y, n)}\right) : y \in Y_0, \ n \in \mathbb{N} \right\} \subset \bigcap \{\Phi^{-1}U(y, n) : y \in Y_0, \ n \in \mathbb{N} \},$$

which contradicts (1). \Box

Lemma 4. Suppose that X and Y are generalized ordered spaces, $t(X) = t(Y) = \tau > \aleph_0$, and $\Phi : C_{\omega}(X) \to C_{\omega}(Y)$ is a homeomorphism such that $\Phi(C_p(X)) = C_p(Y)$. If $x \in T_{lr}(X)$ then $\Phi(\chi_{\{x\}})$ is λ -continuous for all $\lambda < \tau$.

PROOF. Observe that the function $\chi_{\{x\}}$ is λ -continuous for $\lambda < \tau$ provided that $x \in T_{lr}(X)$. The rest of the proof is finished as in Lemma 3. \Box

Theorem 3. Suppose that X and Y are generalized ordered spaces, $t(X) = t(Y) = \tau > \aleph_0$, $|T(X)| > |T(Y)| \ge \aleph_0$, and the following are fulfilled:

(1) Either $|T_{lr}(X)| > |T(Y)|$ or there exists a right discrete subset $P_l \subset T_l(X)$ such that $|P_l| > |T(Y)|$ or there exists a left discrete set $P_r \subset T_r(X)$ such that $|P_r| > |T(Y)|$.

(2) If $y \in Y$ and $\operatorname{cf} y = \tau$ then there exists a cofinal countably compact subset in (\leftarrow, y) . If $\operatorname{cn} y = \tau$ then there exists a coinitial countably compact subset in (y, \rightarrow) .

Then $C_p(Y)$ and $C_p(X)$ are not homeomorphic.

PROOF. Suppose that $P_l \subset T_l(X)$ is right discrete in $T_l(X)$ and $|P_l| > |T(Y)|$. Consider

$$A(P_l) \subset C_{\omega}(X) \setminus C_p(X)$$

and suppose that there exists a homeomorphism $\Phi : C_p(X) \to C_p(Y)$. Without loss of generality, we may assume that $\Phi(0) = 0$. Using Theorems 1 and 2, we can extend Φ to a homeomorphism $\Phi : C_{\omega}(X) \to C_{\omega}(Y)$. Since the function $f \equiv 0$ is a limit point of the nonstationary sequence $\{f_{x_n}\}_{n=1}^{\infty} \subset A(P_l)$, we see that

$$|\{x \in P_l : \Phi(f_x)(y) \neq 0\}| \le \aleph_0 \quad \text{for all } y \in Y.$$

Since $|T(Y)| < |P_l|$, there exists $P_{l_1} \subset P_l$ such that $|P_{l_1}| = |P_l|$ and $\Phi(f_x)(y) = 0$ for all $x \in P_l$ and $y \in T(Y)$.

Since all $\Phi(f_x)$ do not belong to $C_p(Y)$ and are λ -continuous for $\lambda < \tau$ by Lemma 3, for every $x \in P_{l_1}$ there exists $y \in T(Y)$ at which $\Phi(f_x)$ is left discontinuous if $y \in T_l(Y)$ and right discontinuous if $y \in T_r(Y)$.

Let $y \in T(Y)$ and

$$P_{ly} = \{ x \in P_{l1} : \Phi(f_x) \text{ is discontinuous at } y \}.$$

Since $\bigcup \{P_{ly} : y \in T(Y)\} = P_{l1}$ and $|P_{l1}| = |P_l| > T(Y)$, there exists $y_0 \in T(Y)$ such that $|P_{ly_0}| > \aleph_0$. Without loss of generality, we may assume that all functions $\{\Phi(f_x) : x \in P_{ly_0}\}$ are left discontinuous at y_0 . By Lemma 2, for every $\Phi(f_x)$ there exists a point $y_x \in Y$ such that $\Phi(f_x)(y) = \Phi(f_x)(y_x)$ for all $y \in [y_x, y_0)$; moreover, $\Phi(f_x)(y_x) \neq 0$ because $\Phi(f_x)$ is discontinuous at y_0 and $\Phi(f_x)(y_0) = 0$. Since $|P_{ly_0}| > \aleph_0$, for some $n \in \mathbb{N}$ there is an uncountable set $P_{ly_0n} = \{x \in P_{ly_0} : \Phi(f_x)(y_x) \geq \frac{1}{n}\}$. Consider an arbitrary countable subset $B \subset P_{ly_0n}$. Since $\{y_x : x \in B\}$ is not cofinal to (\leftarrow, y_0) ,

Consider an arbitrary countable subset $B \subset P_{ly_0n}$. Since $\{y_x : x \in B\}$ is not cofinal to (\leftarrow, y_0) , there exists a point y_1 such that $y_x < y_1 < y_0$ for every $x \in B$; i.e., the identically zero function is not limit point of $\{\Phi(f_x) : x \in B\}$. This contradicts the fact that the function $f \equiv 0$ is a limit point of $\{f_x : x \in B\}$.

