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NONLINEAR MIXED JORDAN TRIPLE
∗-DERIVATIONS ON ∗-ALGEBRAS
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Abstract: Let A be a unital ∗-algebra containing a nontrivial projection. Under some mild conditions
on A, it is shown that a map Φ : A → A is a nonlinear mixed Jordan triple ∗-derivation if and only
if Φ is an additive ∗-derivation. In particular, we apply the above result to prime ∗-algebras, von
Neumann algebras with no central summands of type I1, factor von Neumann algebras, and standard
operator algebras.
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1. Introduction

Let A be a ∗-algebra over the complex field C. Given A,B ∈ A, we call the product [A,B]∗ =
AB − BA∗ the skew Lie product and A • B = AB + BA∗ the Jordan ∗-product. The two new products
are fairly meaningful and important and have been studied by many authors (see [1–15]). Recall that an
additive map Φ : A → A is said to be an additive derivation if

Φ(AB) = Φ(A)B +AΦ(B)

for all A,B ∈ A. Furthermore, Φ is said to be an additive ∗-derivation if Φ is an additive derivation and
satisfies Φ(A∗) = Φ(A)∗ for all A ∈ A. A map (without the additivity assumption) Φ : A → A is said to
be a nonlinear Jordan ∗-derivation or a nonlinear skew Lie derivation if Φ(A•B) = Φ(A)•B+A•Φ(B)
or Φ([A,B]∗) = [Φ(A), B]∗+[A,Φ(B)]∗ for all A,B ∈ A. Many authors have paid more attentions on the
problem about Jordan ∗-derivations, skew Lie derivations and triple derivations, such as Jordan triple
∗-derivations and skew Lie triple derivations (see [15–24]). For example, Taghavi et al. [24] investigated
a nonlinear λ-Jordan triple ∗-derivation on prime ∗-algebras; i.e., for all A,B,C ∈ A,

Φ(A♦λB♦λC) = Φ(A)♦λB♦λC +A♦λΦ(B)♦λC +A♦λB♦λΦ(C)

where A♦λB = AB + λBA∗ such that a complex scalar |λ| �= 0, 1, and Φ is additive. Moreover, if Φ(I)
is self-adjoint, then Φ is a ∗-derivation.

Recently, many authors have studied the isomorphisms and derivations corresponding to the new
products of the mixture of Lie product and skew Lie product. For example, Yang and Zhang [25, 26]
studied the nonlinear maps that preserve the mixed skew Lie triple product [[A,B]∗, C] and [[A,B], C]∗ on
factor von Neumann algebras. Zhou, Yang, and Zhang [27] studied the structure of the nonlinear mixed
Lie triple derivations on prime ∗-algebras. In this paper, we consider the derivations corresponding to
the new product of the mixture of the skew Lie product and the Jordan ∗-product. A map Φ : A → A
is said to be a nonlinear mixed Jordan triple ∗-derivation if

Φ([A •B,C]∗) = [Φ(A) •B,C]∗ + [A • Φ(B), C]∗ + [A •B,Φ(C)]∗

for all A,B,C ∈ A. Under some mild conditions on a ∗-algebra A, we prove that a map Φ : A → A is
a nonlinear mixed Jordan triple ∗-derivation if and only if Φ is an additive ∗-derivation. In particular, we
apply the above result to prime ∗-algebras, von Neumann algebras with no central summands of type I1,
factor von Neumann algebras, and standard operator algebras.
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2. The Main Result and Its Proof

Our main result in this paper reads as follows:

Theorem 2.1. Let A be a unital ∗-algebra with the unit I. Assume that A contains a nontrivial
projection P that satisfies

XAP = 0 implies X = 0 (♠)

and

XA(I − P ) = 0 implies X = 0. (♣)

Then a map Φ : A → A satisfies

Φ([A •B,C]∗) = [Φ(A) •B,C]∗ + [A • Φ(B), C]∗ + [A •B,Φ(C)]∗

for all A,B,C ∈ A if and only if Φ is an additive ∗-derivation.
Proof. Let P1 = P and P2 = I − P . Put Ajk = PjAPk, j, k = 1, 2. Then

A =
2∑

j,k=1

Ajk.

