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SOME POSITIVE CONCLUSIONS RELATED TO
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Abstract: We give some conditions under which if an infinitely divisible distribution supported on
[0,00) belongs to the intersection of the distribution class £(y) for some v > 0 and the distribution
class 96, then so does the corresponding Lévy distribution or its convolution with itself. To this
end, we discuss the closure under compound convolution roots for the class and provide some types of
distributions satisfying the above conditions. Therefore, this leads to some positive conclusions related
to the Embrechts—Goldie conjecture in contrast to the fact that all corresponding previous results for
the distribution class £(y) N OG were negative.
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1. Introduction

Let H be an infinitely divisible distribution supported on [0, c0) with the Laplace transform

o0

/exp{)\y}H(dy) = exp{a)\ — 70(1 — e’\y)v(dy)}, Re A >0, (1.1)
0 0

where Re A is the real part of A\, @ > 0 is a constant, and v is a Borel measurable function on (0, c0)
satisfying p := v((1,00)) < oo and

/lyv(dy) < 0.
0

This v is called the Lévy measure. Let

F(z) == v(2)1(1,00)(2) /1t := 0(0, 2]1(1 ooy (@) /1 for all 2 € (—00,00)

be the Lévy distribution generated by v. The distribution H admits the representation H = H; x Ho
which is reserved for convolution of two distributions H; and Ho satisfying 1 — Hy(x) = O(e™5®) for all
8 >0 and

Hy(z) =e "> F*x)uF/k! for all z € (—o0, 00), (1.2)
k=0

where F*¥ is the k-fold convolution of F with itself for all & > 2, while F*! = F and F*? is the distribution
degenerate at zero. See, for instance, Feller [1].

We might also say that F' is an “input” and H is an “output” in a system. Usually, we use the
“input” F to infer the “output” H. However, sometimes F is in a “black box,” and we need H to
infer F'. The main topic of this paper is the search of some conditions under which a Lévy distribution F’
or its convolution with itself belongs to certain distribution class providing the corresponding infinitely
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divisible distribution H in the same class. In this way, we first need to recall the concepts and notations
of some distribution classes.

Throughout the paper all limits are taken as x tends to infinity unless stated otherwise. If f and ¢
are two positive functions then f(z) = O(g(z)) means that limsup f(z)/g(z) < oo, while f(z) < g(z)
means that limsup f(x)/g(x) = 1. Also, f(z) < g(x) means that f(x) = O(g(z)) and g(x) = O(f(x)),
while f(z) ~ g(x) means that f(z) < g(x) and g(z) < f(x). Furthermore, f(x) = o(g(z)) means that
lim f(z)/g(x) = 0. Additionally, given a distribution V, let V.= 1 — V be the tail distribution of V.

For some constant v > 0, a distribution V on [0, c0) or (—o00, c0) belongs to the distribution class £(7),
if V(z) > 0 for all z and V(x —t) ~ V(z)e? for all t > 0. If v > 0 and V is a lattice, then  and ¢
should be restricted to the values of the lattice span of V; see Bertoin and Doney [2]. It is known that if
V € £(y), then

AV, y) =1{h:0 < h(z) 1 oo, h(z) =o(z),V(x —t) ~ V(z)e" uniformly for all |t| < h(z)} # ¢.

A distribution V' belongs to the distribution class &(v), if V € £(v),

o0

M) i= [ @Vidy) < o,
0

and
V*2(z) ~ 2M (V,7)V ().

In particular, the classes £(0) and &(0) are respectively called the long-tailed distribution class and the
subexponential distribution class, respectively denoted by £ and &. Moreover, the requirement V € £ is
not needed in the definition of & when V' is supported on [0, c0).

The class & was introduced by Chistyakov [3], while the class G() for some v > 0 by Chover et al.
[4,5] for the support [0, 00) and Tang and Tsitsiashvili [6] or Pakes [7] for the support (—oo, c0). For the
work on the class &(7), see Zachary and Foss [8], etc. The classes (J,~o &(7) and [, > £(7) are properly
included in the following two distribution classes.

A distribution V' on [0, 00) or (—o0, 00) belongs to the distribution class O& introduced by Kliippel-
berg [9] for the support [0,00) and Shimura and Watanabe [10] for the support (—oo, c0), if

C*(V) :=limsup V*2(z)/V(z) < cc.

