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Abstract: We obtain limit theorems in the domain of large and moderate deviations for the pro-
cesses admitting embedded compound renewal processes. We justify the large and moderate deviation
principles for the trajectories of periodic compound renewal processes with delay and find a moderate
deviation principle for the trajectories of semi-Markov compound renewal processes.
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1. Introduction

Denote by D = D[0,∞) the space of functions without discontinuities of the second kind and right-
continuous; and by B, the σ-algebra of subsets of D generated by cylindrical sets. Regard a random
process X(t) for t ≥ 0 with trajectories in D as defined on the probability space (D,B,P).

Suppose that some random time moments

0 = T0 ≤ T1 < T2 < · · ·

divide the process into the cycles identical in the following sense: The random elements

((τj , ζj), {Xj(t), 0 ≤ t ≤ τj})
:= ((Tj − Tj−1, X(Tj)−X(Tj−1)), {X(Tj−1 + t)−X(Tj−1), 0 ≤ t ≤ τj}) (1.1)

are independent for j ≥ 1 and identically distributed for j ≥ 2.
Denote by (τ, ζ) the vector with the same distribution as (τj , ζj) for j ≥ 2. We can consider the

sequence {(τj , ζj)} as the controlling sequence of the compound renewal process (CRP)

Z(t) := Zν(t), where ν(t) := max{k : Tk ≤ t}, t ≥ 0,

where Z0 := 0 and Zk :=
∑k

j=1 ζj for k ≥ 1.

The processes X(t) and Z(t) are obviously related as

X(Tj) = Z(Tj), j = 1, 2, . . . ,

and it is natural to call the CRP Z(t) embedded into X(t) with the initial vector of jumps (τ1, ζ1) =
(τ1, X(τ1)).

The classical examples of processes with discrete time t = n, admitting the embedded CRP, are
Markov additive processes (MAPs), i.e., the sequences of sums of random variables defined on the states
of a Harris Markov chain (a chain with a positive atom, possibly, artificial). Such a chain is subdivided
into some independent identical cycles generated by the chain returning to the positive atom. Denoting
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the cycle lengths by τ1, τ2, . . . and the sums of random variables in these cycles by ζ1, ζ2, . . . , we obtain
the controlling sequence (1.1) for the embedded CRP. There are also other examples.

It is shown in [1, § 1.8, § 2.5, and § 5.7; 2, 3] that under some natural and rather mild assumptions many
limit laws for a MAP on the increasing time interval [0, n] assume the same form as the corresponding
limit laws for the embedded CRP.

In order to simplify exposition, in each section we assume firstly that the process Z(t) is homogeneous.
In this case it is natural to call the corresponding process X(t) homogeneous. We extend the results to
the inhomogeneous case at the ends of the sections.

Assume henceforth that the controlling vector (τ, ζ) is nondegenerate; i.e., the distribution of (τ, ζ)
in the plane of variables τ and ζ does not lie on any straight line or, which is the same, D(ζ − cτ) > 0
for all c.

Following the approach of [1, § 1.8] in studying MAPs, as the main characteristic describing the

difference between the processes X(t) and Z(t) we choose the oscillation ζ̂ of X(t) on the cycles:

ζ̂ := max
0≤t<τ

X(t)− min
0≤t<τ

X(t),

where X(t) is a homogeneous process, so that ζ̂j means the oscillations on a cycle j.
In many sections we assume that the random variables in question satisfy Cramér’s moment condition.

Assume that the random variable ξ satisfies Cramér’s condition [C], written as ξ ⊂= [C], whenever

Eeλ|ξ| < ∞ for some λ > 0. Similarly, we write ξ ⊂= [C∞], implying the strong Cramér’s condition,

whenever Eeλ|ξ| < ∞ for all λ < ∞. If all coordinates of (τ, ζ, ζ̂) satisfy condition [C] then we write

(τ, ζ, ζ̂) ⊂= [C].
The article has the following structure: Section 2 considers the large deviation principle (LDP) for the

normalized process X(T )
T in the phase space under the condition (τ, ζ, ζ̂) ⊂= [C]. This problem is simpler

than the similar problem for the trajectories of the process X(t)
T on the increasing time interval [0, T ],

but it illustrates the next circumstance: If the tails of the distributions of ζ and ζ̂ have “comparable”
asymptotics in the framework of condition [C] then the LDPs for

xT :=
X(T )

T
and zT :=

Z(T )

T

coincide in some neighborhood of the point a := Eζ
Eτ and the size of the neighborhood depends on the

relation between the tails of these distributions. Outside this neighborhood, the LDP for xT will in

general differ from that for zT . In the subsequent sections the conditions on ζ̂ are as a rule stronger than
on ζ, which yields the coincidence of the LDP for the trajectories of

xT = xT (t) :=
X(Tt)

T
and zT = zT (t) :=

Z(Tt)

T
, t ∈ [0, 1].

Henceforth D[0, 1] stands for the space of functions without discontinuities of the second kind and
right-continuous on [0, 1]. Section 3 justifies the individual trajectory LDP for the process xT in which
for a fixed measurable set B ⊂ D[0, 1] we study the asymptotics

logP(xT ∈ B) as T → ∞

in the case that (τ, ζ) ⊂= [C] and ζ̂ ⊂= [C∞]. In particular, we obtain an LDP in the first and the
second boundary crossing problems—on the trajectory of xT intersecting and not intersecting a pre-
scribed boundary. Section 4 is devoted to the trajectory LDP for xT in the case that τ ⊂= [C] and

(ζ, ζ̂) ⊂= [C∞]. In Section 5 we obtain a trajectory moderate deviation principle for xT in the Cramér

case when (τ, ζ, ζ̂) ⊂= [C], as well as in the so-called semiexponential case, when the moments Eeτ
β
,

Ee|ζ|
β
, and Ee|ζ̂|

β
are finite for some β ∈ (0, 1). In Sections 6 and 7 we use the theorems of the previous

sections to study large deviations for the trajectories of a periodic CRP with delay (see also [4]) and
a semi-Markov CRP (see also [2, 3]).
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2. A Large Deviation Principle in the Phase Space

In this section we assume that (τ, ζ, ζ̂) ⊂= [C]. Verify that in this case in some domain G including

a neighborhood of the point α = a the normalized random variables xT = X(T )
T satisfy the same local

large deviation principle as the normalized random variables zT = Z(T )
T ; see Theorem 2.2 below.

In order to state the main result more precisely, we need the following notation (cf. [1, 5–18]): Given
(λ, μ) ∈ R2, put

ψ(λ, μ) := Eeλτ+μζ , A(λ, μ) := logψ(λ, μ)

and
A := {(λ, μ) : A(λ, μ) < ∞}, A ≤0 := {(λ, μ) : A(λ, μ) ≤ 0}.

Clearly, the sets A and A ≤0 are convex, A ≤0 ⊂ A , and the interior (A ) of A is the domain of analyticity
of the function A(λ, μ).