For the case of the existence of a left discrete subset P_r in $T_r(X)$ such that $|P_r| > |T(Y)|$, the proof is similar. If $|T_{lr}(X)| > |T(Y)|$; then, instead of $A(P_l)$, we must consider the set $\{\chi_{\{x\}} : x \in T_{lr}(x)\}$ and use Lemma 4. \Box

4. On the *t*-Equivalence of the Spaces X_{α}

Let X be a separable generalized ordered spaces and let α be an ordinal. Endow the product $[0, \alpha) \times X$ with the order relation $(\gamma_1, x_1) \leq (\gamma_2, x_2)$ if $\gamma_1 < \gamma_2$ or $\gamma_1 = \gamma_2$ and $x_1 \leq x_2$. Let B(x) be a neighborhood base of $x \in X$ and let x_0 be the first element in X (if existent). Define the neighborhood base of $(\gamma, x) \in [0, \alpha) \times X$ as follows:

$$\mathscr{B}(\gamma, x) = \{\{\gamma\} \times O(x) : O(x) \in \mathscr{B}(x)\}$$

if $x \neq x_0$

$$\mathscr{B}(\gamma, x_0) = \{ (\beta, \gamma) \times X \sqcup \{\gamma\} \times O(x_0) : \beta < \gamma, \ O(x_0) \in \mathscr{B}(x_0) \},\$$

if γ is a limit ordinal and

$$\mathscr{B}(\gamma, x_0) = \{\{\gamma - 1\} \times (x, \rightarrow) \sqcup \{\gamma\} \times O(x_0) : x \in X, \ O(x_0) \in \mathscr{B}(x_0)\}$$

if γ is a nonlimit ordinal.

Denote the space $[0, \alpha) \times X$ with the topology base $\{B(\gamma, x) : \gamma \in [0, \alpha), x \in X\}$ by X_{α} .

Considering the segment $[0, \alpha]$, we obtain the space $X_{\alpha+1}$. In particular, if $X = [0, 1) \subset \mathbb{R}$ and $\alpha = \omega_1$ then we get a "long line," and if S is a Sorgenfrey line with neighborhood base $\mathscr{B}(x) = \{(a, x] : a < x\}$ and $X = [0, 1) \subset S$ then $[0, \alpha) \times X = S_{\alpha}$ is a "long Sorgenfrey line." As X, we can take the "two arrows" or $[0, 1) \subset H(A)$, where H(A) is the Hattori space (see [6]). Note that the existence of the first element $x_0 \in X$ makes it possible to define some mapping $\varphi(\gamma) = (\gamma, x_0)$ that is a homeomorphic embedding of the ordinal interval $[0, \alpha)$ onto the closed subspace $\{(\gamma, x_0) : \gamma \in [0, \alpha)\} \subset [0, \alpha) \times X$. If τ and σ are initial ordinals, $\omega \leq \sigma \leq \tau$, and τ is a regular ordinal; then $t(X_{\tau\sigma+1}) = \tau$ and $|T(X_{\tau\sigma+1})| = |\sigma|$. It is not hard to see that $T(X_{\tau\sigma+1})$ has the form

$$\{(\tau(\gamma+1), x_0) : 1 \le \gamma < \sigma\},\$$

is right discrete, and $T(X_{\tau\sigma+1}) = T_l$. (In case $\sigma = \tau$, we must add the point $(\tau \cdot \tau, x_0)$.)

The set $\{(\tau \cdot \gamma + \beta, x_0) : 1 \leq \beta < \tau\}$ is homeomorphic to the ordinal interval $[1, \tau)$ and, hence, it is countably compact. Moreover, this is a cofinal subset of $(\leftarrow, (\tau(\gamma + 1)), x_0)$. Thus, $X_{\tau\sigma+1}$ satisfy conditions (1) and (2) of Theorem 3. Consequently, we have the following

Theorem 4. Suppose that X is a separable generalized ordered space with the first element; τ , λ , and σ are initial ordinals, and τ is a regular ordinal. If $\omega \leq \sigma < \lambda \leq \tau$ then $C_p(X_{\tau\sigma+1})$ and $C_p(X_{\tau\lambda+1})$ are nonhomeomorphic. \Box

Theorem 5. Let α and β be infinite ordinals and let X be a separable generalized ordered space with the first element. The space $C_p(X_{\alpha+1})$ is homeomorphic to $C_p(X_{\beta+1})$ if and only if $C_p[0, \alpha]$ is homeomorphic to $C_p[0, \beta]$.