A distribution V on [0, 00) or (—o0, 00) belongs to the distribution class O£ introduced by Shimura and
Watanabe [10], if
C*(V,t) :==limsupV(z —t)/V(z) < o0

for all t > 0. Further, Shimura and Watanabe [10] show that the inclusion O& C O£ is proper.

As regards our main topic, Embrechts et al. [11], Sgibnev [12], Pakes [7], and Watanabe [13] already
gave some positive results for &(vy). Their works show that the Lévy distribution F' of an infinitely
divisible distribution H belongs to &(v) when H € &(v) combined with some conditions. For other
classes, however, we only have a few negative results; i.e., there exists an infinitely divisible distribu-
tion H belonging to the class such that its Lévy distribution F' does not belong to the same class; see
Theorem 1.1(iii) of Shimura and Watanabe [10] for OGS, Theorem 1.2(3) of Xu et al. [14] for (£NOG)\ S,
and Theorem 1.1 of Xu et al. [15] for (£(y) N OG) \ &(y) with some v > 0. Therefore, for £(y) N OG,
more precisely, for (£(7) N OG) \ S(v) with some v > 0, this paper will discuss the following

Problem 1.1. Under what conditions does a Lévy distribution F' or the convolution of F' with itself
belong to £(y) N OGS for some v > 0, if the corresponding infinitely divisible distribution H belongs to
the class?

We give the following positive answer to Problem 1.1.
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Theorem 1.1. Let H be an infinitely divisible distribution on [0, 00) with Laplace transform (1.1)
and Lévy distribution F. Given some v > 0, assume that H € £(y) N D& and

liminf F**(x — t)/F**(z) > e forall t >0 and k> 1. (1.3)

Then

(i) Hy € £(y) N OG and H(z) ~ M(Hy,v)Hs(x);

(ii) there exists an integer ly > 1 such that F*" € £(y)NOEG for alln > Iy and F*" ¢ £(y) N OGS for
all1 <n <ly—1. In particular, if F' € O6 then F*" € £(y) N OGS for alln > 1.

REMARK 1.1. Condition (1.3) for ¥ = 1 was used in Lemma 7 and Theorem 7 of Foss and Kor-
shunov [16]. Clearly, if F' is a heavy-tailed distribution or F' € £(y) for some v > 0, then (1.3) holds for
all £ > 1 automatically. We also point out that many distributions satisfy (1.3) for some v > 0 and all
k > 1, but they do not belong to £(7y); see Remark 1.3 below. The condition that (1.3) holds for all £ > 1
can be replaced by some simpler and more convenient conditions; see Corollaries 1.1 and 1.2 below.

Corollary 1.1. Let H be an infinitely divisible distribution on [0, c0) with Laplace transform (1.1)
and Lévy distribution F'. Assume that H € £(v) N OGS for some vy > 0, while F' € O£ and

Jim F(t)C*(F,t) = 0. (1.4)

Then F** € O& and (1.3) holds for all k > 1. Thus all conclusions of Theorem 1.1 hold.

REMARK 1.2. For the distribution F' in £, we have C*(F,t) = 1 for each ¢ > 0, which means
that (1.4) is true. In the class &(), we have C*(F,t) = € for each t > 0, while M (F,v) < oo means
that (1.4) is also true. Thus, for the distribution F' in O£, condition (1.4) means that the distribution F
is “not far” from the class £ or &(y). Clearly, (1.4) as a sufficient condition is more natural and achievable
than (1.3) for all k£ > 1.

In particular, we introduce some kind of distribution with more specific representation. Given a con-
stant v > 0 and an arbitrary distribution Fp, we define the distribution F' as follows:

F(2) = 1geny (2) + € Fo(@) 1 (asgy (1), @ € (—00,00). (1.5)
Clearly, F' is light-tailed and (1.3) holds for k£ = 1. Further, we have the following

Corollary 1.2. Let H be an infinitely divisible distribution on [0, 00) with Laplace transform (1.1)
and Lévy distribution F. Assume that H € £(v) N O for some v > 0, Fy € OL in (1.5) and

tli{& F(](t)c (F(),t) =0. (1.6)

Then all conclusions of Corollary 1.1 hold.