In the description of the LDP for the CRP Z(t), the following two functions are crucial. The first is

A(μ) := − sup{λ : (λ, μ) ∈ A ≤0},
where by definition we assume that the least upper bound over the empty set equals −∞, so that
Γ(μ) := (−A(μ), μ) for μ ∈ R is a parametric definition of the boundary ∂A ≤0 of A ≤0 in R2. The second
function is

D(α) := sup
μ
{μα−A(μ)}. (2.1)

The function A(μ) is convex and, therefore, differentiable almost everywhere. From (2.1) we infer
that the point μ(α) at which sup in (2.1) is attained is an a.e. unique solution of the equation A′(μ) = α,
so that

D(α) = μ(α)α−A(μ(α)).

This implies that D′(α) = μ(α), the function μ(α) is nondecreasing, and μ(a) = 0 for a := Eζ
Eτ . Put

λ(α) := −A(μ(α)). Then Γ(μ(α)) = (λ(α), μ(α)) for α ∈ R is also a parametric definition of ∂A ≤0 in
R2; furthermore,

(λ(a), μ(a)) = (0, 0), A(0) = 0 = D(a), A′(0) = a, D′(a) = 0.

The functions A(μ) and D(α) are called the basic function and the deviation function for the CRP Z(t)
respectively; see [1, Chapter 3]. They are convex and lower continuous; furthermore,

A(μ) = sup
α

{μα−D(α)}.

Thus, A(μ) and D(α) constitute a pair of conjugate functions with respect to the Legendre transform.
For more details on the properties of A(μ) and D(α); see [1, Chapter 3] and the bibliography therein.

Consider the function

EX(α) := sup
t>0

eλ(α)tE(eμ(α)(X(t)−X(0)); τ > t)

related to the evolution of the homogeneous process X(t) on the typical cycle

{X(t)−X(0); 0 ≤ t < τ}.
Using this function, put

GX := {α ∈ R : EX(α) < ∞}.
In the case that (τ, ζ, ζ̂) ⊂= [C], we have (λ(a), μ(a)) = (0, 0) for a = Eζ

Eτ , Thus, GX contains the point
α = a together with some neighborhood.

Observe that Z(t)− Z(0) = 0 for all t ∈ [0, τ). Therefore,

EZ(α) := sup
t>0

eλ(α)tE(eμ(α)(Z(t)−Z(0)); τ > t) = sup
t>0

eλ(α)tP(τ > t). (2.2)

(2.2) implies that GZ := {α ∈ R : EZ(α) < ∞} satisfies

{α ∈ R : λ(α) < λ+} ⊆ GZ ⊆ {α ∈ R : λ(α) ≤ λ+},
where λ+ := sup{λ : Eeλτ < ∞}.
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Lemma 2.1. On assuming that (τ, ζ, ζ̂) ⊂= [C], the random sequences

xT :=
X(T )

T
, zT :=

Z(T )

T

satisfy the following:
(i) If α ∈ GX then

lim sup
T→∞

1

T
logP(xT ∈ (α)ε) ≤ −D(α) (2.3)

for every sequence ε = εT = o(1) as T → ∞;
(ii) if α ∈ GZ then

lim sup
T→∞

1

T
logP(zT ∈ (α)ε) ≤ −D(α) (2.4)

for every sequence ε = εT = o(1) as T → ∞ ;
(iii) for all ε > 0 and α ∈ R we have

lim inf
T→∞

1

T
logP(xT ∈ (α)ε) ≥ −D(α); (2.5)

lim inf
T→∞

1

T
logP(zT ∈ (α)ε) ≥ −D(α). (2.6)

Say that the local large deviation principle (LLDP) holds for a sequence {yT }T>0 of random variables
in a domain G ⊂ R with the deviation function (DF) I = I(α) as G → [0,∞] if

lim
n→∞

1

T
logP(yT ∈ (α)ε) = −I(α)

for every α ∈ G where ε = εT → 0 vanishes sufficiently slowly as T → ∞.

Theorem 2.2. (i) On assuming that (τ, ζ, ζ̂) ⊂= [C], the LLDP holds for two random sequences
{xT }T>0 and {zT }T>0 in the domain GX ∩GZ with the common DF D(α).

(ii) On assuming that (τ, ζ) ⊂= [C] and ζ̂ ⊂= [C∞], the LLDP holds for two random sequences xT
and zT in the domain GZ with the common DF D(α).

Proof of Theorem 2.2. Claim (i) is straightforward from Lemma 2.1.
Let us prove claim (ii). By Lemma 2.1, the sequence zT satisfies the LLDP in GZ with DF D(α).

Condition ζ̂ ⊂= [C∞] implies (see Lemma 4.2) that

lim sup
T→∞

1

T
logP(|xT − zT | > ε) = −∞ for all ε > 0. (2.7)

It is easy to see that (2.7) and the property that zT satisfies the LLDP in GZ with DF D(α) implies
claim (ii). The proof of Theorem 2.2 is complete.

Let us prove Lemma 2.1(i),(ii). For an arbitrary ε > 0 we have

P (T ) := P(xT ∈ (α)ε) =
∞∑

n=0

Pn(T ),

where
Pn(T ) := P(xT ∈ (α)ε, Tn ≤ T < Tn + τn+1).

Thus,

P (T ) =
∑

n≤T 2

Pn(T ) +
∑

n>T 2

Pn(T ) =:
∑

1
+
∑

2
. (2.8)

122



Firstly estimate the sum
∑

2 using Chebyshev’s inequalities:

∑

2
≤

∑

n>T 2

P(Tn ≤ T ) =
∑

n>T 2

P

( n∑

k=1

τk ≤ T

)

=
∑

n>T 2

P(e
−

n∑

k=1

τk
≥ e−T ) ≤

∑

n>T 2

(Ee−τ )n

e−T
.

Since P(τ > 0) = 1, we have c := Ee−τ < 1, and so

∑

2
≤

∑

n>T 2

eT cn ≤ e
T2

2
log c+T 1

1− c
≤ e

T2

3
log c (2.9)

for all sufficiently large T . Estimate each term Pn(T ) in
∑

1 as n ≥ 0. For (λ, μ) = (λ(α), μ(α)) and
every n ≥ 0 we have

Pn(T ) = E(e±λTn+±μZm ; X(T ) ∈ (Tα)Tε, Tn ≤ T < Tn + τn+1). (2.10)

The inequality 0 ≤ μX(T )− μαT + |μ|εT holds on the event

Hn(T ) := {X(T ) ∈ (Tα)Tε, Tn ≤ T < Tn + τn+1},

and for γ := T − Tn < τn+1 we have

−λTn − μZn ≤ −λT − μαT + |μ|εT + λγ + μ(X(Tn + γ)− Zn).

Therefore, on the event Hn(T ) by Zn = X(Tn) we have

e−λTn−μZn ≤ e−λT−μαT+|μ|εT eλγ+μ(X(Tn+γ)−X(Tn)). (2.11)

From (2.10), (2.11), and the equalities

−λT − μα(T ) = −λ(α)T − μ(α)α(T ) = −TD(α)

we deduce that
Pn(T ) ≤ e−TD(α)+|μ|εEn(T ), (2.12)

where

En(T ) := E(eλTn+μZneλγ+μ(X(Tn+γ)−X(Tn)); Tn ≤ T < Tn + τn+1)

≤
∞∫

0

E(eλTn+μZn ; T − Tn ∈ dt)E(eλt+μ(X(t)−X(0)); τ > t).

