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IDENTITIES AND QUASI-IDENTITIES OF POINTED ALGEBRAS
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Abstract: Each pointed enrichment of an algebra can be regarded as the same algebra with an ad-
ditional finite set of constant operations. An algebra is pointed whenever it is a pointed enrichment
of some algebra. We show that each pointed enrichment of a finite algebra in a finitely axiomatizable
residually very finite variety admits a finite basis of identities. We also prove that every pointed enrich-
ment of a finite algebra in a directly representable quasivariety admits a finite basis of quasi-identities.
We give some applications of these results and examples.
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1. Introduction

Each pointed enrichment of an algebra can be regarded as the same algebra with an additional finite
set of constant operations. Formally, a pointed enrichment of a given algebra A of signature σ is the
algebra Ac of signature σ ∪ C such that C is a finite set of constant operations and the σ-reduct of Ac

coincides with A. An algebra is called pointed whenever it is a pointed enrichment of some algebra. For
instance, a pointed group is an algebra of signature σ ∪ C, where C is a finite set of constants and the
σ-reduct of this algebra is a group.

Say that an algebra admits a finite basis of (quasi-)identities whenever the (quasi)variety generated
by this algebra is finitely axiomatizable. The equational and quasiequational theories of an algebra and
its pointed enrichment can be rather different. Indeed, by the Oates–Powell Theorem [1], each finite
group admits a finite basis of identities. However, according to Bryant [2], there is a finite pointed group
lacking finite bases of identities. A similar result holds for quasiequational theories; namely, there exists
a finite lattice with a finite basis of quasi-identities whose one pointed enrichment lacks finite bases of
quasi-identities [3]. At the same time, there is a finite lattice lacking finite bases of quasi-identities and
having a pointed enrichment with a finite basis of quasi-identities [3]. The following question is natural:
Which pointed enrichments of finite algebras preserve the property of admitting finite bases of identities
and (or) quasi-identities? Note that this problem for groups is considered in [2, 4, 5] and still remains
open; see Section 5.

The main goal of this article is to find conditions on a variety and quasivariety which enable us to
find some satisfactory solutions to the problem. We show that each pointed enrichment of a finite algebra
lying in a finitely axiomatizable residually very finite variety admits a finite basis of identities. This class
of algebras includes, for instance, the finite groups in which all nilpotent subgroups are abelian. We prove
also that each pointed enrichment of a finite algebra lying in a directly representable quasivariety admits
a finite basis of quasi-identities. Among these algebras we find, for instance, finite abelian groups and
finite boolean algebras. Also, we present some applications of these results.

2. Definitions and Auxiliary Results

Recall the basic definitions and results on varieties and quasivarieties which we will need. See [6, 7]
for additional information about the main concepts of universal algebra to be introduced below and used
in this article.
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We assume that all algebras and classes of algebras under study are of the same signature σ unless
stated otherwise. We assume also that all classes of algebras are closed under isomorphic copies.

Given a class K of algebras, denote by S(K ) (H(K )) the class of all subalgebras (respectively
homomorphic images) of the algebras in K , while by P(K ) (as well PU (K ) and Ps(K )), the class of
all direct products (respectively ultraproducts and subdirect products) of algebras in K .

A quasivariety of algebras is a class of algebras K closed under subalgebras, direct products, and
ultraproducts; i.e.,

K = S(K ) = P(K ) = PU (K ).

In other words, a quasivariety is a class of algebras axiomatizable by a set of quasi-identities. A quasi-
identity is a universal Horn sentence with nonempty positive part, i.e., a sentence of the form

(∀x)[p1(x) ≈ q1(x) ∧ · · · ∧ pn(x) ≈ qn(x)] → p(x) ≈ q(x),

where p, q, p1, q1, . . . , pn, qn are terms of signature σ. The smallest quasivariety K including a given
class G is the class SPPU (G ). If G is a finite family of finite algebras then K = SP(G ) and the
quasivariety K is called finitely generated.