REMARK 1.3. In Example 4.1 below, we give a concrete type of distribution Fy belonging to the class
06\ £ C OL\ L. Let H be an infinitely divisible distribution with Lévy distribution F in (1.5) with some
4 > 0. Proposition 5.1 of Xu et al. [15] shows that H € (£(7)NOG)\&(y) and F** € (£(7)NOG)\S(v)
for all k > 2, while F' ¢ £(). Also, we prove that Fy satisfies (1.6). Thus, F** € O€ and (1.3) holds for
all £ > 1 by Corollary 1.2. In fact, we can construct many distributions Fy that satisfy (1.6). Let F} be
a continuous distribution belonging to £ and let y; > 0 and a > 1 be two constants such that aFy(y;) < 1.
Define the distribution Fy by

o0

?O(x) = F ( 1{x<:}c1} + Z Fl 1{xz<x<yz}( )

+ﬁ(x)1{yi§x<xi+l}(x)), x € (—00,00),

where {z; : i > 1} and {y; : 1 > 1} are two sequences of positive constants satisfying z; < y; < i1
and Fi(z;) = aF'1(y;), i > 1. Then Fy € O£\ £ with C*(Fpy,t) = a for each t > 0. Thus, (1.6) holds.
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Therefore, for F in (1.5), we have F** ¢ O£ and (1.3) holds for all £ > 1 by Corollary 1.2. Moreover,
when v = 0, Theorem 2.2 of Xu et al. [14] shows that there is a type of infinitely divisible distribution H
with Lévy distribution F' such that H, Hy, and F*" for all n > 2 belong to (£NOG)\ S and (1.3) holds
for all £k > 1, while F' € O£\ (£NOG). Here (1.3) for all k£ > 1 is automatically established but (1.6)
does not hold.

Note that [p = 2 in the above examples of the two cases: v > 0 or v = 0.

REMARK 1.4. In the above results, the main object is the class £(v) N O for some v > 0. We note
that there are many distributions in (£(7) N OS) \ &(v); see, for instance, Leslie [17], Kliippelberg and
Villasenor [18], Shimura and Watanabe [10], Lin and Wang [19], Wang et al. [20], Xu et al. [14], and
Xu et al. [15]. Alongside the above-mentioned literatures, the reader can refer the research on O6 to
Watanabe and Yamamura [21], Yu and Wang [22], Beck et al. [23], Xu et al. [24], Xu et al. [25], and so on.

According to the decomposition of an infinitely divisible distribution and (1.2), we can find that,
in order to prove Theorem 1.1, we first need to solve the following Problem 1.2 involving a compound
distribution which is also called a compound convolution. Let V' be a distribution on [0, 00) and let 7 be
a nonnegative integer-valued random variable with masses p;, = P(7 = k) for all integers k > 0 satisfying

(o]
Zpk: =L
k=0

Denote the corresponding compound convolution by V*7; i.e.,
(o)
VT = eV, (1.7)
k=0

For convenience, we set up py > 0 for all integers kK > 0. In fact, if 7 is a nonnegative integer-valued
random variable with masses py,, > 0 for all integers m > 1 satisfying

o0
Z Phm = 1,
m=0

where k1 = 1, then all conclusions of the paper still hold.

Problem 1.2. Under what conditions does the distribution V on [0,00) or the convolution of V
with itself belong to £(y) N OG provided that V*7 € £(y) N O&?

Usually, Problem 1.2 is a topic on closure under compound convolution roots for a distribution class.

It is known that the compound convolution, as well as its convolution with other distribution, has
extensive and important applications in various fields such as risk theory, queuing systems, branching
processes, infinitely divisible distributions, and so on. See, for instance, Embrechts et al. [26], Borovkov
and Borovkov [27], and Foss et al. [28].

The topic in Problem 1.2 is a natural extension of the well-known Embrechts and Goldie conjecture
on the class £(y) with some v > 0; see Embrechts and Goldie [29,30]. Some of the latest results on
the conjecture and the related problems can be found in Xu et al. [14], Xu et al. [15], Watanabe [31],
Watanabe and Yamamuro [32], and so on.

In the references above, Theorem 2.2 of Xu et al. [14] and Proposition 5.1 of Xu et al. [15] show
that the class £(y) N OGS for some v > 0 is not closed under compound convolution roots. However, it is
very interesting to find a positive answer to Problem 1.2.

