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Abstract: Consider a class C of groups which contains at least one nontrivial group and is closed under
subgroups, extensions, and direct products of the form

∏
y∈Y Xy, where X,Y ∈ C and Xy is an iso-

morphic copy of X for each y ∈ Y . Suppose that G is either a tree product of finitely many groups
with central edge subgroups or the fundamental group of an arbitrary graph of groups with trivially
intersecting central edge subgroups. We establish some sufficient conditions for G to be residually
a C-group.
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1. Introduction

This article continues [1–3] and aims mainly at studying the root-class residuality of the fundamental
groups of graphs of groups with trivially intersecting central edge subgroups. See, for instance, [2] for
details on the root classes and the root-class residuality of free constructions of groups. Here we only
recall that a class C of groups is a root class if and only if C contains at least one nontrivial group and is
closed under subgroups, extensions, and direct products of the form

∏
y∈Y Xy, where X,Y ∈ C and Xy

is an isomorphic copy of X for each y ∈ Y .
Most statements on the residuality of free constructions of groups are proved for the generalized

free products of two groups and HNN-extensions with one stable letter, whereas fewer for tree products.
In almost all of those statements the restrictions on the groups in the construction do not enable us to
use other free constructions as the groups. Therefore, even though the fundamental groups of arbitrary
graphs of groups amount to HNN-extensions of tree products, their study does not reduce to considering
the above particular cases. So, rather few results on the residuality of such groups are available; namely,
criteria for residual finiteness [4] and residual nilpotence [5] in the case that all vertex groups are

finite;
criteria for residual finiteness [6] and residual nilpotence [7], residuality with respect to finite ρ-

groups [8], where ρ is a nonempty set of primes, arbitrary root-class residuality [7] on assuming that the
graph is finite and all its vertex groups and edge subgroups are infinite cyclic;
a criterion for residual finiteness in the case that the graph is finite and all its vertex groups are

finitely generated, nilpotent, and torsion-free [9];
a criterion for arbitrary root-class residuality for the fundamental group of a graph of isomorphic

groups [10];
certain sufficient conditions for the residual finiteness of a finite graph of groups with either all vertex

groups virtually free [11] or all edge subgroups cyclic [12].
Thus, the results of the article make an advance in this area despite rather strong restrictions on the

graph of groups.
In [3] there appeared the general necessary and sufficient conditions for the root-class residuality

of the fundamental group of an arbitrary graph of groups. However, to apply them it is necessary in
particular to construct homomorphisms of the fundamental group onto groups of the approximating class
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which are injective on all vertex groups. In the case of central edge subgroups some general approach
to constructing such homomorphisms is proposed in [1]. Here we apply it to the graphs of groups with
trivially intersecting central edge subgroups (Theorem 1). The same method enables us to prove, under
certain additional assumptions, that we can drop the requirement of trivial intersection of edge subgroups
whenever the graph has at most one simple cycle (Theorem 2). Together with that, the available results on
the residuality of HNN-extensions with central associated subgroups; see [13–15] for instance, show that
the appearance of cycles and nontrivially intersecting edge subgroups in the graph of groups considerably
complicates the residuality conditions for its fundamental group, and the full analog of Theorem 1 in this
case cannot be obtained.
Theorems 1 and 2 in particular yield some sufficient conditions for the residuality of the fundamental

group of a graph of groups. However, they assume implicitly that all edge subgroups of the graph belong
to the approximating class. Using the results of [3], we can overcome this restriction for the graphs of
groups with trivially intersecting edge subgroups and the tree products of finitely many groups satisfying
certain additional assumptions (Theorems 3 and 4).
Even if some group under study is finitely presented, its structure might have description in terms

of the fundamental groups of infinite graphs of groups: For instance, the normal closure of the base of
an HNN-extension amounts to the tree product of infinitely many isomorphic copies of the base group.
Thus, in this article we try to avoid wherever possible the finiteness requirement for the graph under
consideration despite some complications in the statements and proofs of a series of propositions.

2. Statements of the Results

Concerning the graphs of groups, we stick to the notation and assumptions of [3]. Namely, assume
throughout that Γ is a nonempty undirected connected graph with vertex set V and edge set E which
may have loops and multiple edges. Also, assume that T is a maximal subtree in Γ with edge set ET .
Choose the directions for all edges of Γ arbitrarily, and denote the endpoints of an edge e ∈ E by e(1)

and e(−1). Associate to each vertex v ∈ V some group Gv, while to each edge e ∈ E some group He and
injective homomorphisms ϕ+e:He → Ge(1) and ϕ−e:He → Ge(−1). So, we obtain the directed graph of
groups

G(Γ) = (Γ, Gv (v ∈ V ), He (e ∈ E), ϕεe (e ∈ E, ε = ±1)).
Refer to Gv for v ∈ V as a vertex group, and to the subgroups H+e = Heϕ+e and H−e = Heϕ−e as edge
subgroups. Given v ∈ V , put

Θv = {(e, ε) | e ∈ E, ε = ±1, v = e(ε)}, Hv = sgp{Hεe | (e, ε) ∈ Θv}.
Recall that the presentation of the fundamental group of a graph of groups depends in general on

the choice of a maximal subtree. In this article we assume that the fundamental group π1(G(Γ)) of the
graph of groups G(Γ) has the presentation corresponding to a tree T fixed in advance:

π1(G(Γ)) =
〈
Gv (v ∈ V ), te (e ∈ E \ ET );
H+e = H−e (e ∈ ET ), t−1e H+ete = H−e (e ∈ E \ ET )

〉

.

Consider the following collection of properties of the graph G(Γ):
(1) for each v ∈ V the subgroupHv amounts to the direct product of the subgroupsHεe for (e, ε) ∈ Θv;
(2) Γ is a tree;
(3) Γ has precisely one simple cycle.
Say that a graph of groups G(Γ) is of type (k), where 1 ≤ k ≤ 3, if G(Γ) enjoys property (k) and Hv

lies in the center of Gv for each v ∈ V .
Observe that if (3) holds then π1(G(Γ)) amounts to the HNN-extension with one stable letter of

the tree product of Gv for v ∈ V . Considering such groups below, we always require that the approx-
imating class C contain nonperiodic groups. Although this additional restriction has no relation to the
1120



group π1(G(Γ)), in order to simplify statements it is convenient to include the restriction in the descrip-
tion of the type of a graph of groups. Thus, we use the expression “the graph of groups is of type (3)+C”
as a brief version of the conjunction “the graph of groups is of type (3) and the class C contains at least
one nonperiodic group.”