In the sequel Ajk indicates that Ajk ∈ Ajk. Clearly, we only need to prove the necessity. We will complete
the proof by several claims:

Claim 1. Φ(0) = 0.

Indeed,
Φ(0) = Φ([0 • 0, 0]∗) = [Φ(0) • 0, 0]∗ + [0 • Φ(0), 0]∗ + [0 • 0,Φ(0)]∗ = 0.

Claim 2. Φ is additive.

We will complete the proof of Claim 2 in several steps.

Step 2.1. Given A12 ∈ A12 and B21 ∈ A21, we have Φ(A12 +B21) = Φ(A12) + Φ(B21).
We only need show that T = Φ(A12 +B21)− Φ(A12)− Φ(B21) = 0. Since

[I • (i(P2 − P1)), A12]∗ = [I • (i(P2 − P1)), B21]∗ = 0,

where i is the imaginary unit; it follows from Claim 1 that

[Φ(I) • (i(P2 − P1)), A12 +B21]∗ + [I • Φ(i(P2 − P1)), A12 +B21]∗

+[I • (i(P2 − P1)),Φ(A12 +B21)]∗ = Φ([I • (i(P2 − P1)), A12 +B21]∗)

= Φ([I • (i(P2 − P1)), A12]∗) + Φ([I • (i(P2 − P1)), B21]∗)

= [Φ(I) • (i(P2 − P1)), A12 +B21]∗ + [I • Φ(i(P2 − P1)), A12 +B21]∗

+[I • (i(P2 − P1)),Φ(A12) + Φ(B21)]∗.

From this we get [I • (i(P2 − P1)), T ]∗ = 0. So T11 = T22 = 0.
Since [I •A12, P1]∗ = 0, it follows that

[Φ(I) • (A12 +B21), P1]∗ + [I • Φ(A12 +B21), P1]∗ + [I • (A12 +B21),Φ(P1)]∗

= Φ([I • (A12 +B21), P1]∗) = Φ([I •A12, P1]∗) + Φ([I •B21, P1]∗)

= [Φ(I) • (A12 +B21), P1]∗ + [I • (Φ(A12) + Φ(B21)), P1]∗ + [I • (A12 +B21),Φ(P1)]∗.
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Hence [I • T, P1]∗ = 0, from which we get that T21 = 0. Similarly, we can show that T12 = 0, proving the
step.

Step 2.2. For all A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, and D22 ∈ A22 we have

Φ(A11 +B12 + C21) = Φ(A11) + Φ(B12) + Φ(C21)

and
Φ(B12 + C21 +D22) = Φ(B12) + Φ(C21) + Φ(D22).

Let T = Φ(A11 +B12 + C21)− Φ(A11)− Φ(B12)− Φ(C21).
It follows from Step 2.1 that

[Φ(I) • (iP2), A11 +B12 + C21]∗ + [I • Φ(iP2), A11 +B12 + C21]∗

+[I • (iP2),Φ(A11 +B12 + C21)]∗ = Φ([I • (iP2), A11 +B12 + C21]∗)

= Φ([I • (iP2), A11]∗) + Φ([I • (iP2), B12 + C21]∗)

= Φ([I • (iP2), A11]∗) + Φ([I • (iP2), B12]∗) + Φ([I • (iP2), C21]∗)

= [Φ(I) • (iP2), A11 +B12 + C21]∗ + [I • Φ(iP2), A11 +B12 + C21]∗

+[I • (iP2),Φ(A11) + Φ(B12) + Φ(C21)]∗.

From this we get [I • (iP2), T ]∗ = 0. So T12 = T21 = T22 = 0.
Since

[I • (i(P2 − P1)), B12]∗ = [I • (i(P2 − P1)), C21]∗ = 0,

it follows that

[Φ(I) • (i(P2 − P1)), A11 +B12 + C21]∗ + [I • Φ(i(P2 − P1)), A11 +B12 + C21]∗

+[I • (i(P2 − P1)),Φ(A11 +B12 + C21)]∗ = Φ([I • (i(P2 − P1)), A11 +B12 + C21]∗)

= Φ([I • (i(P2 − P1)), A11]∗) + Φ([I • (i(P2 − P1)), B12]∗) + Φ([I • (i(P2 − P1)), C21]∗)

= [Φ(I) • (i(P2 − P1)), A11 +B12 + C21]∗ + [I • Φ(i(P2 − P1)), A11 +B12 + C21]∗

+[I • (i(P2 − P1)),Φ(A11) + Φ(B12) + Φ(C21)]∗,

from which we get [I • (i(P2−P1)), T ]∗ = 0. So T11 = 0, and then T = 0. Similarly, Φ(B12+C21+D22) =
Φ(B12) + Φ(C21) + Φ(D22).