Since the parameter α lies in GX , the second factor in the integral is bounded uniformly in t ≥ 0 by some
constant C < ∞, so that (2.12) yields

Pn(T ) ≤ e−TD(α)−|μ|εCψn(λ, μ) ≤ e−TD(α)−|μ|εC. (2.13)

Using then (2.8), (2.9), and (2.13), we find that

lim sup
T→∞

1

T
logP(T ) ≤ −D(α) + |μ|ε,

which implies (2.3).
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Replacing in the above argument the process X(t) with the process Z(t), we obtain a proof of (2.4).
(iii) Choose and fix for this proof some constants c ∈ (0,∞), R ∈ (0,∞), and q ∈ (0, 1] so that

P(τ ≥ c, |ζ| ≤ R, ζ̂ ≤ R) ≥ q. (2.14)

Consider for r > 0, T > 1
r , ε > 0, and δ ∈ (0, 1) for n := [rT ] the event

CT (ε, δ) :=

{
Tn

n
∈ T

n
(1− δ)δ,

Zn

n
∈ T

n
(α) ε

2

}

.

On this event the sum Tn lies to the left of the value of T , and the distance T := T − Tn lies within the
limits

T ∈ (0, 2Tδ) with probability 1. (2.15)

On the event CT (ε, δ) consider the new process

X ′(t) := X(Tn + t)−X(Tn), t ≥ 0,

independent of the process {X(t), 0 ≤ t ≤ Tn}, where we emphasize that n = [rT ]. The new processX ′(t)
is obviously homogeneous and admits the embedded CRP which we will denote by

Z ′(t) := Z(t+ Tn)− Z(Tn), t ≥ 0.

All notation related to the new process X ′(t) includes the superscript ′; for instance, T ′
k := Tn+k −Tn for

k ≥ 0, and so on. Then on the event CT (ε, δ) we have

X(T ) = X(Tn) +X ′(T ) = Zn + Z ′
ν′(T ) +X ′(T )− Z ′

ν′(T ),

where the random variable T satisfies (2.15). For

k(T ) :=

[
2Tδ

c

]

+ 1

consider the event
BT := {τ ′m ≥ c, |ζ ′m| ≤ R, ζ̂ ′m ≤ R, m ∈ {1, . . . , k(T )}}.

Then by (2.15) the event CT (ε, δ) ∩BT satisfies

|Z ′
ν′(T )| ≤ k(T )R, |X ′(T )− Z ′

ν′(T )| ≤ R,

so that ∣
∣
∣
∣
X(T )

T
− Zn

T

∣
∣
∣
∣ ≤

2Rδ

c
+

2R

T

on this event. Choosing δ > 0 sufficiently small and T < ∞ sufficiently large so that

2Rδ

c
+

2R

T
≤ ε

2
,

we see that ∣
∣
∣
∣
X(T )

T
− α

∣
∣
∣
∣ < ε

on CT (ε, δ) ∩BT . Hence,

P

(
X(T )

T
∈ (α)ε

)

≥ P(CT (ε, δ) ∩BT ) = P(CT (ε, δ))P(BT ) ≥ P(CT (ε, δ))q
k(T ),
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where the last inequality follows from (2.14). Thus,

L−(α, ε) := lim inf
T→∞

1

T
logP

(
X(T )

T
∈ (α)ε

)

≥ lim inf
T→∞

1

T
logP(CT (ε, δ)) +

2δ

c
log q.

The available lower bound in the LLDP for the random walk (Tn, Zn), see Theorem 1.2.1 of [12] for
instance, implies that

lim inf
T→∞

1

T
logP(CT (ε, δ)) ≥ −rΛ

(
1− δ

r
,
α

r

)

,

where Λ(θ, α) := supλ,μ{λθ+ μα−A(λ, μ)} is the (first) deviation function for the random vector (τ, ζ).
Thus,

L−(α, ε) ≥ −rΛ

(
1− δ

r
,
α

r

)

+
2δ

c
log q.

Minimizing the right-hand side of the last inequality over r > 0, for β := 1
1−δα we obtain

L−(α, ε) ≥ −(1− δ)DΛ(1, β) +
2δ

c
log q,

where DΛ(θ, β) := infr>0 rΛ
(
θ
r ,

β
r

)
is the second deviation function for the random vector (τ, ζ). Choosing

furthermore α′ ∈ (α)ε and ε′ > 0 so that (α′)ε′ ⊂ (α)ε, for β
′ := α′

1−δ we find that

L−(α, ε) ≥ L−(α
′, ε′) ≥ −(1− δ)DΛ(1, β

′) +
2δ

c
log q.

Maximizing the right-hand side of the last inequalities over α′ ∈ (α)ε, we find that

L−(α, ε) ≥ −(1− δ) inf
α′=(1−δ)β′∈(α)ε

DΛ(1, β
′) +

2δ

c
log q.

Since for every ε′ ∈ (1, ε) and all sufficiently small δ > 0 the right-hand side of the last inequality is at
most

−(1− δ) inf
α′∈(α)ε′

DΛ(1, α
′) +

2δ

c
log q;

passing to the limit as δ ↓ 0, we see that

L−(α, ε) ≥ − inf
α′∈(α)ε′

DΛ(1, α
′).

Passing furthermore on the right-hand side here to the limit as ε′ ↓ 0 and using Lemma 3.1 of [10], we
arrive at the required relation (2.5)

L−(α, ε) ≥ −D(1, α) = −D(α).

Since (2.6) can be justified similarly, the proof of Lemma 2.1 is complete.

Remark 2.3. The results of Theorem 2.2 can be carried over to the inhomogeneous case. To this

end, in the hypotheses of claim (i) of Theorem 2.2 it suffices to require in addition that (τ1, ζ1, ζ̂1) ⊂= [C];
furthermore, GZ and GX should be replaced in general by some smaller sets G′

Z and G′
X containing the

point a with some neighborhood. In the hypotheses of claim (ii) of Theorem 2.2 it suffices to require in

addition that (τ1, ζ1) ⊂= [C] and ζ̂1 ⊂= [C∞]; furthermore, GZ should be replaced in general by a smaller
set G′

Z containing the point a with some neighborhood.
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3. Individual Trajectory Large Deviation Principles

While discussing LDP for the trajectories of random walks or CRP, we usually mean the fulfillment
of appropriate relations for all measurable sets B ⊂ D. These propositions require, as a rule, rather
restrictive conditions on the jumps of the processes (condition [C∞]). At the same time, there may exist
quite large classes of sets B ⊂ D for which these relations hold on only assuming condition [C]. As [1,
Chapter 4] shows, that includes sets related to a trajectory of the process intersecting or not intersecting
a receding curvilinear boundary.