A variety is a quasivariety closed under homomorphic images. According to Birkhoff’s Theorem [8],
a variety is a class of algebras axiomatizable by a set of identities, where by an identity we understand
a sentence of the form (∀x)[s(x) ≈ t(x)] for some terms s(x) and t(x). The smallest variety V(K )
including a class K of algebras is the class HSP(K ) [8]. A variety K is finitely generated whenever
there exists a finite set G of finite algebras with K = V(G ).

A quasivariety (or variety) K admits a finite basis of quasi-identities (respectively identities) when-
ever K is finitely axiomatizable; i.e., by the Compactness Theorem there exists a finite set of quasi-
identities (identities) Σ such that

K = Mod(Σ) = {A | A |= ϕ for all ϕ ∈ Σ}.

Suppose that K is a quasivariety. A congruence α of some algebra A is called a K -congruence
whenever A/α ∈ K . Observe that A ∈ K if and only if the smallest congruence 0A on A is a K -
congruence. The set ConK A of all K -congruences on A forms an algebraic lattice that is a lower
subsemilattice of the lattice of congruences ConA.

An algebra A is called trivial whenever it consists of one element.
For a quasivariety K a nontrivial algebra A ∈ K is called subdirectly K -irreducible whenever the

smallest congruence 0A is completely meet irreducible in ConK A. By Birkhoff’s Theorem for quasiva-
rieties, each algebra in K is a subdirect product of subdirectly K -irreducible algebras [9]; see also [7].
In particular, for a finitely generated quasivariety Q(A) each subdirectly Q(A)-irreducible algebra is
isomorphic to some subalgebra of A. Denote the class of all K -subdirectly irreducible algebras in a qua-
sivariety K by KRSI . Say also that KRSI is the class of all relatively subdirectly irreducible algebras.
For a variety V the class VSI is the class of all subdirectly irreducible algebras in V .

Take some algebra A and a, b ∈ A. The smallest K -congruence including the pair (a, b) is called
a principal K -congruence or a relative principal congruence and denoted by θK (a, b).

Say that a quasivariety R has definable relative principal congruences whenever there exists an ex-
istentially positive formula Γ(x, y, u, v) with free variables x, y, u, and v such that

θR(a, b) = {(x, y) ∈ A2 | A |= Γ(x, y, a, b)}

for all A ∈ R and a, b ∈ A. For varieties this coincides with the definition of “having definable principal
congruences.”

A locally finite quasivariety R is directly representable whenever there exists a finite subset C ⊂ R
of finite algebras such that each finite algebra in R is isomorphic to a direct product of algebras in C .

Theorem 2.1 [10]. Each subquasivariety of a directly representable quasivariety has definable rel-
ative principal congruences.
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Theorem 2.2 [10, 11]. Suppose that the quasivariety K has definable relative principal congruences
and the class KRSI of relatively subdirectly irreducible algebras in K is finitely axiomatizable. Then K
admits a finite basis of quasi-identities.

These theorems yield the following corollary.

Corollary 2.3. Each finite algebra in a directly representable quasivariety admits a finite basis of
quasi-identities.

Theorem 2.2 for varieties and the property that each directly representable variety has a definable
principal congruence are established in [12].

3. Pointed Enrichments of Algebras in a Residually Very Finite Variety

Here we provide the conditions for a finite basis of identities of a finite algebra to be preserved under
its every point enrichment.

Say that a variety V is residually at most n whenever all subdirectly irreducible algebras in V are
of cardinality at most n. A variety V is residually very finite or has a finite residual bound whenever V
is residually at most n for some 0 < n < ω.

Lemma 3.1. If three algebras A1, A2, and B satisfy B ≤s A1×A2 then Bc ≤s A
c1
1 ×Ac2

2 for some
pointed enrichments Ac1

1 of A1 and Ac2
2 of A2.

Proof. The definition of congruence implies that a binary relation α on an algebraA is a congruence
if and only if α is a congruence on some pointed enrichment of A. Consequently, ConA = ConAc for
every pointed enrichment Ac of A. Since kerπ1 ∩ kerπ2 = ΔB; it follows that Bc ≤s Bc/ kerπ1 ×
Bc/ kerπ2, where πi is the projection of B onto Ai for i = 1, 2. �

Here is one of the main results of this article.