Step 2.3. For all A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, and D22 ∈ A22, we have

Φ(A11 +B12 + C21 +D22) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

Let T = Φ(A11 +B12 + C21 +D22)− Φ(A11)− Φ(B12)− Φ(C21)− Φ(D22). It follows from Step 2.2
that

[Φ(I) • (iP2), A11 +B12 + C21 +D22]∗ + [I • Φ(iP2), A11 +B12 + C21 +D22]∗

+[I • (iP2),Φ(A11 +B12 + C21 +D22)]∗ = Φ([I • (iP2), A11 +B12 + C21 +D22]∗)

= Φ([I • (iP2), A11]∗) + Φ([I • (iP2), B12 + C21 +D22)

= Φ([I • (iP2), A11]∗) + Φ([I • (iP2), B12]∗) + Φ([I • (iP2), C21]∗) + Φ([I • (iP2), D22]∗)

= [Φ(I) • (iP2), A11 +B12 + C21 ++D22]∗ + [I • Φ(iP2), A11 +B12 + C21 +D22]∗

+[I • (iP2),Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22)]∗.

From this we get [I • (iP2), T ]∗ = 0. So T12 = T21 = T22 = 0. Similarly, we can show that T11 = 0,
proving Step 2.3.
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Step 2.4. Given Ajk, Bjk ∈ Ajk, with 1 ≤ j �= k ≤ 2, we have Φ(Ajk +Bjk) = Φ(Ajk) + Φ(Bjk).
Since [

I

2
• (Pj +Ajk), Pk +Bjk

]

∗
= (Ajk +Bjk)−A∗

jk −BjkA
∗
jk,

we get from Step 2.3 that

Φ(Ajk +Bjk) + Φ(−A∗
jk) + Φ(−BjkA

∗
jk) = Φ

([
I

2
• (Pj +Ajk), Pk +Bjk

]

∗

)

=

[
Φ(

I

2
) • (Pj +Ajk), Pk +Bjk

]

∗
+

[
I

2
• Φ(Pj +Ajk), Pk +Bjk

]

∗

+

[
I

2
• (Pj +Ajk),Φ(Pk +Bjk)

]

∗
=

[
Φ(

I

2
) • (Pj +Ajk), Pk +Bjk

]

∗

+

[
I

2
•
(
Φ(Pj) + Φ(Ajk)

)
, Pk +Bjk

]

∗
+

[
I

2
• (Pj +Ajk), (Φ(Pk) + Φ(Bjk))

]

∗

= Φ

([
I

2
• Pj , Pk

]

∗

)
+Φ

([
I

2
• Pj , Bjk

]

∗

)
+Φ

([
I

2
•Ajk, Pk

]

∗

)
+Φ

([
I

2
•Ajk, Bjk

]

∗

)

= Φ(Bjk) + Φ(Ajk −A∗
jk) + Φ(−BjkA

∗
jk)

= Φ(Bjk) + Φ(Ajk) + Φ(−A∗
jk) + Φ(−BjkA

∗
jk).

Then Φ(Ajk +Bjk) = Φ(Ajk) + Φ(Bjk).

Step 2.5. Given Ajj , Bjj ∈ Ajj , with 1 ≤ j ≤ 2, we have

Φ(Ajj +Bjj) = Φ(Ajj) + Φ(Bjj).