In this section we study the cases in which for some specified classes of sets B ⊂ D[0, 1] the trajectories
of the process

zT = zT (t) :=
Z(tT )

T
, 0 ≤ t ≤ 1, (3.1)

satisfy an “individual” LDP; we find conditions under which the same individual LDP remains valid for
all trajectories of

xT = xT (t) :=
X(tT )

T
, 0 ≤ t ≤ 1. (3.2)

Equip the space D[0, 1] with the uniform metric, i.e., given f, g ∈ D[0, 1], put

ρ(f, g) := sup
t∈[0,1]

|t(t)− g(t)|.

Denote the resulting metric space by DU [0, 1].
Define in DU [0, 1] the deviation functional (integral)

I = I(f) :=

⎧
⎨

⎩

1∫

0

D(f ′(t))dt if f ∈ Ca,

∞ if f ∈ DU [0, 1] \ Ca,

(3.3)

where Ca is the class of absolutely continuous functions f ∈ DU [0, 1] with f(0) = 0.
Denote by (B)ε the ε-neighborhood of a measurable set B ⊂ DU [0, 1], i.e.,

Bε := {g ∈ DU [0, 1] : inf
f∈B

ρ(f, g) < ε}.

Say that a measurable set B ⊂ DU [0, 1] is of class LD+ whenever for some ε0 > 0 and every
ε ∈ (0, ε0] we have

lim sup
T→∞

1

T
logP(zT ∈ (B)ε) ≤ −I([(B)ε]), lim inf

T→∞

1

T
logP(zT ∈ (B)) ≥ −I((B)); (3.4)

and, furthermore,
I((B)) = I(B+) := lim

ε↓0
I([(B)ε]). (3.5)

If (3.4) and (3.5) hold for the normalized process xT (see (3.2)) and a fixed measurable set B ⊂
DU [0, 1] then

lim
T→∞

1

T
logP(xT ∈ B) = −I(B), (3.6)

and we say that the trajectories of xT satisfy the individual LDP in DU [0, 1].
To construct simple examples of sets B of class LD+, consider for α ∈ R the family of sets B(α) :=

{f ∈ DU [0, 1] : f(1) ≥ α}. If (τ, λ) ⊂= [C] and λ+ := sup{λ : Eeλτ < ∞} ≥ D(0), while the real α is such
that the convex deviation function D(t) (see (2.1)) is finite in some neighborhood of the point t = α;
then by the local LDP in the phase space for the CRP Z(t) (see [10]) the relations (3.4) and (3.5) for
the set B(α) are satisfied and, consequently, B(α) ∈ LD+. Other examples of sets B of class LD+ will
appear at the end of this section.
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Theorem 3.1. Suppose that (τ, ζ) ⊂= [C], ζ̂ ⊂= [C∞], and λ+ ≥ D(0). Then
(i) for all f ∈ Ca, ε > 0, and δ = δT ↓ 0 as T → ∞ we have the inequalities (i.e., the partial LLDP

for xT )

lim sup
T→∞

1

T
logP(xT ∈ (f)δ) ≤ −I(f), (3.7)

lim inf
T→∞

1

T
logP(xT ∈ (f)ε) ≥ −I(f); (3.8)

(ii) if B ∈ LD+ then the trajectories of xT satisfy the individual LDP (3.6).

Proof. (i): By hypotheses, the CRP zT satisfies the so-called first partial LLDP, [1, Theorem 4.2.1]:

lim sup
T→∞

1

T
logP(zT ∈ (f)δ) ≤ −I(f), (3.9)

lim inf
T→∞

1

T
logP(zT ∈ (f)ε) ≥ −I(f) (3.10)

for all f ∈ Ca, ε > 0, and δ = δT ↓ 0 as T → ∞. Use the obvious inequalities

P(zT ∈ (f)2γ) ≥ P(xT ∈ (f)γ , ρ(xT , zT ) < γ) ≥ P(xT ∈ (f)γ)−P(ρ(xT , zT ) ≥ γ).

Thus,
P(zT ∈ (f)2γ(T )) ≥ P(xT ∈ (f)γ(T ))−P(ρ(xT , zT ) ≥ γ(T )) (3.11)

for all T > 0 and γ(T ) > 0.
Let us verify that for every fixed γ > 0 we have

lim
T→∞

1

T
logP(ρ(xT , zT ) ≥ γ) = −∞. (3.12)

If γ > 0 then
P(ρ(xT , zT ) ≥ γ) ≤ P1 + P2, (3.13)

where P1 := P(ρ(xT , zT ) ≥ γ, ν(T ) ≤ T 2) and P2 := P(ν(T ) > T 2). Let us estimate P1 from above.
Since Z(Tn) = X(Tn) for n ≥ 0; therefore,

P1 = P( max
1≤n≤[T 2]+1

sup
t∈(Tn−1,Tn)

|X(t)−X(Tn−1)| > Tγ)

= P( max
1≤n≤[T 2]+1

ζ̂n > Tγ) ≤ (T 2 + 1)P(ζ̂ > Tγ). (3.14)

Since ζ̂ ⊂= [C∞], using (3.14) and Chebyshev’s inequality, for every λ > 0 we obtain

lim sup
T→∞

1

T
logP1 ≤ lim sup

T→∞

1

T
log

(
Eeλζ̂

eλγT

)

= −λγ.

Letting λ → ∞, we find that

lim sup
T→∞

1

T
logP1 = −∞. (3.15)

Now, estimate P2 from above. Chebyshev’s inequality yields

P2 = P(ν(T ) > T 2) ≤ P(T[T 2] < T )

= P

(

exp

{

−
[T 2]∑

k=1

τk

}

> exp{−T}
)

≤ (Ee−τ )[T
2]

e−T
.
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Since P(τ > 0) = 1, it follows that c := Ee−τ < 1. Hence,

lim sup
T→∞

1

T
logP2 ≤ lim sup

T→∞

1

T
([T 2] log c+ T ) = −∞. (3.16)

Using (3.13), (3.15), and (3.16), we establish (3.12).
From (3.12) we infer that there is a function γ0 = γ0(T ) ↓ 0 as T → ∞ such that

lim
T→∞

1

T
logP(ρ(xT , zT ) ≥ γ(T )) = −∞ (3.17)

for all γ(T ) ≥ γ0(T ). Using (3.9), (3.11), and (3.17), we establish (3.7).
Swapping in (3.11) the processes zT and xT , we see that

P(xT ∈ (f)2γ) ≥ P(zT ∈ (f)γ)−P(ρ(xT , zT ) ≥ γ) (3.18)

for every fixed γ > 0. So, (3.10), (3.12), and (3.18) yield (3.8). Claim (i) of the theorem is justified.
(ii): Use the obvious inequalities

P(zT ∈ (B)ε) ≥ P(xT ∈ B, ρ(xT , zT ) < ε) ≥ P(xT ∈ B)−P(ρ(xT , zT ) ≥ ε).