Theorem 1. Suppose that C is a root class of groups closed under quotients. Consider a graph G(Γ)
of groups of type (1) such that for each v ∈ V the group Gv admits a homomorphism σv onto a C-group
injective on the subgroup Hv. Then the following hold:
(1) If the direct productD of Gvσv for v ∈ V lies in C then there exists a homomorphism σ of π1(G(Γ))

onto a C-group extending the homomorphisms σv for v ∈ V .
(2) If all Gv for v ∈ V are C-residual then so is π1(G(Γ)).
(3) Denote by Ctf the class of all torsion-free C-groups and suppose that the group Gvσv is torsion-free

and the subgroup Hvσv is isolated in Gvσv for each v ∈ V . Then
(a) if D ∈ C then we can choose the homomorphism σ so that π1(G(Γ))σ ∈ Ctf;
(b) if all Gv for v ∈ V are Ctf-residual then so is π1(G(Γ)).
Theorem 2. Suppose that C is a root class of groups closed under quotients. Consider a graph G(Γ)

of groups of type (2) or (3)+C . Suppose also that, for each v ∈ V , the groupGv admits a homomorphism σv
onto a C-group injective on the subgroup Hv and the direct product D of Gvσv for v ∈ V lies in C. Then
the following hold:
(1) There exists a homomorphism σ of π1(G(Γ)) onto a group of class C extending the homomor-

phisms σv for v ∈ V .
(2) If all Gv for v ∈ V are C-residual, then so is π1(G(Γ)).
(3) Denote by Ctf the class of all torsion-free C-groups. Suppose that for each v ∈ V the group Gvσv

is torsion-free and all subgroups Hεeσv for ((e, ε) ∈ Θv) are isolated in Gvσv. Then
(a) we can choose a homomorphism σ so that π1(G(Γ))σ ∈ Ctf;
(b) if all Gv for v ∈ V are Ctf-residual then so is π1(G(Γ)).
In the assumptions of Theorem 2 the requirement that C contains the direct product D and, unless Γ

is a tree, at least one nonperiodic group, in general is essential for the C-residuality of π1(G(Γ)), as follows
from the main results of [16] and [15] respectively. The following generalize Corollaries 2 and 3 of [1] and
Corollaries 1 and 2 of [2].

Corollary 1. Suppose that G(Γ) is a graph of groups of type (1), (2), or (3), for each v ∈ V the
group Gv is solvable, and the solvability lengths of all groups Gv are jointly bounded. Then the following
hold:
(1) π1(G(Γ)) is residually solvable.
(2) Suppose that all Gv for v ∈ V are torsion-free and at least one of the following holds:
(a) the graph G(Γ) of groups is of type (1) and the subgroup Hv is isolated in Gv for all v ∈ V ;
(b) the graph G(Γ) of groups is of type (2) or (3) and for all e ∈ E and ε = ±1 the subgroup Hεe is

isolated in Ge(ε).

Then π1(G(Γ)) is residually torsion-free solvable.
(3) If the graph G(Γ) of groups is of type (1) or (2) and for some set ρ of primes all Gv for v ∈ V are

periodic ρ-groups with jointly bounded exponents then π1(G(Γ)) is residually a periodic solvable ρ-group
of finite exponent.

Corollary 2. Suppose that C is a root class of groups closed under quotients and that G(Γ) is a graph
of groups of type (1) or a finite graph of groups of type (2) or (3)+C . The group π1(G(Γ)) is C-residual
provided that for every v ∈ V at least one of the following holds:
(1) Gv lies in C;
(2) Gv is C-residual and the subgroup Hv is finite;
(3) Gv is residually a torsion-free C-group and the subgroup Hv is of finite rank.
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Henceforth, given a class C of groups and some group X, denote by C∗(X) the family of all normal
subgroups of X the quotients by which lie in C.
Recall [17] that a subgroup Y of a group X is called C-separable in X whenever

⋂

Z∈C∗(X)
Y Z = Y.

Therefore, a group X is C-residual if and only if the trivial subgroup of X is C-separable. Say also that
a group X is C-regular with respect to a subgroup Y if each subgroup M ∈ C∗(Y ) coincides with some
subgroup of the form N ∩ Y with N ∈ C∗(X).
The concept of regularity generalizes the classical concept of a potent element [18]: If F is the class of

all finite groups then an element x ∈ X is potent if and only if the group X is F-regular with respect to
the cyclic subgroup 〈x〉. Like potency, regularity is used in studying the residuality of free constructions
of groups to construct the subgroups of the vertex groups with prescribed intersections with the edge
subgroups; for more details, see [19, § 2.3].
Theorem 3. Suppose that C is a root class of groups closed under quotients while G(Γ) is a graph

of groups of type (1). Suppose also that Gv is C-residual and C-regular with respect to the subgroup Hv
which is C-separable in Gv for all v ∈ V . Then π1(G(Γ)) is a C-residual group.
Before stating the next theorem, observe that if G(Γ) is a finite graph of groups of type (1) or (2)

then without loss of generality we may assume that Hεe 	= Ge(ε) for all e ∈ E and ε = ±1. Indeed,
if Γ is a tree and Hεe = Ge(ε) for some e ∈ E and ε = ±1 then Ge(ε) = H−εe ≤ Ge(−ε) in π1(G(Γ));
hence, we can eliminate from its presentation the generators of Ge(ε). The result of this operation is the
fundamental group of the graph of groups which is obtained from G(Γ) by contracting the edge e and
replacing for each pair (f, δ) ∈ Θe(ε) \ {(e, ε)} the homomorphism ϕδf by the composition ϕδfϕ

−1
εe ϕ−εe.

It is clear that this graph of groups is also a tree.
If G(Γ) is of type (1) and Hεe = Ge(ε); then, choosing a tree T containing the edge e, we find that

Hεe = H−εe in π1(G(Γ)). Consequently, we can modify its presentation and the graph of groups as above.
Since Hεe is a unique nontrivial edge subgroup of Ge(ε), the resulting graph of groups is still of type (1).
If at least one among the groups Gv for v ∈ V is nontrivial then finitely many transformations

described above reduce the graph of groups G(Γ) to the required form. Otherwise, π1(G(Γ)) is a free
group with basis {te | e ∈ E \ ET } known to be residual with respect to each root class of groups
[20, Theorem 1].