Theorem 3.2. If a finite algebra A lies in a finitely axiomatizable residually very finite variety then
each pointed enrichment of A admits a finite basis of identities.

Proof. Consider a variety U with a finite basis of identities Σ and a finite residual bound n > 0.
Assume that A ∈ U and V c = V(Ac). It is not difficult to see that Ac |= Σ and consequently V c |= Σ.

Let us prove firstly that the variety V c is residually very finite. Take a subdirectly irreducible
algebra Bc in V c and the σ-reduct B of Bc. Since ConB = ConBc, it follows that B is a subdirectly
irreducible algebra. Since Bc ∈ V c; therefore, Bc |= Σ. Consequently, B |= Σ. Hence, B ∈ U . Since B is
subdirectly irreducible and U is residually at most n, we obtain |Bc| ≤ n for every subdirectly irreducible
algebra Bc in V c. Since V c is a locally finite variety, the number of algebras of cardinality at most n is
finite. So, V c has finitely many subdirectly irreducible algebras, each of which is of cardinality at most n,
i.e., V c is residually very finite.

To verify that V c is finitely axiomatizable, assume the contrary. This means that there exist an infi-
nite set of pointed algebras {Ac

i | i ∈ I} and an ultrafilter D over I such that Ac
i �∈ V c and

∏
Ac

i/D ∈ V c.
Since V c |= Σ, for every ϕ ∈ Σ we have

{
i ∈ I | Ac

i |= ϕ
}
∈ D by Los’s Theorem. Since Σ is finite, we

have ⋂{{
i ∈ I | Ac

i |= ϕ
}
| ϕ ∈ Σ

}
=

{
i ∈ I | Ac

i |= Σ
}
∈ D.

Consequently, {i ∈ I | Ai |= Σ} ∈ D. Thus, we may assume that Ac
i |= Σ for all i ∈ I and, as a corollary,

Ai ∈ U for all i ∈ I. Since Ac
i /∈ V c, there exists a finitely generated subalgebra Bc

i of the algebra
Ac

i such that Bc
i /∈ V c. Since V (A) is locally finite, Bi is a finite algebra, whence so is Bc

i . Moreover,
since

∏
Bc

i/D is a subalgebra of
∏

Ac
i/D, we infer that

∏
Bc

i/D ∈ V c. Thus, we may assume that Ac
i

is a finite algebra for all i ∈ I. Since U is residually very finite and Ai ∈ U , it follows that

Ai ≤s B
i1
1 × · · · ×Bik

k
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for some integers i1, . . . , ik ≥ 0 and {B1, . . . ,Bk} = USI . Denote the set of all pointed enrichments of
algebras in USI by P = {C1, . . . ,Cm}. Lemma 3.1 yields

Ac
i ≤s C

i1
1 × · · · ×Cim

m

for some i1, . . . , im ≥ 0. This implies that for each i ∈ I there exists a tuple of numbers i1, . . . , im ≥ 0
defining the algebra Ac

i . Denote the index s element of tuple i by is.
Given s ≤ m, put Is = {i ∈ I | is �= 0}. Verify that S = {s ≤ m | Is ∈ D} is nonempty. Indeed,

suppose that Is �∈ D for all s ≤ m. Then I− Is ∈ D for all s ≤ m. Consequently,
⋂
{I− Is | s ≤ m} ∈ D;

in particular,
⋂
{I − Is | s ≤ m} �= ∅. This means that there exists i ∈

⋂
{I − Is | s ≤ m} such that

i1 = · · · = im = 0. Consequently, Ai ≤s C0
1 × · · · × C0

m, meaning that Ai is a trivial algebra. This
contradicts the choice of Ai. Thus, {s ≤ m | Is ∈ D} = S �= ∅.