Furthermore, from (3.12) and the property that B belongs to LD+, we find that

lim sup
T→∞

1

T
logP(xT ∈ B) ≤ −I([(B)ε]) ≤ −I((B)2ε) (3.19)

for all sufficiently small ε > 0.
The relation

lim inf
T→∞

1

T
logP(xT ∈ B) ≥ −I((B)) (3.20)

is straightforward from (3.8). Since (3.6) follows from (3.19) and (3.20), the proof of Theorem 3.1 is
complete.

Example 3.2 (an individual LDP in the first boundary crossing problem for the process xT ). This
problem is related to the asymptotics of the probability P(xT ∈ Bg), where for a prescribed function
g = g(t) ∈ DU [0, 1] with g(t)− at > 0 for all t ∈ [0, 1], the set Bg is of the form

Bg := {f ∈ DU [0, 1] : f(0) = 0, sup
t∈[0,1]

{f(t)− g(t)} ≥ 0}.

In other words, Bg consists of f ∈ DU [0, 1] starting at zero and exceeding or reaching the level g(t) on
the segment [0, 1].

Theorem 4.6.2 of [1] proposed some mild conditions under which for some tg ∈ (0, 1] the function

fg(t) :=

{
t
g(tg)
tg

for 0 ≤ t ≤ tg,

g(tg) + a(t− tg) for tg ≤ t ≤ 1,

is the most probable trajectory in Bg for the process zT . In other words,

lim
T→∞

1

T
logP(zT ∈ Bg) = −I((Bg)) = −I([Bg]) = −I(fg).

Furthermore, since Bg ∈ LD+ Theorem 3.1 implies, under a suitable condition on ζ̂, an individual LDP
for the process xT in the first boundary crossing problem.
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Example 3.3 (an individual LDP in the second boundary crossing problem for the process xT ). This
problem is related to the asymptotics of the probability P(xT ∈ Bg−,g+), where for the prescribed
functions g− = g−(t) and g+ = g+(t) ∈ DU [0, 1] with g−(0) < 0 < g+(0) and g+(t) − g−(t) > 0 for all
t ∈ [0, 1] the set Bg−,g+ is of the form

Bg−,g+ := {f ∈ DU [0, 1] : f(0) = 0, g−(t) ≤ f(t) ≤ g+(t), t ∈ [0, 1]}.

In other words, Bg−,g+ consists of the functions f ∈ DU [0, 1] starting at zero and on the segment [0, 1]
remaining in the curvilinear strip with the boundaries g−(t) and g+(t).

Theorem 4.7.2 of [1] proposed conditions under which the most probable trajectory fg−,g+ in Bg−,g+

for the process zT is constructed. In other words,

lim
T→∞

1

T
logP(zT ∈ Bg−,g+) = −I(Bg−,g+) = −I([Bg−,g+ ]) = −I(fg−,g+).

Furthermore, since Bg−,g+ ∈ LD+ Theorem 3.1 implies, under a suitable condition on ζ̂, an individ-
ual LDP for the process xT in the second boundary crossing problem.

Remark 3.4. The result of Theorem 3.1 can be carried over to the inhomogeneous case. To this

end, in its hypotheses it suffices to require in addition that ζ̂1 ⊂= [C∞] and A ≤0 ⊂ [A1], where A1 :=
{(λ, μ) : Eeλτ1+μζ1 < ∞}.

4. Trajectory Large Deviation Principles

Given a family {yT (t); 0 ≤ t ≤ 1}T>0 of processes in DU [0, 1], a sequence ψ(T ) → ∞ as T → ∞,
a functional J(f) : D[0, 1] → [0,∞] such that for every v ≥ 0 the set {f : J(f) ≤ v} is compact in DU [0, 1],
say that yT (t) satisfies an LDP with the deviation functional J and normalizing sequence ψ(T ) (briefly
we denote this as (J, ψ(T ))-LDP) if

lim sup
T→∞

1

ψ(T )
logP(yT ∈ B) ≤ −J([B]), lim inf

T→∞

1

ψ(T )
logP(yT ∈ B) ≥ −J((B)),

for every measurable set B ⊂ DU [0, 1], where (B) and [B] are the interior and closure of B, while
J(B) := inff∈B J(f).

In this section we use the notation of Sections 2 and 3. We consider the case that the trajectories of

the normalized process zT (see (3.1)) satisfy the (J, T )-LDP and study the conditions on ζ̂ under which
a similar LDP holds for xT (see (3.2)).

As the deviation functional J = J(f) below we use the functional I = I(f) defined in (3.3).

Theorem 4.1. Assume that τ ⊂= [C], (ζ, ζ̂) ⊂= [C∞], and λ+ ≥ D(0). Then xT satisfies the
(I, T )-LDP.

Proof. Theorem 4.5.1 of [1] (see also [5, 6]) implies that under the hypotheses of our theorem the
family zT satisfies the (I, T )-LDP. Use the following statement:

Lemma 4.2. Assume that ζ̂ ⊂= [C∞]. Then for every ε > 0 we have

lim sup
T→∞

1

T
logP(ρ(zT ,xT ) > ε) = −∞. (4.1)

It is known (see [19, Theorem 4.2.13] for instance) that if the process zT satisfies the (I, T )-LDP
and (4.1) holds then the process xT satisfies the same LDP. Thus, Theorem 4.1 is justified, and it remains
to prove the lemma.

Proof of Lemma 4.2. If ε > 0 then

P(ρ(zT ,xT ) > ε) ≤ P1 + P2 := P(ρ(zT ,xT ) > ε, ν(T ) ≤ T 2) +P(ν(T ) > T 2). (4.2)
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Estimate P1 from above. Since X(Tn) = Z(Tn) for n ≥ 0, it follows that

P( max
1≤n≤[T 2]+1

sup
t∈(Tn−1,Tn)

|X(t)−X(Tn−1)| > εT )

≤ P( max
1≤n≤[T 2]+1

ζ̂n > εT ) ≤ (T 2 + 1)P(ζ̂ > εT ). (4.3)

Since ζ̂ ⊂= [C∞], using the exponential Chebyshev’s inequality, by (4.3) for all ε > 0 and λ < ∞ we
obtain

lim sup
T→∞

1

T
logP1 ≤ lim

T→∞

1

T
log

(
Eeλζ̂

eλεT

)

= −λε.

Letting λ → ∞, for every fixed ε > 0 we arrive at

lim sup
T→∞

1

T
logP1 ≤ −∞. (4.4)

To estimate P2, applying Chebyshev’s inequality, we find that

P2 = P(ν(T ) > T 2) ≤ P(T[T 2] < T ) ≤ P(exp{−T[T 2]} > exp{−T}) ≤ (Ee−τ )[T
2]

e−T
.

Since c := Ee−τ < 1, the last inequality yields

lim sup
T→∞

1

T
logP2 ≤ 1 + lim

T→∞

[T 2] log c

T
= −∞. (4.5)

Now (4.2), (4.4), and (4.5) imply the claim of Lemma 4.2.

Remark 4.3. The result of Theorem 4.1 can be carried over to the inhomogeneous case. In the

conditions of the theorem it suffices to require in addition that (ζ1, ζ̂1) ⊂= [C∞] and

λ1
+ := sup{λ : Eeλτ1 < ∞} ≥ D(0).