Theorem 4. Suppose that C is a root class of groups closed under quotients, while Hεe 	= Ge(ε) for
all e ∈ E, ε = ±1, and at least one of the following holds:
(1) G(Γ) is a finite graph of groups of type (1) and Gv is C-regular with respect to the subgroup Hv

for every v ∈ V ;
(2) G(Γ) is a finite graph of groups of type (2) and Ge(ε) is C-regular with respect to the subgroup Hεe

for all e ∈ E and ε = ±1.
The group π1(G(Γ)) is C-residual if and only if Gv is C-residual for all v ∈ V and the subgroup Hεe

is C-separable in Ge(ε) for all e ∈ E and ε = ±1.
It is easy to see that if C is a root class of groups and Y is a central subgroup of some group X

with X/Y ∈ C then X is a C-regular group with respect to Y and the latter is C-separable in X.
Corollaries 3 and 4 provide more meaningful examples of the situation when the separability and regularity
requirements of Theorems 3 and 4 hold.
Suppose that ρ is a nonempty set of primes. Following [21], call an abelian group ρ-bounded whenever

in each of its quotients all primary components of the periodic part corresponding to the numbers in ρ
are finite. A solvable (nilpotent) group is called ρ-bounded whenever it possesses a finite subnormal
(respectively central) series with ρ-bounded abelian factors. Note that if ρ includes all primes then every
ρ-bounded solvable group is a bounded solvable group in the sense of Maltsev [17].
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Given a class C of groups consisting of periodic groups, denote by ρ(C) the set of all prime divisors of
the orders of elements of the groups in C. Recall also that a subgroup Y of a group X is called ρ′-isolated
in X for some set of primes ρ whenever, given x ∈ X and q /∈ ρ, from xq ∈ Y it follows that x ∈ Y .
Corollary 3. Suppose that G(Γ) is a graph of groups of type (1) or a finite graph of groups of

type (2). Suppose also that C is a root class of groups consisting of periodic groups and the set ρ(C)
includes all possible primes. If Gv are ρ(C)-bounded solvable groups for all v ∈ V then π1(G(Γ)) is
C-residual.
Corollary 4. Suppose that C is a root class of groups consisting of periodic groups and Gv are

ρ(C)-bounded nilpotent for all v ∈ V .
(1) If G(Γ) is a graph of groups of type (1) and for each v ∈ V the subgroups 1 and Hv are ρ(C)′-iso-

lated in Gv then π1(G(Γ)) is C-residual.
(2) Suppose that G(Γ) is a finite graph of groups of type (1) or (2) and Hεe 	= Ge(ε) for all e ∈ E

and ε = ±1. The group π1(G(Γ)) is C-residual if and only if the subgroups 1 and Hεe are ρ(C)′-isolated
in Ge(ε) for all e ∈ E and ε = ±1.
Observe that, in contrast to the previous assertions, Corollaries 3 and 4 do not require the approxi-

mating class to be closed under quotients. The rest of the article contains proofs of the above theorems
and corollaries.

3. Some Properties of the Fundamental
Groups of the Graphs of Groups under Study

Henceforth, given a nonempty connected subgraph Γ′ of a graph Γ, denote by G(Γ′) the graph of
groups with the same groups and homomorphisms assigned to the vertices and edges as in the graph G(Γ).
It is not difficult to show, see [22] for instance, that if T ′ = Γ′ ∩ T is a tree and the presentation of the
group π1(G(Γ′)) corresponds to T ′ then the identity mapping of the generators of π1(G(Γ′)) into π1(G(Γ))
determines an injective homomorphism, and so we may assume that π1(G(Γ′)) is a subgroup of π1(G(Γ)).
Suppose that in Gv a normal subgroup Rv is chosen for each v ∈ V so that

(Re(1) ∩H+e)ϕ−1+e = (Re(−1) ∩H−e)ϕ−1−e
for every edge e ∈ E. Then we refer to the family R = {Rv | v ∈ V } as a system of compatible normal
subgroups of π1(G(Γ)) and denote by GR(Γ) the graph of groups

(Γ, Gv (v ∈ V ), He (e ∈ E), ϕεe (e ∈ E, ε = ±1)),
in which

Gv = Gv/Rv, He = He/(Re(1) ∩H+e)ϕ−1+e = He/(Re(−1) ∩H−e)ϕ−1−e
and the homomorphism ϕεe:He → Ge(ε) for e ∈ E and ε = ±1 carries the coset h for h ∈ He
into (hϕεe)Re(ε). We assume that the presentation of π1(GR(Γ)) corresponds to the same tree T . It
is easy to see that then the identity mapping of the generators of π1(G(Γ)) into π1(GR(Γ)) determines
a surjective homomorphism whose kernel is the normal closure in π1(G(Γ)) of

⋃
v∈V Rv. Denote this

homomorphism by ρR.
Suppose that G(Γ) is a graph of groups of type (1), take F ⊆ E and put

Rv =
∏

(e,ε)∈Θv ,e∈F
Hεe

for each v ∈ V , with the product of the empty set of subgroups equal to 1. Then we denote the family
{Rv | v ∈ V } by R(F ). It is easy to see that it is a system of compatible normal subgroups of π1(G(Γ))
and the graph of groups GR(F )(Γ) is of type (1).
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Proposition 1. Suppose that G(Γ) is a graph of groups of type (1). Then for each g ∈ π1(G(Γ))\{1}
there is a finite set of edges Fg such that gρR(E\Fg) 	= 1 and g /∈ Hεe implies that gρR(E\Fg) /∈ HεeρR(E\Fg)
for all e ∈ E and ε = ±1.
Proof. Suppose firstly that g ∈ π1(G(T ))\{1}. Then g ∈ π1(G(T ′)) for some finite subtree T ′ of T .

Induct on the number k of vertices in T ′.
Assume that k = 1, i.e., g ∈ Gv for some v ∈ V . If g /∈ Hv then put Fg = ∅; otherwise, g ∈ sgp{Hεe |

(e, ε) ∈ ϑ} for some finite subset ϑ ⊆ Θv and Fg = {e | (e, ε) ∈ ϑ}. It is easy to see that Fg defined is the
required set.

Assume that k > 1 and that the claim holds for the elements of π1(G(Γ)) belonging to the subtrees
with fewer vertices. Take an edge e of T ′ and view π1(G(T ′)) as the free product of the groups π1(G(T ′1))
and π1(G(T ′−1)) with amalgamated subgroups H+e and H−e; here T ′ε for ε = ±1 is the connected com-
ponent containing the vertex e(ε) of the graph obtained from T ′ by removing e. Take a reduced form
g = g1 . . . gn for the element g in the generalized free product; for the definitions and properties of reduced
forms for the elements of a generalized free product and HNN-extension, see [3] for instance. If n = 1
then the required set Fg exists by the inductive assumption. Assume that n > 1.