Let T = Φ(Ajj +Bjj)− Φ(Ajj)− Φ(Bjj). For 1 ≤ j �= k ≤ 2, it follows that

[Φ(I) • (iPk), Ajj +Bjj ]∗ + [I • Φ(iPk), Ajj +Bjj ]∗

+[I • (iPk),Φ(Ajj +Bjj)]∗ = Φ([I • (iPk), Ajj +Bjj ]∗) = Φ([I • (iPk), Ajj ]∗) + Φ([I • (iPk), Bjj ]∗)

= [Φ(I) • (iPk), Ajj +Bjj ]∗ + [I • Φ(iPk), Ajj +Bjj ]∗

+[I • (iPk),Φ(Ajj) + Φ(Bjj)]∗.

From this we get [I • (iPk), T ]∗ = 0. So Tjk = Tkj = Tkk = 0. Now T = Tjj .
For all Cjk ∈ Ajk, j �= k, it follows from Step 2.4 that

[Φ(I) • (Ajj +Bjj), Cjk]∗ + [I • Φ(Ajj +Bjj), Cjk]∗

+[I • (Ajj +Bjj),Φ(Cjk)]∗ = Φ([I • (Ajj +Bjj), Cjk]∗)

= Φ([I •Ajj , Cjk]∗) + Φ([I •Bjj , Cjk]∗)

= [Φ(I) • (Ajj +Bjj), Cjk]∗ + [I • Φ(Ajj) + Φ(Bjj), Cjk]∗

+[I • (Ajj +Bjj),Φ(Cjk)]∗.

Hence [I • Tjj , Cjk]∗ = 0 for all Cjk ∈ Ajk; i.e., TjjCPk = 0 for all C ∈ A. It follows from (♠) and (♣)
that T = Tjj = 0, proving the step.

Now, it follows from Steps 2.3–2.5 that Φ is additive, proving Claim 2.

Claim 3. Φ(I) is a self-adjoint central element in A.

On the one hand,

0 = Φ([I • I, I]∗) = [Φ(I) • I, I]∗ + [I • Φ(I), I]∗ + [I • I,Φ(I)]∗
= [2Φ(I), I]∗ = 2Φ(I)− 2Φ(I)∗,
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which implies that Φ(I) is a self-adjoint element in A.
On the other hand, for all A ∈ A we get

0 = Φ([I • I, A]∗) = [Φ(I) • I, A]∗ + [I • Φ(I), A]∗ + [I • I,Φ(A)]∗
= 2[2Φ(I), A]∗ = 4(Φ(I)A−AΦ(I)),

which implies that Φ(I) is a central element in A.

Claim 4. P1Φ(P1)P2 = −P1Φ(P2)P2, P2Φ(P1)P1 = −P2Φ(P2)P1, and P1Φ(P2)P1 = P2Φ(P1)P2 = 0.

On the one hand, for 1 ≤ j �= k ≤ 2, it follows from Claim 3 that

0 = Φ([I • Pj , Pk]∗) = [Φ(I) • Pj , Pk]∗ + [I • Φ(Pj), Pk]∗ + [I • Pj ,Φ(Pk)]∗

= [2Φ(Pj), Pk]∗ + [2Pj ,Φ(Pk)]∗ = 2Φ(Pj)Pk − 2PkΦ(Pj)
∗ + 2PjΦ(Pk)− 2Φ(Pk)Pj .

Multiplying both sides of the above equation by Pj and Pk from the left and right, respectively, we infer
that P1Φ(P1)P2 = −P1Φ(P2)P2 and P2Φ(P1)P1 = −P2Φ(P2)P1.

On the other hand, we get

0 = Φ([I • (iPj), Pk]∗) = [Φ(I) • (iPj), Pk]∗ + [I • Φ(iPj), Pk]∗ + [I • (iPj),Φ(Pk)]∗

= [2Φ(iPj), Pk]∗ + [2iPj ,Φ(Pk)]∗

= 2Φ(iPj)Pk − 2PkΦ(iPj)
∗ + 2i(PjΦ(Pk) + Φ(Pk)Pj).

Multiplying both sides of the above equation by Pj from the left and right, respectively, we obtain that
P1Φ(P2)P1 = P2Φ(P1)P2 = 0.

Claim 5. P1Φ(P1)P1 = P2Φ(P2)P2 = 0.