In Section 3, we prove Theorem 1.1. To this end, we give a positive answer to Problem 1.2 in
Section 2. In Section 4, we first prove Corollaries 1.1 and 1.2; next, we provide some example that satisfies
all conditions of Corollary 1.2; finally, we give a general Kesten inequality to discuss condition (2.1) in
Theorem 2.1 below.
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2. On Compound Convolution

In what follows, we assume that all distributions are supported on [0,00). Let V be a distribution
and recall the random variable 7 and the compound convolution V*7 that are defined in Section 1.

Theorem 2.1. Given some 7 > 0, assume that V*7 € £(v) N OGS, condition (1.3) is satisfied for all
k > 1, and for each 0 < € < 1 there is an integer ny = ng(V,7,e) > 1 such that

> V() < eV () forall x> 0. (2.1)
k=no+1

Then there is an integer lo > 1 such that V*" € £(y) N OGS for all n > ly and V*™ ¢ £() N OGS for all
1 <n <ly—1. Further, if V € O, then V*" € £(y) N OG for all n > 1.

REMARK 2.1. (i) Condition (2.1) was used in Watanabe and Yamamuro [21], Yu and Wang [22],
Xu et al. [24], and Xu et al. [15]. As Watanabe and Yamamuro [21] pointed out that if pgi1/pr — 0
as k — oo, for instance, pp = e *\¥/k! for all k > 0; then (2.1) is satisfied for all distributions. In fact,
since pr41/pr — 0 as k — oo, there is an integer ng > 1 such that pgy1/pr < € for all £ > ngp and any
0 < e < 1. Thus,

S pVED(@) = > (pr/pr-1)pr-1V*ED(2)
k=ng k=ng

<e Z pr_1V*E=D(2) < eV*(2).

k=ng

Moreover, some examples in Remark 4.1 below show that (2.1) holds but pg41/pr does not vanish as
k — oo.
(ii) In the theorem, [y is not necessarily equal to 1; see also Remark 1.3 of this paper.

PROOF. We first give an equivalent form of (2.1) in the case that V*™ € O6.

Lemma 2.1. If V*" € 96, then the following two propositions are equivalent to each other:
(i) For each 0 < € < 1, there is an integer ng = no(V, 7,€) > 1 such that

Z RV (x) < eVFT(x)  for all £ > 0. (2.2)
k=no+1
(ii) For each 0 < ¢ < 1, there is an integer ng = no(V,7,€) > 1 such that (2.1) holds.

PrOOF. We only need to prove (ii) = (i). To this end, we put

DXV = sup (V*7) 2 () [V ().

Clearly, 1 < D*(V*") < oo by V*™ € O6. For any 0 < ¢ < 1, we take e1 = epy/D*(V*7), then
0 < e < p1/D*(V*T) < 1. For the above €1, by (ii), there is an integer ng = ng(V,7,e1) > 1 such
that (2.1) holds and

x
Ay = Z pr < €1. (2.3)
k=ng+1
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Define the distribution Gy, by Gn,(z) = > 252, 11 V5D (1) Jap, for all 2. Then for all z > 0, by (2.1),
Uy Gy (7) < €1V*7(x). Further, by (2.3),

o0

Z PRV (2) =V x Z pe V=1 ()

k=no+1 no+1<k<oco

= G, /”*” Gy (z = y)V(dy) + an,V(z) < &1 < / V¥ (x — y)V (dy) + V(ﬂf))

=gV V¥ (2) < e D*(V")V*(2)/p1 = eV*(2),
which is just (i). O

Now, we prove the theorem. For some 0 < g9 < 1, by (2.1) with € = ¢, V*" € OS and Lemma 2.1,
there is an integer ng = ng(V, 7,£9) > 1 such that

70 o .
Zpkv*k(x) > (1 —g9)V* () for all z > 0,
k=1

which means that V*7(z) < V*(z). Then from V*7 € O it is immediate that V*™ € O9&. Conse-
quently, there is an integer lp = min{l < n < ngy: V*" € OG} such that 1 <y < ng and Vo ¢ 96.
According to Proposition 2.6 of Shimura and Watanabe [10], V** € O& and V*7(z) < V**(x) for all
n > lg. Thus, for each n > ly, there is a constant D,, = D,,(V,7) > 0 such that

limsup V*7(z)/V*(x) = D,, < 0.