Put I ′ =
⋂
{Is ∈ D | s ∈ S}. Since S is finite, we have I ′ ∈ D. The properties of ultraproducts

yield
∏

i∈I A
c
i/D

∼=
∏

i∈I′ A
c
i/D

′, where D′ = {H ∩ I ′ | H ∈ D} is an ultrafilter over I ′. As shown
in [13], ultraproducts preserve finite subdirect irreducibility, and so for all algebras {Ai,Bi,Ci | I} and
ultrafilters D over I we can infer from Ai ≤s Bi ×Ci that

∏

i∈I
Ai/D ≤s

∏

i∈I
Bi/D ×

∏

i∈I
Ci/D.

Hence, ∏

i∈I′
Ac

i/D
′ ≤s

∏

i∈I′
C

is1
s1 /D′ × · · · ×

∏

i∈I′
Cisr

sr /D′,

where s1, . . . , sr ∈ S and r = |S|.
The construction of Is and I ′ yields isk �= 0 for all i ∈ I ′ and 1 ≤ k ≤ r. Thus,

∏
i∈I′ C

isk
sk /D′

is a nontrivial algebra. Moreover, since the ultraproduct of homomorphic images is the homomorphic

image of the ultraproduct, Csk is the homomorphic image of
∏

i∈I′ C
isk
sk /D′. Since

∏
i∈I′ C

isk
sk /D′ is

the homomorphic image of
∏

i∈I′ A
c
i/D

′ and
∏

i∈I′ A
c
i/D

′ ∈ V c, it follows that
∏

i∈I′ C
isk
sk /D′ ∈ V c for

all sk ∈ S. Thus, Csk ∈ V c. Since Ac
i is a subdirect product of algebras of type Csk , we have Ac

i ∈ V c

for i ∈ Is. This contradicts the choice of Ac
i . Consequently, the variety V c admits a finite basis of

identities. �
Note that the requirement of residually very finite variety in Theorem 3.2 is a necessary condition.

Indeed, the group reduct B of the finite pointed Bryant group Bc constructed in [2] includes a nonabelian
nilpotent subgroup. According to [14] the variety V(B) is not residually very finite, and by the Oates–
Powell Theorem V(B) is finitely axiomatizable. However, the finite Bryant group Bc lacks a finite basis
of identities.

The following example demonstrates a finite algebra M with a pointed enrichment Mc such that the
variety V(M) is not residually very finite and lacks finite bases of identities. At the same time V(Mc)
is residually very finite and admits a finite basis of identities.

Example 3.3. Consider the four-element algebra M = 〈{0, a, b, c}; ·,m〉 with one binary operation ·
and one quaternary operation m defined as

x · y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c, if x = c or y = c,

a, if x = a and y = b,

b, if x = b and y �= 0,

0 otherwise,

m(x, y, z, u) =

{
u, if u �= c,

f(x, y, z), if u = c,
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where f(x, y, z) is a majority function on {0, a, b, c}; i.e.,

f(x, x, y) = f(x, y, x) = f(y, x, x) = x

for all x ∈ {0, a, b, c}. Consider the pointed enrichment Mc = 〈{0, a, b, c}; ·,m, c〉 of M, where ν(c) = c.
Then the variety V(M) is not residually very finite and lacks a finite basis of identities. At the same
time V(Mc) is residually very finite and has a finite basis of identities.

Proof. Verify firstly thatV(Mc) is residually very finite and admits a finite basis of identities. Since
m(x, y, z, c) is a term of signature (·,m, c), the definition of m implies that m(x, y, z, c) is a majority term
of this signature for the variety V(Mc). Consequently, V (Mc) is a congruence-distributive variety [15];
see also [6]. Johnson’s Lemma on subdirectly irreducible algebras in a congruence-distributive variety [15]
yields V (Mc)SI ⊆ HS(Mc). Since Mc is a finite algebra, V(Mc) is residually very finite. Since V (Mc)
is congruence-distributive, Baker’s Theorem [16] shows that V (Mc) is finitely axiomatizable.

Verify that the variety V (M) is not residually very finite. It is not difficult to see that G =
〈{0, a, b}; ·,m〉 is a proper subalgebra of M. Hence,

V (G) ⊆ V (M).