Then by the inductive assumption for each i ∈ {1, . . . , n} there is a finite set Fgi ⊆ E such that if
gi /∈ Hεe for ε = ±1 then giρR(E\Fgi ) /∈ HεeρR(E\Fgi ). Put Fg =

⋃n
i=1 Fgi . Then for every i ∈ {1, . . . , n} we

have ker ρR(E\Fg) ≤ ker ρR(E\Fgi ); therefore, if gi /∈ Hεe for ε = ±1 then giρR(E\Fg) /∈ HεeρR(E\Fg). Con-
sequently, in π1(GR(E\Fg)(T )), regarded as the free product with amalgamated subgroups H+eρR(E\Fg)
and H−eρR(E\Fg), the element gρR(E\Fg) has a reduced form of length n > 1 and so cannot lie in the free
factors of this product which contain all edge subgroups of the group π1(GR(E\Fg)(Γ)). Thus, Fg is the
required set.

Take some nontrivial element g of π1(G(Γ)) regarded as the HNN-extension of π1(G(T )) with a re-
duced form g = g0t

ε1
e1g1 . . . t

εn
engn. Induct on n. If n = 0 then g ∈ π1(G(T )) and the required claim is

already proved. Assume that n > 0. By the inductive assumption, for each i ∈ {1, . . . , n} if gi /∈ H−εiei
then there exists a set Fgi ⊆ E such that giρR(E\Fgi ) /∈ H−εieiρR(E\Fgi ). Put Fgi = ∅ if gi ∈ H−εiei and
Fg =

⋃n
i=1 Fgi . Then for every i ∈ {1, . . . , n} from gi /∈ H−εiei it follows that giρR(E\Fg) /∈ H−εieiρR(E\Fg).

Consequently, gρR(E\Fg) in the HNN-extension π1(GR(E\Fg)(Γ)) has a reduced form of length n > 0 and so
it cannot lie in the base group π1(GR(E\Fg)(T )) of this HNN-extension which contains all edge subgroups.
Thus, Fg is the required set.

Proposition 2. Suppose that G(Γ) is a graph of groups of type (1). Then for each g ∈ π1(G(Γ)) \
{1} there is a finite subgraph Γ′ = (V ′, E′) of the graph Γ such that Γ′ ∩ T is a tree, gρR(E\E′) ∈
π1(GR(E\E′)(Γ′))\{1}, the graph of groups GR(E\E′)(Γ′) is of type (1), and the subgroup π1(GR(E\E′)(Γ′))
is a retract of the group π1(GR(E\E′)(Γ)).
Proof. Take g ∈ π1(G(Γ)) \ {1} and some word w in the generators of π1(G(Γ)) representing g.
Define Vg ⊆ V and Eg ⊆ E \ET as follows: v ∈ Vg if and only if w involves some generator of Gv or

its inverse; e ∈ Eg if and only if w involves the symbol te or t−1e .
According to Proposition 1, there is a finite set of edges Fg such that gρR(E\Fg) 	= 1. Take a finite

subtree T ′ of T containing all vertices in the set Vg ∪ {e(ε) | e ∈ Eg ∪ Fg, ε = ±1} and the subgraph Γ′
of Γ obtained by adding to T ′ all edges in Eg ∪ Fg, with V ′ and E′ standing for the vertex and edge sets
of Γ′ respectively. Then g ∈ π1(G(Γ′)) and gρR(E\E′) ∈ π1(GR(E\E′)(Γ′)). Since Fg ⊆ E′, it follows that
ker ρR(E\E′) ≤ ker ρR(E\Fg), and so gρR(E\E′) 	= 1.
The definition of the system of subgroups R(E \ E′) = {Rv | v ∈ V } shows that Rv = Hv for

each v ∈ V \ V ′. Therefore, π1(GR(E\E′)(Γ)) is isomorphic to the free product of π1(GR(E\E′)(Γ′)), the
groups Gv/Rv for v ∈ V \ V ′, and the free group with generators {te | e ∈ E \ E′}.
Consequently, π1(GR(E\E′)(Γ′)) is a retract of π1(GR(E\E′)(Γ)). As indicated above, the property

that the graph of groups GR(E\E′)(Γ′) is of type (1) follows from the definition of R(E \ E′).
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4. Proofs of Theorems 1 and 2

For every graph of groups G(Γ) we can formally consider the group

GDP(G(Γ)) = 〈Gv (v ∈ V ); H+e = H−e (e ∈ E), [Gv, Gw] = 1 (v, w ∈ V, v 	= w)〉,

whose generators are the generators of Gv for v ∈ V and the defining relations are those of Gv for v ∈ V
as well as all possible relations of the form heϕ+e = heϕ−e for e ∈ E and he ∈ He and [gv, gw] = 1 for
v, w ∈ V with v 	= w, where gv and gw are arbitrary words in the generators of Gv and Gw respectively,
heϕεe for ε = ±1 is a word in the generators ofGe(ε) defining the image of he under the homomorphism ϕεe.
It is obvious that GDP(G(Γ)) is a homomorphic image of π1(G(Γ)); its properties are considered in detail
in [1]. Here we need only the following:

Proposition 3. Suppose that Γ has no multiple edges and loops and the graph of groups G(Γ) is of
type (1) or (2). Then the following hold:
(1) For each v ∈ V the identity mapping of the generators of Gv into GDP(G(Γ)) determines an in-

jective homomorphism, and so the natural homomorphism π1(G(Γ)) → GDP(G(Γ)) is injective on all
groups Gv for v ∈ V .
(2) GDP(G(Γ)) is a torsion-free group provided that Gv is torsion-free for all v ∈ V and at least one

of the following conditions is met:
(a) G(Γ) is a graph of groups of type (1) and the subgroup Hv is isolated in Gv for each v ∈ V ;
(b) G(Γ) is a graph of groups of type (2) and the subgroup Hεe is isolated in Ge(ε) for all e ∈ E

and ε = ±1.
Proof. Everything follows from Theorems 1 and 2 of [1]. We should only note that in Theorem 2

of [1], dealing with a graph of groups of type (1), we need the product of however many subgroups in the
family {Hεe | (e, ε) ∈ Θv} to be isolated in Gv. By Proposition 6 below, this is equivalent to Hv being
isolated.