Next, we continue to prove V*" € £(«) for each n > lp. By Lemma 2.1 and (2.1), for every 0 < € < &
small enough, there exists an integer mg = mg(V, 7,¢) such that mg > n and

Z PV (x) < eV (x) for all > 0. (2.4)
k=mo+1

Further, since V*7 € £(y), by (2.4) and (1.3) for all £ > 1 and each ¢ > 0, there is a constant zy =
xo(V,T,e,t) > t such that for all z > x,
VA (2) > V¥ (x —t) — "'V (2)
(X Y Y )nVEe - - V@)
1<k#n<mg k=n k>mo+1
> —eet Z PRV (@) + p, (VF(z — t) — V() — Z PV ()

1<k#n<mg k>mo+1
> pp(V*n(x —t) — e'th(az)) — QEGWtW(SU),

which implies that for all z > xg
VEn(z —t) < 7V (z) + (1 +2e7)eV*(2) /py.

Hence, L L
limsup V*(z — ) /V*(x) < e + (14 2e")eD,, /pn. (2.5)

Clearly, the fixed integer n is independent of e.
Thus, combined with the arbitrariness of ¢, (2.5) and (1.3) lead to V*" € £(y). In particular, if
V € ©6, then by the same method we can get V*" € £(7) N OGS for alln > 1. O
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3. Proof of Theorem 1.1

We first prove the following lemma with a more general form than the first part of Theorem 1.1,
which is a key to the proof of the theorem and is of interest in its own right.

Let G1 be a distribution. Write G = G * G, where Gy = V*7 is a compound convolution. Recall
that all distributions are supported on [0, co).

Lemma 3.1. Assume that G € £(vy) N OGS for v > 0 and G1(x) = o(Ga(x)). Further, suppose
that (2.1) for all 0 < € < 1 and (1.3) for the distribution V' and all k > 1 are satisfied. Then G €
L(v) NOG and G(z) ~ M(G1,7)G2(x).

PROOF. First, we prove G(z) < Ga(x) and Gs € O6. For each 0 < ¢ < 1/(2C*(G)), since G € £(v)
and G1(z) = o(Ga(x)), there is a constant A > 0 large enough such that, when z > A, we have

rx—A A
Gla) = / Crle — y)Galdy) + / Cale — y)C1(dy) + Tr(A)Ta(z — A)
0— 0—

z—A
<: / Gl — 1) Galdy) + C1(A)Ga(x — A) + Cr(A)Ca(x — A)
07

< eG*?2(z) + Ga(z — A) < 2:C*(G)G(z) + Ga(z — A).
In the above expression, we replace 2 with z + A, then
(1 —2eC*(@Q)G(x + A) < Go(z).
Therefore, by G € 96 C O, for « large enough, we have
(1 —2eC*(@))G(x)/(2C*(G, A)) < (1 —2eC*(G))G(z + A) < Ga(x);

i.e., G(z) < Go(z), and so Ga € O6.

Next, we prove that Go € £(). On the one hand, by (2.1), G2 € O6 and Lemma 2.1, there is an
integer ng = no(V,7,€) > 1, such that (2.2) holds. For each 0 < &€ < 1 and every t > 0, by (1.3) for all
k > 1, there is a constant xg = z¢(F,e,t) such that

VR (z) )V (z —t) <1+e¢, foralll<k<ngandz > zo. (3.1)

By (3.1) and (2.2), we have

o - o (VR ()
('Go(z) — Go(xz — 1)) /Ga(x —t) < < - 1) +ee < e(ng + €),
o NV — 1)
which implies that
limsup(e”'Ga(x) — Go(x — 1)) /Ga(z —t) <O0. (3.2)

On the other hand, for each 0 < e <1 and every ¢ > 0, we take a constant B large enough such that
B > 2t. When z > 3B, using integration by parts, by (3.2), G1(z) = o(G2(z)) and G € £(v) N DG, we
obtain

G (x) — Gz —2t) < 627t< 7B+ /x >Gl(x — y)Ga(dy) + ¥ Gy ()

0— rz—B
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r—2t

_ / Gi(z — 2t — y)Ga(dy) — Ga(x — 2t)
r—2t—B
B

< eT(x) + / (21G(x — y) — Cale — 2t — )G (dy)
0—
+G1(B)(e?'Gy(x — B) — Go(x — 2t — B))

t 2t B
< 2(1 4 )¢ C (G)G () + ( [+[+] ) (Gl — y) — Gala — 2t — )G (dy)
0— t 2t

2
< 3e(1 + €)e'C* Q)G (x) + /(62%6;2(33 —y) — e"Gay(x — 2t))G1(dy)