PROOF. Consider the closed subset $A = [0, \alpha] \times \{x_0\} \subset X_{\alpha+1}$ and show that there exists a continuous linear extension operator $\Psi : C_p(A) \xrightarrow{in} C_p(X_{\alpha+1})$. On every segment $I_{\gamma} = [(\gamma, x_0), (\gamma+1, x_0)], 0 \leq \gamma < \alpha$, fix $x_1 \in X$, with $x_1 > x_0$. By Urysohn's Lemma, there is a linear function $g_0 : I_{\gamma} \to [0, 1]$ such that $g_0([(\gamma, x_0), (\gamma, x_1)]) \subset \{1\}$ and $g_0(\gamma + 1, x_0) = 0$. In a similar fashion, define the function $g_1 : I_{\gamma} \to [0, 1],$ $g_1([(\gamma, x_1), (\gamma + 1, x_0)]) \subset \{1\}$, and $g_1(\gamma, x_0) = 0$. Putting $f_0 = \frac{g_0}{g_0+g_1}$ and $f_1 = \frac{g_1}{g_0+g_1}$, we obtain the partition of unity $\{f_0, f_1\}$. Consider the operator $\Psi : C_p(A) \to C_p(X_{\alpha+1})$ defined by the formula

$$\Psi(f)(\gamma, x) = f(\gamma, x_0) f_0(\gamma, x) + f(\gamma + 1, x_0) f_1(\gamma, x)$$

if $0 \leq \gamma < \alpha$ and $\Psi(f)(\alpha, x) = f(\alpha, x_0)$. The function $\Psi(f)|_A$ is equal to f, whereas $\Psi(f)$ takes values between $f(\gamma, x_0)$ and $f(\gamma + 1, x_0)$ on I_{γ} and hence $\Psi(f)$ is continuous on $X_{\alpha+1}$. It is easy to check that Ψ is linear and continuous. In this event (see [5, 1.5]) $C_p(X_{\alpha+1})$ is linearly homeomorphic to $C_p(A) \times C_p^0(X_{\alpha+1}, A)$, where $C_p^0(X_{\alpha+1}, A) = \{f \in C_p(X_{\alpha+1}) : f(A) \subset \{0\}\}$.

By the compactness of the ordinal segment $[0, \alpha]$, the set $\{\gamma : \sup_{x \in X} |f(\gamma, x)| \ge \varepsilon\}$ is finite for all $f \in C_p^0(X_{\alpha+1}, A)$ and $\varepsilon > 0$. Therefore, $C_p^0(X_{\alpha+1}, A)$ is linearly homeomorphic to the space $(\prod_{0 \le \gamma \le \alpha} C_p^0(I_{\gamma}))_{c_0}$ defined as follows:

$$\left(\prod_{0\leq\gamma\leq\alpha}C_p^0(I_{\gamma})\right)_{c_0} = \left\{f = \{f_{\gamma}\}_{\gamma\leq\alpha} \in \prod_{0\leq\gamma\leq\alpha}C_p^0(I_{\gamma}) : \{\gamma: \sup_{(\gamma,x)\in I_{\gamma}}|f_{\gamma}(\gamma,x)|\geq\varepsilon\} \text{ is finite for any } \varepsilon > 0\right\},$$

where

$$C_p^0(I_{\gamma}) = \{ f \in C_p(I_{\gamma}) : f(\gamma, x_0) = f(\gamma + 1, x_0) = 0 \}$$

if $0 \leq \gamma < \alpha$ and

$$C_p^0(I_\alpha) = \{ f \in C_p(I_\alpha) : f(\alpha, x_0) = 0 \}.$$

Since all I_{γ} 's, with $0 \leq \gamma < \alpha$, are homeomorphic to I_0 and I_{α} is homeomorphic to X, the space

$$\left(\prod_{0\leq\gamma\leq\alpha}C_p^0(I_\gamma)\right)_{c_0}$$

is linearly homeomorphic to

$$\left(\prod_{0\leq\gamma<\alpha}C_p^0(I_0)\right)_{c_0}\times C_p^0(I_\alpha)\sim \left(\prod_{|\alpha|}C_p^0(I_0)\right)_{c_0}\times C_p^0(X).$$