For every A12 ∈ A12, on the one hand, it follows from Claims 2 and 3 that

2Φ(A12) = Φ([I • P1, A12]∗) = [Φ(I) • P1, A12]∗ + [I • Φ(P1), A12]∗ + [I • P1,Φ(A12)]∗

= [2Φ(I)P1, A12]∗ + [2Φ(P1), A12]∗ + [2P1,Φ(A12)]∗

= 2Φ(I)A12 + 2Φ(P1)A12 − 2A12Φ(P1)
∗ + 2P1Φ(A12)− 2Φ(A12)P1.

Multiplying both sides of the above equation by P1 and P2 from the left and right, respectively, by
Claim 4, we get that

P1Φ(P1)A12 +Φ(I)A12 = 0. (2.1)

On the other hand, we have

2Φ(A12) = Φ([P1 • P1, A12]∗)

= [Φ(P1) • P1, A12]∗ + [P1 • Φ(P1), A12]∗ + [P1 • P1,Φ(A12)]∗

= [Φ(P1)P1 + P1Φ(P1)
∗, A12]∗ + [P1Φ(P1) + Φ(P1)P1, A12]∗ + [2P1,Φ(A12)]∗

= Φ(P1)A12 + P1Φ(P1)
∗A12 −A12Φ(P1)P1 + P1Φ(P1)A12

+Φ(P1)A12 −A12Φ(P1)
∗P1 + 2P1Φ(A12)− 2Φ(A12)P1.

Multiplying both sides of the above equation by P1 and P2 from the left and right, respectively, we get
that

3P1Φ(P1)A12 + P1Φ(P1)
∗A12 = 0. (2.2)
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Finally,

2Φ(A12) = Φ([P1 • I, A12]∗)

= [Φ(P1) • I, A12]∗ + [P1 • Φ(I), A12]∗ + [P1 • I,Φ(A12)]∗

= [Φ(P1) + Φ(P1)
∗, A12]∗ + [2P1Φ(I), A12]∗ + [2P1,Φ(A12)]∗

= (Φ(P1) + Φ(P1)
∗)A12 −A12(Φ(P1) + Φ(P1)

∗) + 2Φ(I)A12 + 2P1Φ(A12)− 2Φ(A12)P1.

Multiplying both sides of the above equation by P1 and P2 from the left and right, respectively, by
Claim 4, we get that

P1Φ(P1)A12 + P1Φ(P1)
∗A12 + 2Φ(I)A12 = 0. (2.3)

It follows from (2.2) and (2.3) that

P1Φ(P1)A12 − Φ(I)A12 = 0. (2.4)

Now, by (2.1) and (2.4), we have P1Φ(P1)A12 = 0; i.e., P1Φ(P1)P1AP2 = 0 for all A ∈ A. It follows
from (♣) that P1Φ(P1)P1 = 0. Similarly, we can prove that P2Φ(P2)P2 = 0.

Claim 6. Φ(I) = 0.

By Claims 2, 4, and 5, we can get that

Φ(I) = Φ(P1) + Φ(P2) = P1Φ(P1)P2 + P2Φ(P1)P1 + P1Φ(P2)P2 + P2Φ(P2)P1 = 0.

Claim 7. Φ([A,B]∗) = [Φ(A), B]∗ + [A,Φ(B)]∗ for all A,B ∈ A.

It follows from Claims 2 and 6 that

2Φ([A,B]∗) = Φ([I •A,B]∗) = [Φ(I) •A,B]∗ + [I • Φ(A), B]∗ + [I •A,Φ(B)]∗

= [2Φ(A), B]∗ + [2A,Φ(B)]∗ = 2([Φ(A), B]∗ + [A,Φ(B)]∗),

which implies that Φ([A,B]∗) = [Φ(A), B]∗ + [A,Φ(B)]∗.

Claim 8. Φ(A∗) = Φ(A)∗ for all A ∈ A.

For every A ∈ A, by Claims 2, 6, and 7, we have

Φ(A)− Φ(A∗) = Φ([A, I]∗) = [Φ(A), I]∗ = Φ(A)− Φ(A)∗.
Hence Φ(A∗) = Φ(A)∗.

Claim 9. Φ(iI) = 0.

By Claims 2 and 8, we can get Φ(iI)∗ = −Φ(iI). So

0 = −2Φ(I) = Φ([iI, iI]∗) = [Φ(iI), iI]∗ + [iI,Φ(iI)]∗ = 4iΦ(iI),

which implies that Φ(iI) = 0.