2t
+ / (€ (z — 21) — 50T (3 — 31))G1 (dy)

t
2t

+ [ @O0 o~ 36) ~ Tl — 3t~ (y ~ 1)Ga(dy). (3.3)
t
When ¢t < y < 2t, we have

e G (a — y) — VGa(z — 2t)|/G(x) < (2 /Ci(y)) + (7 /G1(2t))

and
Tz — 3t) — Tale — 3t — (y — £)|/C(x) < (D /TL(3) + (1/Tr (2t + ).
Then, o
/ (2 [GT(y)) + (7 [C1(20))Ga (dy) < 263 [T (21) < oo
and

2t

/((GV(yt)/Gl(%)) +(1/G1(2t +y))Gi(dy) < (7/G1(3t)) + (1/G1(41)) < oo
Thus, by Fatct)u’s Lemma and (3.2), we obtain
2

lim sup / (@ Ta(a — y) — V(e — 20))Ci(dy) [T (x)
2t

. It @(w - y) y al
< /hmsup (e g m — e )Gl(dy)/Gl(Qt) <0 (3.4)
and

2t

limsup / (U (a — 3t) - Gale — 3t — (y — 1)))G1 (dy) [C(z)

e ) W=V Gy(z — 3t) _
< / <hm s 1) G (dy) /G (48) < 0. (3.5)

t
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According to (3.3)—(3.5), we know that

2t 2t
(Co — 28) — e Tz — 31)) / WG (dy) = / (VG (2 — 28) — DG (2 — 36))Ga (dy)
> 321+ )M CH(G)Cla) — 3:C(x).

Further, by G(z) < G2(z — t) and the arbitrariness of ¢, we deduce that
liminf(e"*Gy(z) — Ga(x —t))/Ga(x — t) >0,

which leads to G € £(v) combined with (3.2).
_ Finally, since Ga € £(y) N O6 and Gi(x) = o(Gi(x)), using Lemma 2.1 of Pakes [7], we have
G(z) ~ M(G1,7)Ga(z). O

Now, we prove Theorem 1.1.

(i) In Lemma 3.1, we take V = F, G = Hy, Gy = Hy = F*", and G = H. According to
Remark 2.1(i), condition (2.1) is satisfied for the Poisson compound convolution Hj. Therefore, by
Lemma 3.1 and H € £(7) N OGS, we have Hy € £(y) N OG and Ha(z) < H(z).

Further, using Lemma 3.1 again, we have H(z) ~ M(Hy,7v)Hz(z) because Hy € £(7) N OG and
Hi(z) = O(e ) for all 5 > 0.

(ii) According to (i), Theorem 2.1, and Remark 2.1(i), we get the corresponding results directly.

4. Proofs of Corollaries 1.1 and 1.2

In this section, we follow the notations of Section 1. In order to prove Corollaries 1.1 and 1.2, we
first give two lemmas.

Lemma 4.1. If F € O&, then for all k > 1, F** € O¢ and

C*(F** t) < C*(F,t) for eacht > 0. (4.1)

PrOOF. We proceed by induction. Clearly, (4.1) holds for k = 1. Assume that F** ¢ O€ and (4.1)
holds for some integer k > 1, then for any 0 < £ < 1 and each ¢ > 0, there is a constant xg = xo(F**, ¢, t)
such that when x > xg,

Fh(z —t) < (14 )C*(F* ) F*(z) < (1 + &)C*(F, t) F*(z) < oc.

Further, according to the induction hypothesis, for above 0 < & < 1 and ¢t > 0, we have

T—t—x0 o—t
< O/ +/) Mooy Fd) +Fe=t)

< (L4 (F, t)( [ Fra— ) + [Tl Fa) + Fla - on)F*k(ﬂ?o))
0— 0—
= (14 ¢&)C*(F,t)F*k+1) ().