Proposition 4. Suppose that C is a root class of groups closed under quotients, that G(Γ) is a graph
of groups of type (1), (2), or (3)+C and that the direct product D of groups Gv for v ∈ V lies in C. Then
the following hold:
(1) There exists a homomorphism σ of π1(G(Γ)) onto a group of class C injective on Gv for all v ∈ V .
(2) We can choose the homomorphism σ so that its image is a torsion-free group if Gv for all v ∈ V

are torsion-free and at least one of the following holds:
(a) G(Γ) is a graph of groups of type (1) and the subgroup Hv is isolated in Gv for each v ∈ V ;
(b) G(Γ) is a graph of groups of type (2) or (3)+C and the subgroup Hεe is isolated in Ge(ε) for all

e ∈ E and ε = ±1.
Proof. Put E′ = {e ∈ E\ET | H+e = 1 = H−e} and take the graph Γ′ obtained from Γ by removing

all edges in E′. Then π1(G(Γ)) amounts to the free product of π1(G(Γ′)) and the free group with basis
{te | e ∈ E′}. Clearly, it suffices to justify the claim for π1(G(Γ′)); hence, we assume henceforth that
E′ = ∅. Observe also that if Gv is trivial for all v ∈ V then the claim obviously holds, and therefore we
can exclude this case from further consideration.
The group GDP(G(T )) belongs to the class C because it is a homomorphic image of D. Hence, if

Γ = T , then by Proposition 3 the natural homomorphism η:π1(G(T ))→ GDP(G(T )) is the required one.
Assume henceforth that Γ 	= T and so E \ ET 	= ∅.
Since the class C contains at least one nontrivial group and is closed under subgroups and extensions,

then C contains some cyclic group Z whose order we may assume to exceed 2 if C consists of periodic
groups and equal to infinity otherwise. Fix some generator z of Z and denote by I the set of all functions
from E \ ET to Z with pointwise multiplication; i.e., a Cartesian power of the group Z whose exponent
equals the cardinality of E \ ET . For i ∈ I take an isomorphic copy G(T )i of the graph of groups G(T )
and the corresponding isomorphism τi:G(T )→ G(T )i assuming that its restrictions to Gv for v ∈ V are
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group isomorphisms. Denote the disjoint union of the graphs G(T )i for i ∈ I by Σ. Given i ∈ I and
e ∈ E \ ET ,
define the function j ∈ I as

j(e) = i(e)z−1; j(e′) = i(e′), e′ ∈ E \ (ET ∪ {e});
connect the vertices e(1)τi and e(−1)τj of Σ with a new edge f ;
associate to the edge f the group He and the homomorphisms ψ+f = ϕ+eτi and ψ−f = ϕ−eτj .
Denote the resulting graph of groups by Δ. Observe that if we treat its subgraphs G(T )i for all i ∈ I

as macrovertices then for |Z| = ∞ the corresponding macrograph amounts to the integer lattice in the
space of dimension c = cardE \ ET , while for |Z| < ∞ it is the c-dimensional “integer torus” obtained
by identifying the lattice with its image translated along some coordinate axis over any distance that is
a multiple of |Z|.
The definition of the graph of groups Δ implies immediately that if G(Γ) is of type (1) then so is Δ,

and by the choice of the order of Z it has neither multiple edges nor loops. Suppose that G(Γ) is a graph
of groups of type (3)+C . Then E \ ET consists precisely of one edge, the class C contains nonperiodic
groups, and Z is an infinite cyclic group. This implies that the above macrograph amounts to an infinite
chain, and so Δ is of type (2). Thus, in both cases according to Proposition 3 all vertex groups Gvτi
of Δ for v ∈ V and i ∈ I embed into the group GDP(Δ) via the identity mapping of generators, and
therefore, may be treated as subgroups of the latter. Observe also that if G(Γ) satisfies the hypotheses
of claim (2) then so does Δ, and by the same Proposition 3 GDP(Δ) is a torsion-free group.
It is easy to see that for each i ∈ I the mapping of the generators of GDP(Δ) extending the

isomorphisms τ−1j τj·i for j ∈ I determines the automorphism αi of this group, where j · i stands for the
pointwise product of functions j and i. Hence, the semidirect product X = GDP(Δ) � I is defined, in
which the inner automorphism corresponding to i ∈ I acts on GDP(Δ) as αi. Observe that the group X
is quite similar to the direct wreath product of GDP(G(T )) with I; the difference is that as the base we
use not the usual but a generalized direct product of isomorphic copies of GDP(G(T )). The group Gv lies
in C as a subgroup of D for all v ∈ V , and according to our assumption at least one of Gv’s is nontrivial.
Consequently, if G(Γ) satisfies the hypotheses of claim (2) then C contains a nonperiodic group, and so Z,
I, and X are torsion-free groups.
Given e ∈ E\ET , define the function ė ∈ I with ė(e) = z and ė(e′) = 1 for all e′ ∈ E\(ET∪{e}). Take

also the function u ∈ I identically equal to 1. We can verify directly that the mapping of words to the
generators of π1(G(Γ)) acting on the generators of Gv for v ∈ V as the isomorphism τu and transforming
each symbol te for e ∈ E \ ET into ė carries all defining relations of π1(G(Γ)) into equalities valid in X,
and so it determines a homomorphism σ:π1(G(Γ)) → X. By the above argument, this homomorphism
is injective on Gv for all v ∈ V . Thus, to complete the proof of the proposition it remains to show that
X ∈ C. To this end, use the closedness of C under subgroups, quotients, direct products, extensions, and
Cartesian powers.
If G(Γ) is a graph of groups of type (3) then E \ET amounts to precisely one edge, and so I ∼= Z ∈ C.

Suppose that G(Γ) is a graph of groups of type (1). According to the above assumption, H+e 	= 1 	=
H−e for all e ∈ E \ ET and consequently each edge e ∈ E \ ET corresponds uniquely to the pair of
subgroups (H+e, H−e) of D, i.e., a subgroup of the C-group P = D×D. Hence, E \ET can be embedded
into the set of all subsets of P , which in turn embeds into the Cartesian power Q = P |P | lying in C. Thus,

I ≤ Z |Q| ∈ C,
and so again I ∈ C.
The group GDP(Δ) amounts to a homomorphic image of the direct product

R =
∏

i∈I
GDP(G(T )i)

whose every factor is isomorphic to the group GDP(G(T )). As indicated above, GDP(G(T )) ∈ C, and,
since I ∈ C, the group R embeds into the Cartesian power GDP(G(T ))|I| lying in C. Hence, R ∈ C and
GDP(Δ) ∈ C, while X ∈ C as an extension of the C-group GDP(Δ) by using the C-group I.
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Proposition 5 [23, Proposition 2]. Suppose that C is a class of groups closed under subgroups and
direct products of finitely many factors. Given a group X, the intersection of finitely many subgroups of
the family C∗(X) is again a subgroup in this family, and if X is C-residual then for each finite subgroup Y
there is a subgroup Z ∈ C∗(X) such that Y ∩ Z = 1.
The following can be verified directly:

Proposition 6. Consider some torsion-free group X with two trivially intersecting central sub-
groups Y and Z. If the subgroup Y Z is isolated in X then so is Z.