Suppose that $C_p[0, \alpha]$ is homeomorphic to $C_p[0, \beta]$. Clearly, in this case $|\alpha| = |\beta|$. Since A is homeomorphic to $[0, \alpha]$, we obtain

$$C_p(X_{\alpha+1}) \sim C_p(A) \times C_p^0(X_{\alpha+1}, A) \sim C_p[0, \alpha] \times \left(\prod_{|\alpha|} C_p^0(I_0)\right)_{c_0} \times C_p^0(X)$$
$$\sim C_p[0, \beta] \times \left(\prod_{|\beta|} C_p^0(I_0)\right)_{c_0} \times C_p^0(X) \sim C_p(X_{\beta+1}).$$

If $C_p[0, \alpha]$ is not homeomorphic to $C_p[0, \beta]$ then this means that (see [7, 8]) either (a) $|\alpha| \neq |\beta|$

or

(b) $|\alpha| = |\beta| = |\tau|$, where τ is an initial regular ordinal and there exist initial ordinals $\sigma, \lambda, \sigma < \lambda \leq \tau$ such that $\tau \sigma \leq \alpha < \tau \sigma^+$ and $\tau \lambda \leq \beta < \tau \lambda^+$.

In case (a), granted the separability of X, we obtain

$$d(X_{\alpha+1}) \neq d(X_{\beta+1}),$$

and so $C_p(X_{\alpha+1})$ and $C_p(X_{\beta+1})$ are nonhomeomorphic.

In case (b), $C_p[0,\alpha] \sim C_p[0,\tau\sigma]$ and $C_p[0,\beta] \sim C_p[0,\tau\lambda]$; therefore, by the above,

$$C_p(X_{\alpha+1}) \sim C_p(X_{\tau\sigma+1}),$$

and, respectively, $C_p(X_{\beta+1}) \sim C_p(X_{\tau\lambda+1})$. By Theorem 4, we conclude that $C_p(X_{\alpha+1})$ and $C_p(X_{\beta+1})$ are nonhomeomorphic. \Box

REMARK. If $m, n \in \mathbb{N}$ and $m \neq n$; then, essentially repeating the proof in [9], we can prove that $C_p(X_{\tau n+1})$ and $C_p(X_{\tau m+1})$ are nonhomeomorphic.

If $\sigma = n \in \mathbb{N}$ and $\omega \leq \lambda < \tau$ then $C_p(X_{\tau\sigma+1})$ is nonhomeomorphic to its square, whereas $C_p(X_{\tau\lambda+1})$ is homeomorphic to its square by Theorem 5. Therefore, $C_p(X_{\tau\sigma+1})$ and $C_p(X_{\tau\lambda+1})$ are nonhomeomorphic.

Corollary 6. Let α and β be infinite ordinals and let $S_{\alpha+1}$ and $S_{\beta+1}$ be "long Sorgenfrey lines." The spaces $C_p(S_{\alpha+1})$ and $C_p(S_{\beta+1})$ are homeomorphic if and only if so are $C_p[0,\alpha]$ and $C_p[0,\beta]$. \Box

References

- 1. Faber M.J., *Metrizability in Generalized Ordered Spaces*, Mathematical Centrum, Amsterdam (1974) (Mathematical Centre Tracts; vol. 53).
- 2. Arkhangelskii A.V., Topological Function Spaces, Moscow University, Moscow (1989) [Russian].
- Trofimenko N. N. and Khmyleva T. E., "Linear homeomorphisms of spaces of continuous functions on long Sorgenfrey lines," Sib. Math. J., vol. 57, no. 3, 558–56 (2016).
- 4. Engelking R., General Topology, Heldermann, Berlin (1989).
- 5. Tkachuk V., A Cp-Theory Problem Book, Springer, New York (2015).
- Chatyrko V.A. and Hattori Y., "A poset of topologies on the set of real numbers," Comment. Math. Univ. Carolin., vol. 54, no. 2, 189–196 (2013).
- Genze L.V., Gulko S.P., and Khmyleva T.E., "Classification of spaces of continuous functions on ordinals," Comment. Math. Univ. Carolin., vol. 59, no. 3, 365–370 (2018).
- 8. Gorak R., "Functional spaces on ordinals," Comment. Math. Univ. Carolin., vol. 46, no. 1, 93–103 (2005).
- Gulko S.P., "Spaces of continuous functions on ordinals and ultrafilters," Math. Notes, vol. 47, no. 4, 329–334 (1990).

N. N. TROFIMENKO TOMSK STATE UNIVERSITY, TOMSK, RUSSIA *E-mail address*: trofnadezhda990yandex.ru

T. E. KHMYLEVA

TOMSK STATE UNIVERSITY, TOMSK, RUSSIA *E-mail address*: tex2150@yandex.ru