Claim 10. Φ(iA) = iΦ(A) for all A ∈ A.

It follows from Claims 2 and 9 that

2Φ(iA) = Φ(2iA) = Φ([iI, A]∗) = [Φ(iI), A]∗ + [iI,Φ(A)]∗ = 2iΦ(A),

and then Φ(iA) = iΦ(A).

Claim 11. Φ is a derivation.

On the one hand, by Claim 7, we have

Φ(AB)− Φ(BA∗) = Φ(AB −BA∗) = Φ([A,B]∗) = [Φ(A), B]∗ + [A,Φ(B)]∗

= Φ(A)B −BΦ(A)∗ +AΦ(B)− Φ(B)A∗. (2.5)

On the other hand, by Claims 2, 7, and 10, we also have

−Φ(AB)− Φ(BA∗) = Φ([iA, iB]∗) = [iΦ(A), iB]∗ + [iA, iΦ(B)]∗

= −Φ(A)B −BΦ(A)∗ −AΦ(B)− Φ(B)A∗. (2.6)

From (2.5) and (2.6) we obtain Φ(AB) = Φ(A)B +AΦ(B).
Now, by Claims 2, 8, and 11, we have proved that Φ is an additive ∗-derivation. This completes the

proof of Theorem 2.1. �
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3. Corollaries

In this section, we present some corollaries of the main result. An algebra A is called prime if
AAB = {0} for A,B ∈ A implies either A = 0 or B = 0. It is easy to see that prime ∗-algebras
satisfy (♠) and (♣). So we have the following corollary.

Corollary 3.1. Let A be a prime ∗-algebra with unit I and let P be a nontrivial projection in A.
Then Φ is a nonlinear mixed Jordan triple ∗-derivation on A if and only if Φ is an additive ∗-derivation.

We denote by B(H) the algebra of all bounded linear operators on a complex Hilbert space H and
by F(H) ⊆ B(H), the subalgebra of all bounded finite rank operators. A subalgebra A ⊆ B(H) is called
a standard operator algebra if A includes F(H). Now we have the following corollary.

Corollary 3.2. Let A be a standard operator algebra on an infinite-dimensional complex Hilbert
space H containing the identity operator I. Suppose that A is closed under the adjoint operation. Then
Φ : A → A is a nonlinear mixed Jordan triple ∗-derivation if and only if Φ is a linear ∗-derivation.
Moreover, there exists an operator T ∈ B(H) satisfying T + T ∗ = 0 such that Φ(A) = AT − TA for
all A ∈ A, i.e., Φ is inner.

Proof. Since A is prime, we have that Φ is an additive ∗-derivation. It follows from [28] that Φ
is a linear inner derivation, i.e., there exists an operator S ∈ B(H) such that Φ(A) = AS − SA. Since
Φ(A∗) = Φ(A)∗, we have

A∗S − SA∗ = Φ(A∗) = Φ(A)∗ = −A∗S∗ + S∗A∗

for all A ∈ A. Hence
A∗(S + S∗) = (S + S∗)A∗,

and then S + S∗ = λI for some λ ∈ R. Let

T = S − 1

2
λI.

It is easy to see that T + T ∗ = 0 such that Φ(A) = AT − TA. �
A von Neumann algebra M is a weakly closed self-adjoint algebra of operators on a Hilbert space H

containing the identity operator I. Note that M is a factor von Neumann algebra if its center only
contains the scalar operators. It is well known that a factor von Neumann algebra is prime. So we have
the following corollary:

Corollary 3.3. Let M be a factor von Neumann algebra with dimM ≥ 2. Then Φ : M → M is
a nonlinear mixed Jordan triple ∗-derivation if and only if Φ is an additive ∗-derivation.

It is shown in [2] and [18] that if a von Neumann algebra has no central summands of type I1, then M
satisfies (♠) and (♣). Now we have the following corollary:

Corollary 3.4. Let M be a von Neumann algebra with no central summands of type I1. Then
Φ : M → M is a nonlinear mixed Jordan triple ∗-derivation if and only if Φ is an additive ∗-derivation.
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