Proposition 7. Suppose that C is a class of groups closed under subgroups, quotients, and direct
products of finitely many factors. Denote the class of all torsion-free C-groups by Ctf. Consider some
group X, two central subgroups Y and Z with Y ∩Z = 1, and a homomorphism σ of X onto a group of
class C injective on Y Z. Then the following hold:
(1) There exists a homomorphism σ of the group X/Z onto a C-group injective on Y Z/Z.
(2) If X is C-residual then so is X/Z.
(3) Suppose that the group Xσ is torsion-free and the subgroup (Y Z)σ is isolated in it. Then

(a) we can choose the homomorphism σ so that the group (X/Z)σ is torsion-free and the subgroup
(Y Z/Z)σ is isolated in it;

(b) if X is a Ctf-residual group then so is X/Z.
Proof. Put T = kerσ. Then X/T ∈ C and T ∩ Y Z = 1.
(1): Observe that if N ∈ C∗(X) then the group

(X/Z)/(NZ/Z) ∼= X/NZ ∼= (X/N)/(NZ/N)

belongs to the class C as a quotient of the C-group X/N .
In particular, we have the inclusion (X/Z)/(TZ/Z) ∈ C. The relation T ∩ Y Z = 1 implies that

TZ/Z ∩ Y Z/Z = 1. Hence, the natural homomorphism of X/Z onto (X/Z)/(TZ/Z) is the required one.
(2): Take x ∈ X with xZ 	= 1. If a subgroup N ∈ C∗(X) satisfies x /∈ NZ, then xZ /∈ NZ/Z and

(X/Z)/(NZ/Z) ∈ C. Thus, it remains to find a subgroup N with these properties. If x /∈ TZ then T is
the required subgroup. Suppose that x = tz for some t ∈ T and z ∈ Z. Since xZ 	= 1, it follows that
t 	= 1 and, using the C-residuality of X, we can find a subgroup M ∈ C∗(X) avoiding t. Put N =M ∩ T .
Then N ∈ C∗(X) by Proposition 5, and if x = t′z′ for some t′ ∈ N and z′ ∈ Z then the equality T ∩Z = 1
yields t = t′ ∈ N ≤M in contradiction with the choice of M . Consequently, N is the required subgroup.
(3a): Since

(X/Z)σ = (X/Z)/(TZ/Z), (Y Z/Z)σ = (Y ZT/Z)/(TZ/Z),

it suffices to show that Y ZT and TZ are isolated in X.

The equalities T ∩ Y Z = 1 and Y ∩ Z = 1 imply that Y ZT amounts to the direct product of Y , Z,
and T . If (Y Z)σ = Y ZT/T is isolated in Xσ = X/T , then Y ZT is isolated in X; thus, Proposition 6
shows that TZ is isolated in this group.

(3b): The argument follows the same scheme as the proof of claim (2). We should only choose N to
satisfy (X/Z)/(NZ/Z) ∈ Ctf. Since Xσ is torsion-free and X is Ctf-residual, it follows that T ∈ C∗tf(X),
and we may also assume that M belongs to C∗tf(X).
Since the class Ctf is closed under subgroups and direct products, Proposition 5 implies that N =

M ∩ T ∈ C∗tf(X). Since TZ/NZ ∼= T/N(T ∩ Z) = T/N , the subgroup NZ is isolated in TZ; while the
latter, as we showed above, is isolated in X. Thus,

(X/Z)/(NZ/Z) ∼= X/NZ ∈ Ctf.
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Proposition 8 [3, Proposition 7]. Suppose that C is a root class of groups. If each group Gv for
v ∈ V is C-residual and there exists a homomorphism σ of π1(G(Γ)) onto a C-group injective on all
subgroups Hv for v ∈ V then π1(G(Γ)) is also C-residual.
Proof of Theorems 1 and 2. Assume firstly that the direct product D of Gvσv for v ∈ V lies

in C.
Put Sv = kerσv for v ∈ V . The family S = {Sv | v ∈ V } is obviously a system of compatible

normal subgroups and π1(G(Γ))ρS satisfies the hypotheses of Proposition 4. Therefore, the composition
of ρS and the homomorphism of Proposition 4 is the required mapping σ. Since Ctf is also a root class,
Proposition 8 guarantees the residuality of π1(G(Γ)).
Therefore, Theorem 2 and claims (1) and (3a) of Theorem 1 are justified completely, while claims (2)

and (3b) only on assuming that D ∈ C. Let us verify that the latter two claims also hold in the absence
of this assumption.
Take some g ∈ π1(G(Γ))\{1}. According to Proposition 2, there exists a finite subgraph Γ′ = (V ′, E′)

of Γ such that Γ′ ∩ T is a tree, gρR(E\E′) ∈ π1(GR(E\E′)(Γ′)) \ {1}, the graph of groups GR(E\E′)(Γ′) is of
type (1), and the subgroup π1(GR(E\E′)(Γ′)) is a retract of π1(GR(E\E′)(Γ)).
The definition of the system of subgroups R(E \E′) = {Rv | v ∈ V } implies that the subgroup Rv is

a direct factor of Hv for each v ∈ V . Hence, Proposition 7 applied to X = Gv, the subgroups Y Z = Hv
and Z = Rv, and the homomorphism σ = σv shows that
(a) there exists a homomorphism σv of Gv/Rv onto a C-group injective on Hv/Rv, and if Gv is

C-residual then so is Gv/Rv;
(b) if Gvσv is a torsion-free group and the subgroup Hvσv is isolated in it then (Gv/Rv)σv and

(Hv/Rv)σv enjoy the same properties, and the Ctf-residuality of Gv implies the same property of Gv/Rv.
Since the graph Γ′ is finite, the direct product of (Gv/Rv)σv for v ∈ V ′ lies in C. Consequently,

π1(GR(E\E′)(Γ′)) is approximated by C or Ctf by the above. Thus, the composition of ρR(E\E′) and the
retracting homomorphism can be extended to a homomorphism of π1(G(Γ)) onto a C-group carrying g
into a nontrivial element.

5. Proof of Theorems 3 and 4

Call a system R = {Rv | v ∈ V } of compatible normal subgroups C-admissible whenever there exists
a homomorphism of π1(GR(Γ)) onto a C-group injective on all vertex groups Gv/Rv for v ∈ V . The proof
of Theorems 3 and 4 is based on Proposition 4 and the next statement which is straightforward from
Theorems 1–3 of [3].