5. A Trajectory Moderate Deviation Principle

In this section, as before, we study a process X(t) that admits an embedded homogeneous CRP Z(t).
In the case that the trajectories of Z(t) satisfy a moderate deviation principle (MDP), we find the
conditions under which the process X(t) satisfies the same MDP. More precisely, for a fixed sequence
x = x(T ) → ∞ as T → ∞ we consider the two families of processes

xT = xT (t) :=
X(tT )− atT√

Tx
, zT = zT (t) :=

Z(tT )− atT√
Tx

, (5.1)

where

a =
Eζ

Eτ
, σ2 :=

E(ζ − aτ)2

Eτ
,

and the random vector (τ, ζ) controls the embedded CRP Z(t).
We study the conditions under which the LDP for trajectories of the processes xT and zT are the

same (see the definition of a (J, ψ(T ))-LDP in Section 4).
As J = J(f) in this section we use the deviation functional (integral)

I0 = I0(f) :=

⎧
⎨

⎩

1
2σ2

1∫

0

(f ′(t))2dt if f ∈ Ca,

∞ if f ∈ D[0, 1] \ Ca.

(5.2)
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The properties of I0 are thoroughly studied; see [12, Chapter 5] for instance. In particular, I0 is a lower
semicontinuous convex functional on DU [0, 1] and the sets {f : I0(f) ≤ c} are compact in the uniform
metric for every c ≥ 0.

To state the main theorem of this section, along with condition [C] we need the milder moment
condition [CV ]. Denote by Lβ , for β ∈ (0, 1), the class of functions V = V (t) : (0,∞) → (0,∞)
satisfying the following:

(1) V (t) = tβl(t) is a regularly varying function (r.v.f.), and so l(t) is a slowly varying function (s.v.f.)
as t → ∞;

(2) if t → ∞ and u = o(t) then

V (t+ u)− V (t) = βu
V (t)

t
(1 + o(1)) + o(1).

Say that a random variable ξ satisfies condition [CV ], whenever for V ∈ Lβ the inequality P(|ξ| > t)

≤ e−V (t) holds for all t > 0. Denote the fulfillment of condition [CV ] as ξ ⊂= [CV ]. By analogy with the
above, if τ ⊂= [CV ] and ζ ⊂= [CV ] simultaneously, then for the vector (τ, ζ) we write (τ, ζ) ⊂= [CV ].

Addressing processes (5.1), consider the deviation x = x(T ) of the form

x → ∞, x = o(x̂) as T → ∞, (5.3)

where the sequence x̂ = x̂(T ) depends on whether the condition [C] or [CV ] being used and is defined as
follows:

x̂(T ) :=

{ √
T for [C],

T− 1
2 v(−1)(1/T ) for [CV ].

Here

v(−1)(1/T ) := sup

{

t ≥ 0 : t−2V (t) ≥ 1

T

}

,

i.e., v(−1)(u) is a generalized inverse function to v(t) := t−2V (t). Section 4.8.1 of [1] (see also [20])

contains the explicit form of the function v(−1)(1/T ):

v(−1)(1/T ) = T
1

2−β l1(T ),

where l1(T ) is an SVF as T → ∞.
Thus, the smaller the parameter β within the interval (0, 1), the weaker condition [CV ] for V ∈ Lβ

and the smaller the zone of moderate deviations (5.3).

Theorem 5.1 (an MLDP for trajectories of xT ). Suppose that either (τ, ζ, ζ̂) ⊂= [C] or (τ, ζ, ζ̂) ⊂= [CV]
and the sequence x = x(T ) satisfies condition (5.3). Then the family xT of processes, see (5.1), satisfy
the (I0, x

2(T ))-LDP, where the deviation functional I0 = I0(f) is defined in (5.2).

Proof. Theorem 4.8.2 of [1], see also [20, 21], implies that under the hypotheses of the theorem the
family of processes zT , see (5.1), satisfies the (I0, x

2(T ))-LDP. Thus, the claim of Theorem 5.1 follows
from the next lemma.

Lemma 5.2. Assume the hypotheses of Theorem 3.1. Then

lim
T→∞

1

x2
logP(ρ(xT , zT ) > ε) = −∞

for every ε > 0.

It remains to prove this lemma.

Proof of Lemma 5.2. Given ε > 0 and C > 0, we have

P(ρ(xT , zT ) > ε) ≤ P1 + P2, (5.4)
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where P1 := P(ρ(xT , zT ) > ε, ν(T ) ≤ CT ) and P2 := P(ν(T ) > CT ). Estimate P1 from above. Since
Z(Tn) = X(Tn) for n ≥ 0; therefore,

P1 = P( max
1≤n≤[CT ]+1

sup
Tn−1<t<Tn

|X(t)−X(Tn−1)| >
√
Txε, ν(T ) ≤ CT )

≤ P( max
1≤n≤[CT ]+1

ζ̂n >
√
Txε) ≤ (1 + [CT ])P(ζ̂ >

√
Txε). (5.5)

If condition [C] holds then, applying to the right-hand side of (5.5) the exponential Chebyshev inequality
and taking into account the zone of deviations (5.3), for all ε > 0, C > 0, and some λ > 0 we obtain the
upper bound

lim sup
T→∞

1

x2
logP1 ≤ lim sup

T→∞

1

x2
log

Eeλζ̂

eλ
√
Txε

= − lim
T→∞

λ
√
Txε

x2
= −∞. (5.6)

If condition [CV ] holds then, using condition (5.3) and the definition of the functions v(t) and v(−1)(u),
we see that

lim sup
T→∞

1

x2
logP1 ≤ lim sup

T→∞

1

x2
log((1 + [CT ])e−V (

√
Txε)) ≤ −εβ lim

T→∞

V (
√
Tx)

x2

= −εβ lim
T→∞

v(
√
Tx)

v(v(−1)(1/T ))
= −εβ lim

T→∞

v(o(v(−1)(1/T )))

v(v(−1)(1/T ))
= −∞ (5.7)

for every ε > 0. To estimate P2 from above, applying Chebyshev’s inequality, we infer that

P2 = P(ν(T ) > CT ) ≤ P(T[CT ] < T ) = P(e

[CT ]∑

k=1

τk
< eT )

≤ P(e
−

[CT ]∑

k=1

τk
> e−T ) ≤ (Ee−τ )[CT ]

e−T
.

Since P(τ > 0) = 1, we have c := Ee−τ < 1. Therefore, choosing the constant C = C0(c) := − 2
log c + 1,

for T ≥ 2 we find that

P2 ≤
c
− 2T

log c

e−T
= e−T .

Using condition (5.3), we infer that

lim sup
T→∞

1

x2
logP2 ≤ − lim

T→∞

T

x2
= −∞. (5.8)

Now (5.4)–(5.8) imply that

lim sup
T→∞

1

x2
logP(ρ(xT , zT ) > ε) ≤ lim sup

T→∞

1

x2
log(2max(P1, P2)) = −∞

for every ε > 0. The proof of Lemma 5.2 is complete.