The definition of m implies that the identity (∀xyzu)[m(x, y, z, u) ≈ u] is true on G and false on M.
Consequently,

V (G) ⊂ V (M) and V (G) |= (∀xyzu)[m(x, y, z, u) ≈ u].

The identity (∀xyzu)[m(x, y, z, u) ≈ u] also implies the following property of the variety V (G): For
every term t(x) of signature (·,m) there exists a term t′(x) of signature (·) such that

V (G) |= (∀x)[t(x) ≈ t′(x)].

Indeed, we can construct the term t′ from t by replacing all subterms of the form m(t1, t2, t3, t4) in the
expression for t with t4. Since ≈ is a transitive relation; therefore, each identity of signature (·,m) is
logically equivalent to some identity of signature (·) relative to the identity (∀xyzu)[m(x, y, z, u) ≈ u].
As a corollary, we infer that the set Σ of all identities true on G is logically equivalent to the set of
identities Σ′ ∪ {(∀xyzu)[m(x, y, z, u) ≈ u]}, where Σ′ is the set of all identities true on the (·)-reduct of
the algebra G. In other words, A ∈ V(G) if and only if A(·) ∈ V(G(·)), where A(·) and G(·) are the
(·)-reducts of the algebras A and G respectively.

Given a groupoid A = 〈A; ·〉, denote by A+ the algebra of signature (·,m) in which the (·)-reduct
coincides with A and m(a, b, c, d) = d for all a, b, c, d ∈ A. It is not difficult to see that ConA = ConA+

and B is a subalgebra of A if and only if B+ is a subalgebra of A+.
Observe that G(·) = 〈{0, a, b}; ·〉 is Murskii’s groupoid. It is shown in [17] (see also [18]) that the

variety V(G(·)) generated by Murskii’s groupoid is not residually very finite. Since ConA = ConA+

for A ∈ V(G(·)), it follows that A+ is subdirectly irreducible for every subdirectly irreducible groupoid

A ∈ V(G(·)). Hence, V(G) is not residually very finite. Since V(G) ⊂ V(M), the variety V(M) is not
residually very finite either.

It remains to verify that V(M) is not finitely based. Recall that a locally finite variety V is called
inherently nonfinitely based whenever every locally finite variety including V is not finitely based. Ac-
cording to [18], the variety V is inherently nonfinitely based if and only if for every n > 0 there exists an
(n+ 1)-generated infinite algebra A such that every n-generated subalgebra of it belongs to V . As [19]

established (see also [18]) the variety V(G(·)) generated by Murskii’s groupoid is inherently nonfinitely
based. This means that for every n > 0 there exists an (n+ 1)-generated infinite groupoid An such that

every n-generated subgroupoid Gn of it belongs to V(G(·)). As we observed above, Gn ∈ V(G(·)) if and
only if G+

n ∈ V((G(·))+). Since A+
n is not locally finite, it follows that A+

n /∈ V((G(·))+)).
Since (G(·))+ = G, for every n > 0 there exists an (n + 1)-generated infinite algebra A+

n such
that every n-generated subalgebra G+

n of it belongs to V(G). Thus, by definition V(G) is inherently
nonfinitely based. Therefore, V(M) is not finitely based, so that G ≤ M. �
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Johnson posed the following problem (see [20]): Is it true that every residually very finite variety of
algebras of finite signature is finitely axiomatizable? The problem still remains open, but it is solved for
many classes of algebras. One of the most general results belongs to Kearnes, Szendrei, and Willard [20].

Theorem 3.4 [20]. Suppose that a residually very finite variety V of algebras has the difference
term. Then V is finitely axiomatizable.

For the definition of the difference term and its properties see [20]. Theorem 3.4 generalizes McKen-
zie’s Theorem [21] on the finite basedness of congruence-modular varieties and Willard’s Theorem on the
finite basedness of congruence meet-semidistributive varieties [22]. Adding McKenzie’s Theorem on the
finite basedness of a variety with definable principal congruences [12] (see also [10, 11]) we obtain the
following corollary:

Corollary 3.5. Suppose that a residually very finite variety V of algebras satisfies one of the
following conditions:

• V has the difference term, in particular, it is a congruence-modular variety or a congruence meet-
semidistributive variety;

• V has definable principal congruences.
Then each pointed enrichment of a finite algebra of V admits a finite basis of identities.