Proposition 9. Suppose that C is a root class of groups and that for all u ∈ V and L ∈ C∗(Gu)
there exists a C-admissible system of compatible normal subgroups R = {Rv | v ∈ V } with Ru ≤ L.
(1) If Gv is C-residual for all v ∈ V and the subgroup Hεe is C-separable in Ge(ε) for all e ∈ E and

ε = ±1 then π1(G(Γ)) is C-residual.
(2) If Hεe is a proper central subgroup of Ge(ε) for all e ∈ E and ε = ±1 then the converse holds:

the C-residuality of π1(G(Γ)) implies that each group Gv is C-residual for v ∈ V and the subgroup Hεe
is C-separable in Ge(ε) for all e ∈ E and ε = ±1.
Proposition 10. Suppose that C is a root class of groups closed under quotients and at least one

of the following holds:
(1) G(Γ) is a finite graph of groups of type (1) and Gv is C-regular with respect to the subgroup Hv

for each v ∈ V ;
(2) G(Γ) is a finite graph of groups of type (2) and Ge(ε) is C-regular with respect to the subgroup Hεe

for all e ∈ E and ε = ±1.
Then for all u ∈ V and L ∈ C∗(Gu) there exists a C-admissible system of compatible normal subgroups

R = {Rv | v ∈ V } with Ru ≤ L.
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Proof. Take u ∈ V and a subgroup L ∈ C∗(Gu). Let us point out a system of compatible normal
subgroups R = {Rv | v ∈ V } with Ru ≤ L and Rv ∈ C∗(Gv) for all v ∈ V such that the graph of
groups GR(Γ) has the same type as G(Γ). Since the graph Γ is finite, in this case the direct product of
C-groups Gv/Rv for v ∈ V lies in C, and according to Proposition 4 the system R is C-admissible.
Assume firstly that condition (1) holds. For all e ∈ E and ε = ±1 define the subgroup Lεe ≤ Hεe

as follows: If the edge e is not a loop and u = e(ε) for some ε = ±1, put Lεe = L ∩ Hεe and L−εe =
Lεeϕ

−1
εe ϕ−εe. If e is a loop and e(−1) = u = e(1) then

L+e = (L ∩H+e) ∩ (L ∩H−e)ϕ−1−eϕ+e,
L−e = (L ∩H+e)ϕ−1+eϕ−e ∩ (L ∩H−e) = L+eϕ−1+eϕ−e.

In the remaining cases Lεe = Hεe.
Put

Mv =
∏

(e,ε)∈Θv
Lεe

for every v ∈ V .
Since L ∈ C∗(Gu), for every pair (e, ε) ∈ Θu the quotient Hεe/L ∩Hεe is isomorphic to a subgroup

of the C-group Gu/L, and so L ∩ Hεe ∈ C∗(Hεe). Combined with Proposition 5, this implies that
Lεe ∈ C∗(Hεe) for all (e, ε) ∈ Θu. Since C is a nonempty class of groups closed under subgroups; C
contains the trivial group, and consequently, Lεe ∈ C∗(Hεe) for all remaining pairs (e, ε). Therefore,
since Γ is a finite graph, Hv/Mv amounts to the direct product of finitely many C-groups Hεe/Lεe, and
so Mv ∈ C∗(Hv) for all v ∈ V .
Given v ∈ V and using the C-regularity of Gv with respect to the subgroup Hv, find a subgroup

Rv ∈ C∗(Gv) with Mv = Rv ∩ Hv. Then Ru ∩ Hu = Mu ≤ L, and since the natural homomorphism
Gv → Gv/Rv extends the natural homomorphism Hv → Hv/Mv, the subgroup HvRv/Rv amounts to the
direct product of HεeRv/Rv for (e, ε) ∈ Θv. Thus, {Rv | v ∈ V } is the required system.
Assume that condition (2) holds. Given v ∈ V , define the subgroup Rv ∈ C∗(Gv) using induction

on the length of the (unique) path connecting v to u. Put Ru = L. Assume that v 	= u, while e is
the edge of the path from v to u incident to v, and v = e(ε) for ε = ±1, provided that the subgroup
Re(−ε) ∈ C∗(Ge(−ε)) is already defined. Then

Re(−ε) ∩H−εe ∈ C∗(H−εe), (Re(−ε) ∩H−εe)ϕ−1−εeϕεe ∈ C∗(Hεe)

and by the C-regularity of Ge(ε) = Gv with respect to the subgroup Hεe there is Rv ∈ C∗(Gv) such that

Rv ∩Hεe = (Re(−ε) ∩H−εe)ϕ−1−εeϕεe.
It is clear that {Rv | v ∈ V } is the required system.
Proof of Theorem 4. All is straightforward from Propositions 9 and 10.

Proposition 11 [23, Proposition 3]. Suppose that C is a class of groups closed under quotients.
Consider a group X with a normal subgroup Y . The subgroup Y is C-separable in X if and only if X/Y
is C-residual.
Proposition 12. Suppose that C is a class of groups closed under subgroups and quotients. Consider

a group X and two central subgroups Y and Z with Y ∩ Z = 1. Suppose also that X is C-residual and
C-regular with respect to the subgroup Y Z, while Y Z is C-separable in X. Then
(1) Z is C-separable in X and X/Z is C-residual;
(2) X/Z is C-regular with respect to Y Z/Z and Y Z/Z is C-separable in X/Z.
Proof. (1): Take some x ∈ X \Z and verify that there exists a subgroup N ∈ C∗(X) with x /∈ ZN .

If x /∈ Y Z; then, since Y Z is C-separable, there is a subgroup N ∈ C∗(X) with x /∈ Y ZN . It is obvious
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now that x /∈ ZN . Suppose that x = yz for some y ∈ Y and z ∈ Z. Since x /∈ Z, we see that y is distinct
from 1 and by the C-residuality of X it lies outside some subgroup L ∈ C∗(X). The condition Y ∩Z = 1
implies that yz /∈ (L ∩ Y )Z. Since

Y Z/(L ∩ Y )Z ∼= Y/L ∩ Y ∼= Y L/L ≤ X/L

and the class C is closed under subgroups, it follows that

(L ∩ Y )Z ∈ C∗(Y Z).