Remark 5.3. The result of Theorem 5.1 can be carried over to the inhomogeneous case. In the

conditions of the theorem it suffices to require in addition that (τ1, ζ1, ζ̂1) ⊂= [C] or (τ1, ζ1, ζ̂1) ⊂= [CV ].
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6. Large and Moderate Deviation Principles for
Periodic Compound Renewal Processes with Delay

To define the object of study, consider the sequence

ξ∗k = (τ∗k , ζ
∗
k), P(τ∗k ≥ 0) = 1, k ≥ 1, (6.1)

of random vectors and split (6.1) into disjoint independent groups G1,G2, . . . ,Gk, . . . . To this end, choose
some integer parameter s ≥ 0 corresponding to the delay, an integer parameter m ≥ 1 corresponding to
the period, and put

G1 := {ξ∗1 , . . . , ξ∗s}, Gk := {ξ∗s+(k−2)m+1, . . . , ξ
∗
s+(k−1)m}, k ≥ 2.

Assume that the tuples of vectors in the distinct group Gk for k ≥ 1 are jointly independent and for k ≥ 2
the identically distributed. We emphasize incidentally that the vectors ξ∗k in one of the groups G1, or G2

for instance, can be “however dependent.”
Let us show how sequence (6.1) under our assumptions determines some periodic CRP with de-

lay X(t). To this end, construct a random walk {(T ∗
n , Z

∗
n)}n≥0 generated by the sums of random vec-

tors (6.1):

(T ∗
0 , Z

∗
0 ) := (0, 0), (T ∗

n , Z
∗
n) :=

( n∑

k=1

τ∗k ,
n∑

k=1

ζ∗k

)

, n ≥ 1.

Then X(t) := Z∗
ν∗(t), t ≥ 0, where

ν∗(t) :=

{
0 if t = 0;

max{n ≥ 0 : T ∗
n ≤ t} if t > 0.

Thus, for m = 1 the periodic CRP with delay X(t) becomes an homogeneous CRP if s = 0 and an inho-
mogeneous CRP if s = 1. Construct for a process X(t) an embedded CRP Z(t). For that, it suffices to
construct for Z(t) the controlling sequence

ξk = (τk, ζk), k ≥ 1. (6.2)

Perform this construction by letting

ξk :=
∑

{j:ξ∗j∈Gk}
ξ∗j =

( ∑

{j:ξ∗j∈Gk}
τ∗j ,

∑

{j:ξ∗j∈Gk}
ζ∗j

)
.

We also require that the vector ξ = (τ, ζ) having the same distribution with the vectors ξk = (τk, ζk) for
k ≥ 2 is nondegenerate in R2 and P(τ > 0) = 1. It is obvious that the so-constructed sequence (6.2)
is controlling for the CRP Z(t); which, in turn, is embedded into the periodic CRP with delay X(t).

Furthermore, we have defined the characteristics (see Section 1) (τ1, ζ1, ζ̂1) and (τ, ζ, ζ̂), where

ζ̂1 := max
0≤t<τ1

X(t)− min
0≤t<τ1

X(t), ζ̂ = max
τ1≤t<τ2

X(t)− min
τ1≤t<τ2

X(t).

In the following statement we use the notation D(α), I(f), and so on as in Section 4.

Theorem 6.1. Suppose that τ∗k ⊂= [C], ζ∗k ⊂= [C∞] for 1 ≤ k ≤ s+m and

λ
(1)
+ := sup{λ : Eeλτ1 < ∞} ≥ D(0), λ+ := sup{λ : Eeλτ < ∞} ≥ D(0).

Then the two families of processes

x = x(t) :=
1

x
X(tT ), z = z(t) :=

1

x
Z(tT ), 0 ≤ t ≤ 1,

where x = x(T ) ∼ T as t → ∞, satisfy the (I, T )-LDP in DU [0, 1].
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Proof. Theorem 4.1 and Remark 4.3 imply that it suffices to show that (τ1, τ) ⊂= [C] and (ζ1, ζ̂1, ζ, ζ̂)

⊂= [C∞]. Verify firstly that (τ1, τ) ⊂= [C]. Clearly, it suffices to show that Eeλ(τ̃+ζ̃) < ∞ for some λ > 0,
where

τ̃ :=
s+m∑

k=1

τ∗k .

Since τ∗k ⊂= [C] for 1 ≤ k ≤ s+m, there is μ > 0 such that

max
1≤k≤s+m

Eeμτ
∗
k < ∞.

Put λ := μ
s+m . Hölder’s inequality yields

Eeλτ̃ = E exp

{

λ
s+m∑

k=1

τ∗k

}

≤
( s+m∏

k=1

Eeμτ
∗
k

) 1
s+m

< ∞.

Now the property (ζ1, ζ̂1, ζ, ζ̂) ⊂= [C∞], follows since ζ∗k ⊂= [C∞] for 1 ≤ k ≤ s+m and

max(|ζ1|, |ζ̂1|, |ζ|, |ζ̂|) ≤
s+m∑

k=1

|ζ∗k |.

The proof of Theorem 6.1 is complete.

In the next statement we use the notation a, σ2, I0(f), and so on as in Section 5.

Theorem 6.2. Suppose that τ∗k ⊂= [C] and ζ∗k ⊂= [C] for 1 ≤ k ≤ s +m. Then the two families of
processes

x = x(t) :=
1

x
√
T
(X(tT )− atT ), z = z(t) :=

1

x
√
T
(Z(tT )− atT ), 0 ≤ t ≤ 1,

where x = x(T ) → ∞ and x√
T
→ 0 as t → ∞, satisfy the (I0, T )-LDP in DU [0, 1].

Proof. By Theorem 5.1 and Remark 5.3, it suffices to show that (τ, ζ, ζ̂) ⊂= [C] and (τ1, ζ1, ζ̂1) ⊂= [C].
Obviously, it suffices to verify that for some λ > 0 we have

Eeλ(τ̃+ζ̃) < ∞,

where

τ̃ + ζ̃ :=
s+m∑

k=1

τ∗k +
s+m∑

k=1

|ζ∗k |.

Further arguments reduce to applying Hölder’s inequality, as in the proof of Theorem 6.1, and we omit
them. The proof of Theorem 6.2 is complete.

Remark 6.3. In [4], the law of large numbers (LLN) and the functional central limit theorem are
obtained for periodic renewal processes with delay, as well as the LLN is justified for periodic CRPs with
delay in the case that τ∗k and ζ∗k for k ≥ 1 are independent. The reference also includes some survey of
the results related to the applications of processes of this type. Thus, Theorem 6.2 refines the results
of [4], extending the invariance principle into the domain of moderate deviations.

Remark 6.4. The results of this section are valid for a larger class of processes than the periodic
CRP with delay. Actually, the random vectors appearing in the class Gk, for k ≥ 1, can be ordered
arbitrarily.
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7. The Moderate Deviation Principle for
Semi-Markov Compound Renewal Processes

Let us define the object of study. We are given a time-homogeneous Markov chain κ(n), n ≥ 0, with
finitely many l ≥ 1 essential states L := {1, . . . , l} which is indecomposable and nonperiodic, i.e., ergodic;
see [22, Section 13.4] for instance. Denote the matrix of transition probabilities by

‖pi,j‖ := ‖P(κ(1) = j | κ(0) = i)‖, i, j ∈ L.