F*("H‘l)(x _ t)

Thus, F**+1) € ©¢ and (4.1) holds for k + 1 by the arbitrariness of . [J
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Lemma 4.2. Fori=1,2, let F; be a distribution satisfying

lim inf F(z — t)/F;(x) > e’ for each t > 0. (4.2)
If Fy € O£ and o
tli}rn Fi(t)C*(Fa,t) =0, (4.3)
then
liminf Fy x Fo(x — t)/F} * Fy(z) > €7 for each t > 0. (4.4)

PrOOF. To prove (4.4), we only need to prove its equivalent:

limsup (e Fy * Fo(x) — Fy * Fy(z —t))/Fy * Fy(x —t) < 0. (4.5)

From (4.2), we know that, for all 0 < ¢ < 1 and ¢ = 1,2, there exists a constant xg = xo(e,~y, F1, F2) >0
such that o o o
Fi(x —t) — "' Fj(x) > —eF;(x) for all x > x. (4.6)

When z > t + 2z, using integration by parts, by (4.6), we have

'F x Fy(x) — Fy * Fy(z —t)
= [ R~ p)Pa(dy) ~ Filw) (Fae — ¢~ a0) — " File — a0)

rx—t—xo

x—t—x0

- / (Fi(x -t — y) — Fi(2 — y)) Faldy) — / Bl —t—y) — " Fole — ) Fi(dy)
0 0

< ewtﬁ(mo)g(x —t—x0) + eF1(z0) Fa(x — x0)

zo

r—t—xq
te / Fi(e — y)Fa(dy) + ¢ / Folz — y)F(dy)
0 0

<Py (x0)Fa(z — t — o) + e * Fy(x).
Then
limsup (" Fy * Fy(x) — Fy * Fy(x — t))/Fy * Fy(x —t)
< ewtﬁl(xo)c*(F%xo) +e.

Therefore, by (4.3) and the arbitrariness of ¢, (4.5) holds. O

PROOF OF COROLLARY 1.1. By Lemma 4.1 and F € O£, we have F** € O¢ for all k > 1. Then
we only need to prove that (1.3) holds for all £ > 1 according to Theorem 1.1.

We know already that (1.3) holds for k¥ = 1. Assume that (1.3) holds for k =n > 2. In Lemma 4.2,
we take F} = F and Fy = F*", then by (4.1) and (1.4), we have

FL(t)C*(Fy,t) = F(H)C*(F*™,t) < F(t)C*(F,t) - 0 ast — oo.

Thus, according to Lemma 4.2, we know that (1.3) holds for k =n + 1.
Therefore, (1.3) holds for all £ > 1 by induction. O

PrROOF OF COROLLARY 1.2. Clearly, it is easy to find that

C*(F,t) = limsup " Fy(z — t)/Fy(x) = 7' C*(Fp, t).
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Thus, F' € OL follows from Fy € OL. Further, by (1.6),
F(t)C*(F,t) = Fo(t)C*(Fp,t) = 0 ast — oo.

Therefore, we complete the proof by Corollary 1.1. [

Next, we give a distribution F' in (1.5) that satisfies Fyp € OL\ £ and (1.6). Thus, (1.3) holds for all
k > 1 by Corollary 1.2.

EXAMPLE 4.1. Let a € (3/2,(v/5+1)/2) and r = (a + 1)/a be constants. Assume that a > 1 is so
large that a” > 8a. We define some distribution Fy that is supported on [0, 00) and such that

ﬁo(m) = 1{x<a0}(x) +C Z <(Z ai—oc _ a;orl(x — an)> I{IE[an,Qan)}(x)
n=0 i=n
0o
+ Z aial{x€[2an,an+1)}(x)>a (47)
1=n+1

where C' is a regularization constant and a,, = a’" for all nonnegative integers; see Definition 5.1 of Xu
et al. [15]. By Proposition 5.1 in [15], Fp € O6 \ £ and

o
/m@@<m
0
Now, we prove that (1.6) holds.
For each ¢ > 0 and all enough large integer n such that 2a,, +t < ap41, when x € [ay, an, + 1),
1 < Fo(z —t)/Fo(z) < Folan)/Folan +1) — 1;
when z € [a, +t,2a,),
1< Fy(z —t)/Fo(x) < (Folan) — a,* ') /Folan) = 1;
when x € [2a,, 2ay, +t), by r = (a+ 1) /cr, we have
Fo(z —t)/Fo(z) < Fo(2an — t)/Fo(2an) — 1+t

and when x € [2a, + t,ap+1),
Foz — t)/Fo(x) = 1.