Thus, since X is C-regular with respect to Y Z, there is a subgroup N ∈ C∗(X) such that N ∩ Y Z =
(L ∩ Y )Z. Then yz /∈ N and Z ≤ N , whence x = yz /∈ ZN .
Thus, the subgroup Z is C-separable in X and by Proposition 11 the quotient X/Z is C-residual.
(2): Take some subgroup M/Z ∈ C∗(Y Z/Z). Then M ∈ C∗(Y Z) and, since X is C-regular with

respect to Y Z, there is a subgroup N ∈ C∗(X) with N ∩ Y Z = M . This easily implies that N/Z ∈
C∗(X/Z) and N/Z ∩ Y Z/Z = M/Z. Thus, X/Z is C-regular with respect to Y Z/Z. It remains to
observe that according to Proposition 11 the C-separability of Y Z in X is equivalent to the C-residuality
of X/Y Z ∼= (X/Z)/(Y Z/Z), which in turn is equivalent to the C-separability of Y Z/Z in X/Z.
Proof of Theorem 3. According to Proposition 2, given g ∈ π1(G(Γ) \ {1}, there is a finite

subgraph Γ′ = (V ′, E′) of Γ such that Γ′ ∩ T is a tree, gρR(E\E′) ∈ π1(GR(E\E′)(Γ′)) \ {1}, the graph of
groups GR(E\E′)(Γ′) is of type (1), and the subgroup π1(GR(E\E′)(Γ′)) is a retract of π1(GR(E\E′)(Γ)). The
definition ofR(E\E′) = {Rv | v ∈ V } implies that for each v ∈ V the subgroup Rv is a direct factor ofHv,
while the group Hv/Rv amounts to the direct product of the subgroups HεeRv/Rv for (e, ε) ∈ Θv. Thus,
by Proposition 12 Gv/Rv is C-residual and C-regular with respect to Hv/Rv, while Hv/Rv is C-separable
in Gv/Rv.

By the same Proposition 12, the listed properties imply the C-separability in Gv/Rv of all direct
factors HεeRv/Rv for (e, ε) ∈ Θv of the subgroup Hv/Rv.
Thus, π1(GR(E\E′)(Γ′)) satisfies the hypotheses of Theorem 4, and so it is C-residual. This implies

that the composition of the mapping ρR(E\E′) and the retracting homomorphism can be extended to
a homomorphism of π1(G(Γ)) onto a C-group carrying g to a nontrivial element.

6. Proofs of Corollaries

Proof of Corollary 1. It is easy to see that the classes S of all solvable groups and PSρ of
periodic solvable ρ-groups of finite exponent are root classes closed under quotients. Since the solvability
lengths and exponents of Gv for v ∈ V are jointly bounded, their direct product lies in S or PSρ depending
on the claim in question. Thus, the residuality of π1(G(Γ)) follows from Theorems 1 and 2.
Proof of Corollary 2. The group Gv, for each v ∈ V , admits a homomorphism σv onto a group

of class C injective on the subgroup Hv: If Gv ∈ C then σv is the identity mapping of Gv; in the remaining
two cases its existence is guaranteed by Proposition 5 above and Proposition 11 of [24] respectively. If Γ is
a finite graph then the direct product of Gvσv for v ∈ V lies in C. Hence, again we can apply Theorems 1
and 2.

Proposition 13. Suppose that C is a root class of groups consisting of periodic groups. Then the
following hold:

(1) C contains all finite solvable ρ(C)-groups [25, Proposition 10].
(2) Each group in C has finite exponent [23, Proposition 17].
(3) If C is closed under quotients then every ρ(C)-bounded solvable C-group is finite [23, Proposi-

tion 18].
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Proposition 14. Suppose that C is a root class of groups consisting of periodic groups and ρ(C)
contains all primes. Then in every ρ(C)-bounded solvable group all subgroups are C-separable.
Proof. Take a ρ(C)-bounded solvable group X and a subgroup Y of X. Theorem 6 of [17] shows

that Y is finitely separable in X. Since every homomorphic image of X is a solvable group, Y turns out
separable in it by the class FS of all finite solvable groups. Proposition 13 yields FS ⊆ C.
Hence, the subgroup Y is C-separable.
The following combines Propositions 5 and 8 of [24]:

Proposition 15. Suppose that C is a root class of groups consisting of periodic groups and consider
a ρ(C)-bounded nilpotent group X. A subgroup of X is C-separable in X if and only if it is ρ(C)′-isolated
in X.

Proposition 16. Suppose that C is a root class of groups consisting of periodic groups and closed
under quotients. Consider a ρ(C)-bounded solvable group X and suppose that at least one of the following
holds:

(1) ρ(C) contains all primes;
(2) X is ρ(C)-bounded nilpotent.
Then X is C-regular with respect to each central subgroup Y .
Proof. Taking an arbitrary subgroup M ∈ C∗(Y ), put X = X/M and Y = Y/M . Let us find

a subgroup N = N/M satisfying N ∈ C∗(X) and N ∩ Y = 1. Then N ∈ C∗(X) and N ∩ Y =M .
Since the classes BSρ(C) and BNρ(C) of ρ(C)-bounded solvable groups and ρ(C)-bounded nilpotent

groups are closed under subgroups and quotients [21, Proposition 2], it follows that X,Y ∈ BSρ(C),
and by Proposition 13 the C-group Y is finite. If ρ(C) contains all primes then by Proposition 14 X is
C-residual and Proposition 5 guarantees that the required subgroup N exists.
Assume that X ∈ BNρ(C) and take the set T of elements of X such that x ∈ T if and only if the order

of x is finite and not divisible by any number in ρ(C). Then T is a normal subgroup of X [26, § 4], while
X/T ∈ BNρ(C) in view of the properties of the class BNρ(C) mentioned above, and T ∩ Y = 1 because Y
lies in C, is finite, and consequently Y is a ρ(C)-group. Since the trivial subgroup of X/T is ρ(C)′-isolated,
by Proposition 15 Y is C-residual. Hence, by Proposition 5 there exists a subgroup N/T ∈ C∗(X/T )
satisfying N/T ∩ Y T/T = 1. It is easy to see that then N is the required subgroup.

Proof of Corollary 3. If Γ is a finite graph then making the transformation described in Section 2
we can fulfil the relation Hεe 	= Ge(ε) for all e ∈ E and ε = ±1. It is clear that all vertex groups remain
solvable and ρ(C)-bounded. The class FS of all finite solvable groups is a root class closed under quotients,
and by Proposition 13 FS is included in C. According to Propositions 14 and 16, for each v ∈ V the
group Gv is FS-regular with respect to each central subgroup, and all subgroups of Gv are FS-separable.
Thus, Theorems 3 and 4 imply that π1(G(Γ)) is FS-residual and therefore C-residual.
Proof of Corollary 4. Denote by C1 the class of finite solvable ρ(C)-groups; and by C2, the class

of periodic ρ(C)-groups of finite exponent. It is easy to see that C1 and C2 are root classes closed under
quotients. Thus, the claim holds for them by Theorems 3 and 4 as well as Propositions 15 and 16.

Proposition 13 implies that C1 ⊆ C ⊆ C2. It is also obvious that

ρ(C1) = ρ(C) = ρ(C2).

Thus, if the conditions of ρ(C)′-isolation of subgroups in the statement hold then π1(G(Γ)) is C1-residual,
and so C-residual.
Conversely, if π1(G(Γ)) is a C-residual group then it is C2-residual and satisfies the conditions of

ρ(C)′-isolation of subgroups.
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