Suppose also that we are given a sequence of independent tuples of random vectors

Fk :=
{
ξi,jk =

(
τ i,jk , ζi,jk

)
, i, j ∈ L

}

and k ≥ 1, independent of the Markov chain κ(n) and having the same distributions as the tuple of
random vectors

F := {ξi,j = (τ i,j , ζi,j), i, j ∈ L},
where P(τ i,j > 0) = 1. Assume the following nondegeneracy condition: There exist i, j ∈ L such that
pi,j > 0 and

P(bτ i,j + cζi,j = d) < 1

for all b, c, d ∈ R with |b|+ |c| �= 0.
Fix the initial position of the chain κ(0) = i0 ∈ L and define the walk (T ∗

n , Z
∗
n), for n ≥ 0, by putting

T ∗
0 = Z∗

0 := 0, T ∗
n :=

n∑

k=1

τ
κ(k−1),κ(k)
k , Z∗

n :=

n∑

k=1

ζ
κ(k−1),κ(k)
k , n ≥ 1.

From the coordinate T ∗
n construct the renewal process

ν∗(t) :=

{
0 if t = 0,

max{n ≥ 0 : T ∗
n ≤ t} if t > 0.

Now we can define the semi-Markov CRP (for the initial position κ(0) = i0 of the chain)

X(t) = Xi0(t) := Z∗
ν∗(t), t ≥ 0.

This is the main process studied in this section.
Along with the initial state i0 of the chain, fix an arbitrary state i ∈ L, put r(0) := 0, and for n ≥ 1

define the successive moments

r(n) := inf{k > n(n− 1) : κ(n) = i}
of the return of κ into the state i. It is obvious that the random variables

m1 := r(1), . . . , mn := r(n)− r(n− 1), . . .

are jointly independent, and for n ≥ 2 identically distributed. Furthermore, m1,m2 ⊂= [C]; see [22,
Section 13.4] for instance.

Consider the sequence

(T0, Z0) := (0, 0), . . . , (Tn, Zn) := (T ∗
r(n), Z

∗
r(n))

and define the vectors (τj , ζj) := (Tj − Tj−1, Zj − Zj−1, ) for j ≥ 1. It is easy to see that these
vectors are independent and for j ≥ 2 identically distributed; hence, they determine for the process X(t)
an embedded CRP Z(t).

Define the two constants

a = ai :=
Eiζ2
Eiτ2

, σ2 = σ2
i :=

Ei(ζ2 − aiτ2)
2

Eiτ2
, (7.1)

where EiY means E(Y | κ(0) = i). In Theorem 7.1 we establish that constants (7.1) are independent
of i ∈ L. Thus, in the notation of Section 5, which we use below and which involves these parameters,
they are independent of i ∈ L.
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Theorem 7.1. Suppose that (τ i,j , ζi,j) ⊂= [C] for i, j ∈ L. Then the constants a and σ2 in (7.1) are
independent of the parameter i ∈ L, and the family of processes

xT = xT (t) :=
1

x
√
T
(X(tT )− atT ), 0 ≤ t ≤ 1,

where the sequence x = x(T ) is such that

lim
T→∞

x = ∞, lim
T→∞

x√
T

= 0,

for an arbitrary initial state of the Markov chain κ(0) = i0 satisfies the (I0, x
2(T ))-LDP in DU [0, 1].

Proof. Fix some initial state i0 of the Markov chain and an arbitrary state i ∈ L, using which we
construct an embedded CRP Z(t). Theorem 5.1 and Remark 5.3 imply that the family of processes

xT (t) :=
1

x
√
T
(X(tT )− aitT ), zT (t) :=

1

x
√
T
(Z(tT )− aitT ), 0 ≤ t ≤ 1, (7.2)

for the initial state i0 satisfy the
(
I
(i)
0 , x2(T )

)
-LDP, where the deviation functional is defined for the

constant σ2
i if (τ, ζ, ζ̂) ⊂= [C] and (τ1, ζ1, ζ̂1) ⊂= [C]. Obviously, it suffices to show that Eeλ(τ̃+ζ̃) < ∞ for

some λ > 0, where

τ̃ :=

m1+m2∑

k=1

τ
κ(k−1),κ(k)
k and ζ̃ :=

m1+m2∑

k=1

∣
∣ζ

κ(k−1),κ(k)
k

∣
∣.

The condition (τ i,j , ζi,j ,m1,m2) ⊂= [C] for i, j ∈ L implies that there are λ > 0 and μ > 0 such that

max
i,j∈L

Eeλ(τ
i,j+|ζi,j |) ≤ e

μ
2 , Eeμ(m1+m2) < ∞. (7.3)

Using (7.3) and Chebyshev’s inequality, we obtain

Eeλ(τ̃+ζ̃) =
∞∑

d=1

Ei0

(

exp

{

λ
d∑

k=1

(
τ
κ(k−1),κ(k)
k +

∣
∣ζ

κ(k−1),κ(k)
k

∣
∣
)
}

| m1 +m2 = d

)

P(m1 +m2 = d)

≤
∞∑

d=1

(max
i,j∈L

Eeλ(τ
i,j+|ζi,j |))dP(m1 +m2 = d)

≤ Eeμ(m1+m2)
∞∑

d=1

(
max
i,j∈L

Eeλ(τ
i,j+|ζi,j |))de−μd ≤ Eeμ(m1+m2)

∞∑

d=1

e−
μ
2
d < ∞.

Therefore, we showed that the family xT (t) satisfies the
(
I
(i)
0 , x2(T )

)
-LDP. This implies that

lim
T→∞

P

(∣
∣
∣
∣
1

T
X(T )− ai

∣
∣
∣
∣ > ε

)

= 0 (7.4)

for an arbitrary initial state i0 and every ε > 0. Similarly we can prove (7.4), which instead of ai
involves aj for every j ∈ L. This circumstance shows that a = a1 = a2 = · · · = al. The latter implies
that the families of centered and normalized processes xT defined in (7.2) for distinct i ∈ L coincide.

Apart from the initial state i0 ∈ L, choose two arbitrary distinct states i, j ∈ L and denote by

I
(i)
0 = I

(i)
0 (f) and I

(j)
0 = I

(j)
0 (f) the deviation functionals constructed for the parameters σ2

i and σ2
j .

The above implies that the family of processes xT simultaneously satisfies the
(
I
(i)
0 , x2

)
-LDP and the

(
I
(j)
0 , x2

)
-LDP. Since this is possible only if σ2

i and σ2
j coincide, the parameters σ2

i are independent
of i ∈ L. The proof of Theorem 7.1 is complete.

Remark 7.2. In [18], local theorems are obtained for multidimensional arithmetic semi-Markov
CRP in the domains of normal, moderately large, and partially large deviations.
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