We present some applications of Corollary 3.5 in Section 5.

4. Pointed Enrichments of Algebras in
a Directly Representable Quasivariety

This section gives some conditions for a finite basis of quasi-identities to be preserved under pointed
enrichments.

Theorem 4.1. IfA is a finite algebra lying in a directly representable quasivariety then each pointed
enrichment of A admits a finite basis of quasi-identities.

Proof. Verify firstly that each pointed enrichment of a finite algebra in a directly representable
quasivariety itself belongs to some directly representable quasivariety.

Take a directly representable quasivariety K . By definition, there is a finite set S = {A1, . . . ,Am} of
finite algebras in K such that each finite algebra in K is isomorphic to a direct product of algebras in S.
Denote the set of all pointed enriched algebras lying in S by Sc. Since both S and the set of constant
symbols are finite, so is Sc. Verify that the quasivariety K c generated by Sc is directly representable.

Take a finite algebra Ac ∈ K c. Since Sc is finite and K c = SP(Sc) = PsS(S
c), it follows that

Ac ≤s B
c
1 × · · · ×Bc

n

for some Bc
i ∈ S(Sc) for i = 1, . . . , n. Since ConAc = ConA, we have

A ≤s B1 × · · · ×Bn.

It is easy to see that if Bc is a subalgebra of Dc then B is a subalgebra of D. This yields B1, . . . ,Bn ∈ K .
Thus, A ∈ K . Since K is directly representable, we infer that

A = C1 × · · · ×Ck

for some Cj ∈ S for 0 < j ≤ k. Lemma 3.1 yields

Ac = Cc1
1 × · · · ×Cck

k .

Since Cci
1 ∈ Sc for all i ≤ k, we find that Ac is a direct product of algebras of Sc. This means that K c

is a directly representable quasivariety.
Thus, a pointed enrichment Ac of the finite algebra A belongs to a directly representable quasivariety

provided that so does A. Corollary 2.3 implies that Ac admits a finite basis of quasi-identities. �
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Note that every directly representable variety is congruence-permutable [12], therefore congruence-
modular, and by definition residually very finite. Therefore, Theorems 3.2 and 4.1 yield the following
statement.

Corollary 4.2. If V is a directly representable variety then every pointed enrichment of a finite
algebra A ∈ V admits a finite basis of identities and quasi-identities.

In contrast to directly representable quasivarieties, directly representable varieties are well under-
stood; see [6, 12, 14]. We will exhibit an example of directly representable quasivariety which is not
a variety.

Example 4.3. Consider the two-element pointed group Gc = 〈{0, 1}; +,−, 0, c〉 with ν(c) = 1. The
quasivariety Q(Gc) is directly representable but not a variety.

Suppose that

G = (Gc ×Gc)/θ((0, 0), (1, 1)).

It is not difficult to see that

G ∼= 〈{0, 1}; +,−, 0, c〉,

where ν(c) = 0. Since the quasi-identity (∀xy)[0 ≈ c → x ≈ y] is true on Gc but false on G, it follows
that

Q(Gc) �= V(Gc).

Verify that the quasivariety Q(Gc) is directly representable. Suppose that A ∈ Q(Gc) is a finite algebra.
Then A ≤s (Gc)n for some n > 0. Verify by induction on n that A ∼= (Gc)m for some m ≤ n. For
n = 1 we have A = Gc. Assuming that n > 1, we obtain A ≤s Gc × B, where B = (Gc)n−1. The
projection πB(A) of A onto B is a subalgebra of B. By induction πB(A) ∼= (Gc)k for some k < n.
If k < n − 1 then A ≤s (Gc)k+1. By the inductive assumption A ∼= (Gc)m for some 0 < m < n. If
k+1 = n then A ≤s G

c× (Gc)n−1. Since G is an abelian group, |A| = 2n and |(Gc)n−1| = 2n−1. Hence,
A ∼= (Gc)n.