This fact implies C*(Fy,t) = 1 +t, thus Fy ¢ £. Further, by [ Fo(y)dy < oo, we find
tlirgo Fo(t)c (Fo,t) = tILIgo Fo(t)(l + t) == 0;

i.e., (1.6) holds. O

Finally, we give a general Kesten inequality which implies (2.1) under some conditions. To this end,

write Ay, := sup,sg Vé?gi:)r) for all n > 1 and

a = M(V.7) + AL(C*(G) — 2M(G, 7)) = M(V.7) +b.
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Proposition 4.1. Let V and G be two distributions such that G € £() NO& for some 0 < v < o0,
M(G,v) < 00 and V() = O(G(x)). Then for every constant A satisfying

a<A<l+a (4.8)
and every constant £ > 0 satisfying
(14+¢e)(a+ (2+A1)e) < A, (4.9)
there exists a constant K = K(V,G,~,¢) > 0 such that

Vik(z) < KAFG(2z) forall x>0 and k> 1. (4.10)

REMARK 4.1. (i) Clearly, C*(G) > 2M (G, ~) and M (V,v) > 1. Thus a > 1. If C*(G) = 2M (G, ),
i.e., G € &(7); then we only require that A > M(V,~). This particular result is attributed to Lemma 2.1
of Yu et al. [33]. When G =V € O6, i.e.,, A] =1, the result is due to Lemma 6.3(ii) of Watanabe [13].
In the two results, the distribution V' is supported on (—oo, 00).

(ii) Clearly, in Theorem 2.1, if

o0
ZpkAk_l < o0,
k=1

then condition (2.1) is satisfied by Proposition 4.1 with G = V*7. For instance, we can take py = pg® for
all nonnegative integers k, where p,q > 0 and p 4+ g = 1, if ¢ is so small that

qa = q(M(V,7) + A (C*(V™T) = 2M (V™7 7))) < 1,

then we can choose a constant A satisfying (4.10) for all £ > 1, which means that (2.1) holds, while
Pr+1/Pr = q does not vanish as k — oo.
(iii) From (4.8), we know that M (V,v) < A —b. Thus, for all n > 1 and any K > 0,

M™(V,7) < AM((A - b)JA)" < KA"((A — b)/(KA)). (4.11)

PRrOOF. Clearly, (4.10) holds for £ = 1 and all z > 0. Further, we assume that (4.10) holds for
k =mn and all x > 0. For the above mentioned ¢ > 0 and every h € $(G, ), by G € £(y) N OG, there is
a constant g > 0 such that

h(zx)
/ Gz —y)V*"(dy) < (1 +e)M™(V,7)G(z) forall n>1 and x> a0, (4.12)
0
z—h(x)
/ G(z —y)G(dy) < (1+¢)(C™(G) = 2M(G,7) +¢)G(2), (4.13)
h(x)
and B o o
V(h(z))G(x — h(zx)) < eG(z). (4.14)

For € > 0, we take
K > max{A;(A —b)/(Ae),1/G(x0)}.

Further, by (4.11), we have
AIM™(V,y) <eKA™ foralln > 1. (4.15)

Now, we prove that (4.10) holds for k = n + 1.
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For all > z9, using integration by parts and inductive hypothesis, by (4.8) and (4.12)—(4.15), we

have

h(zx) z—h(x)
T / V(e — )V (dy) + / Vo (x — )V (dy) + Vo (h(2))V (@ — h(z))
0
h(z) x— h(:}c

<ar [ G- v + A / Gl = )V () + GV (o~ h(o) )
0

h(x) h(zx)
A / Gz — y)V*"(dy) + An< / Gz — )V (dy)
0 0
z—h(x)
+ [ Vo6 + Vb6 - hw) )
h(x)
< A(1+e)M™(V,7)G(x) + A, <(1 +e)M(V,7)G(x)
z—h(x)
i [ G- G +0w)
h(x)

< (1+4e)G(x)KA"(M(V,v) + A1(C*(G) —2M (G, 7)) + (2 + Ay)e).

Further, by (4.9), we know that

O

o N

10.

11.

App1 < KA1 +¢)(a+2¢) < KA™T
Additionally, for all 0 < z < zg, by A > 1 and K > 1/G(x), we have
Apy1 <1/G(x) < KA™L
Combining with the above two inequalities, we know immediately that (4.10) holds for k =n+1. O
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