Remarks. As [12] shows, every free algebra of a directly representable variety has permutable con-
gruences and definable principal congruences. Inspecting those proofs, we can see that the same properties
hold for directly representable quasivarieties. In other words, each free algebra of a directly representable
quasivariety has permutable congruences and definable principal congruences. In this case, according to
[23, 10], the variety generated by a directly representable quasivariety is congruence-permutable and has
definable principal congruences.

5. Some Applications

This section applies Corollary 3.5 and Theorem 4.1 to some well-known classes of algebras and
exhibits a related example.

1. Congruence-modular varieties. Residually finite congruence-modular varieties are de-
scribed in [14] in terms of the theory of commutators. It shows in particular that each finite algebra
of a congruence-modular variety generates a residually finite variety if and only if all its subalgebras
satisfy the commutator identity (C1): x∧ [y, y] = [x∧ y, y]. Let us apply this result to groups and rings.

Groups and rings. It is known that a locally finite variety of groups or rings satisfies the commu-
tators identity (C1) if and only if every finite nilpotent group (ring) of the variety is abelian (see [14])
or respectively has zero multiplication [24]. McKenzie’s Theorem on the finite basedness of congruence-
modular varieties [21] and Corollary 3.5 yield the following assertions:

Proposition 5.1. If every nilpotent subgroup of a finite group is abelian then each pointed enrich-
ment of it generates a finitely axiomatizable variety.
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Proposition 5.2. If every nilpotent subring of a finite ring has zero multiplication then each pointed
enrichment of it generates a finitely axiomatizable variety.

It is established in [5] that each one-pointed enrichment of a finite nilpotent group admits a finite
basis of identities (here a one-pointed enrichment means a pointed enrichment whose set of constants C
consists of one element). Moreover, as Bryant noted in [2], “One further fact worthy of note is that every
finite pointed group (G, g) belongs to the variety generated by a finite pointed group (G∗, g∗) with a finite
basis for its laws.” Thus, the problem of which pointed enrichment of a finite group or ring admits a finite
basis of identities faces many obstacles.

We should also note that, as [25] shows, a finite group admits a finite basis of quasi-identities if and
only if all its nilpotent subgroups are abelian. We do not know whether a similar result holds for finite
pointed groups.

Abelian groups. The fundamental structure theorem for finitely generated abelian groups as-
serts in particular that the variety generated by a finite abelian group is directly representable. Thus,
Proposition 5.1 and Corollary 4.2 imply

Proposition 5.3. Each finite pointed abelian group admits a finite basis of identities and quasi-
identities.

2. Boolean algebras. Since each finite boolean algebra is isomorphic to a direct product of
two-element boolean algebras, Corollary 4.2 implies

Proposition 5.4. Each finite pointed boolean algebra admits a finite basis of identities and quasi-
identities.

Conjecturally, a finite lattice admits a finite basis of quasi-identities if and only if it generates a rela-
tively congruence-distributive quasivariety [7]. The following example shows that the conjecture is false
for congruence-distributive varieties in general: there exists a finite algebra of a congruence-distributive
variety with a finite basis of quasi-identities but the quasivariety generated by this algebra is not relatively
congruence-distributive.

Example 5.5. The pointed two-atom boolean algebra B2 = 〈22; +, ·,′ , 0, 1, a〉, with a �= 0, 1, admits
a finite basis of quasi-identities and does not generate a relatively congruence-distributive quasivariety.

Proof. Proposition 5.4 shows that B2 admits a finite basis of quasi-identities. It is known that
a relatively subdirectly irreducible algebra of a relatively congruence-distributive quasivariety is subdi-
rectly irreducible [26–28]. Since every relatively subdirectly irreducible algebra in Q(B2) isomorphically
embeds into B2 and the latter lacks proper subalgebras, B2 is relatively subdirectly irreducible. More-
over, B2 is not subdirectly irreducible because it is isomorphic to a direct product of two two-element
pointed Boolean algebras. Consequently, B2 does not generate a relatively congruence-distributive qua-
sivariety. �
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