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A DEDEKIND CRITERION OVER VALUED FIELDS
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Abstract: Let (K, ν) be an arbitrary-rank valued field, let Rν be the valuation ring of (K, ν), and
let K(α)/K be a separable finite field extension generated over K by a root of a monic irreducible
polynomial f ∈ Rν [X]. We give some necessary and sufficient conditions for Rν [α] to be integrally
closed. We further characterize the integral closedness of Rν [α] which is based on information about
the valuations on K(α) extending ν. Our results enhance and generalize some existing results as well
as provide applications and examples.
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1. Introduction

Given a valued field (K, ν), we denote by K an algebraic closure of K; by Rν , the valuation ring of ν;
by Mν , the maximal ideal of Rν ; by kν = Rν/Mν , the residue field of ν; and by Γν , the (totally ordered
abelian) value group of ν. We denote the set of elements g ∈ Γν such that g > 0 by Γ+ν and a minimum
element of Γ+ν , if any, by min(Γ

+
ν ). We also denote by ν

G the Gaussian extension of ν to the field K(X)
of rational functions; i.e., given f(X) =

∑m
i=0 aiX

i ∈ K[X], we put νG(f) = min{ν(a0), . . . , ν(am)} and
extend to K(X) as νG(f/g) = νG(f)− νG(g) for f, g ∈ K[X] and g �= 0.
Let (K, ν) be a valued field of arbitrary rank, let f ∈ Rν [X] be a monic irreducible separable

polynomial, let α ∈ K be a root of f , let L = K(α) be the simple field extension over K generated

by α, and let S be the integral closure of Rν in L. Assume that f =
∏s
i=0 φi

li is the monic irreducible

factorization of f over kν , and φi ∈ Rν [X] is a monic lifting of φi for i = 1, . . . , s. For the sake of brevity,
we will refer to these notations and assumptions as Assump’s.
UnderAssump’s, if Rν is a discrete valuation ring andMν does not divide the index ideal [S : Rν [α]],

then the well-known theorem of Dedekind (see [1, Proposition 8.3] for instance) gives the factorization

of the ideal MνS; namely, MνS =
∏s
i=1 p

li
i , where pi =MνS + φi(α)S with residue degree deg(φi).

Dedekind in [2] gave a criterion for the divisibility of [S : R[α]] by Mν that was also extended in [3].
Considering an arbitrary valuation ν in general, Ershov in [4] introduced a nice generalized version of
Dedekind’s Criterion. Namely, he showed that if we write f in the form

f =

s∏

i=1

φlii + πT

for some π ∈ Mν and T ∈ (Rν −Mν)[X]; then Rν [α] is integrally closed (i.e. Rν [α] = S) if and only if
either li = 1 for all i = 1, . . . , s or, else, ν(π) = min(Γ

+
ν ) and φi does not divide T for all those i = 1, . . . , s

with li ≥ 2. Khanduja and Kumar gave a different elegant proof of Ershov’s result in [5, Theorem 1.1].
Assuming Assump’s, the following Theorem 2.5 gives a new characterization of the integral closed-

ness of Rν [α], where we utilize the Euclidean division of f by φi for all i = 1, . . . , s, li ≥ 2, with
a motivation to enhance its application as compared to [5, Theorem 1.1]. Theorem 2.5 further improves
[5, Theorem 4.1] as it does not require K to be Henselian. Using our techniques, moreover, we give a sim-
pler proof of some significant result proved in [6, Theorem 1.3] which gives a complete characterization
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of the integral closedness of Rν [α] which is based on the valuations of L extending ν and their values
at φi(α). We also compute the ramification indices and residue degrees of all valuations of L extending ν
(Corollary 2.10). Some further applications and examples are given in Section 3.

2. The Main Results

Keeping the notations of Assump’s, denote by (Kh, νh) a Henselization of (K, ν) and by νh the

unique extension of νh to the algebraic closure Kh of Kh.
We begin this section with the following important well-known result which we present without proof

(see, for instance, [7, 17.17]). The result asserts a one-to-one correspondence between the valuations on L
extending ν and the irreducible factors of f over Kh.

Lemma 2.1. Keep the notation and assumptions of Assump’s. Let f =
∏t
j=1 fj be the factor-

ization of f into a product of distinct monic irreducible polynomials over Kh. Then there are exactly t

extensions ω1, . . . , ωt of ν to L. Moreover, if αj is a root of fj in Kh for j ∈ {1, . . . , t}, then the
valuation ωj corresponding to fj is precisely the valuation on L satisfying ωj(h(α)) = νh(h(αj)) for
all h ∈ K[X].
The following result is a generalization of [8, Lemma 2.1] to arbitrary-rank valuations.

Lemma 2.2. Keep the notation and assumptions of Assump’s and Lemma 2.1.
(i) For every i = 1, . . . , s, there is some j = 1, . . . , t such that ωj(φi(α)) > 0.

(ii) ωj(p(α)) ≥ νG(p(X)) for every j = 1, . . . , t and every nonzero p ∈ Rν [X].
(iii) For every j = 1, . . . , t, there exists a unique i = 1, . . . , s such that ωj(φi(α)) > 0. Moreover,

ωj(φk(α)) = 0 for all k �= i, k = 1, . . . , s.
(iv) Equality holds in (ii) if and only if φi does not divide (p/a) for the unique index i associated

to ωj in (iii), where a is any coefficient of p of a minimum ν-valuation.

Proof. (i): Since kνh = kν ; therefore,
∏s
i=1 φi

li =
∏t
j=1 fj . So, for a fixed i = 1, . . . , s, there is

some j = 1, . . . , t such that φi divides fj . Since fj is irreducible, it follows from Hensel’s Lemma that

fj = φi
ui for some 1 ≤ ui ≤ li. Let αj ∈ Kh be a root of fj . As fj(αj) = 0, we have φi(αj)

uj
=

fj(αj) = 0 modulo Mνh . Thus, φi(αj)
ui ∈ M

νh
and so φi(αj) ∈ Mνh . Now, by Lemma 2.1, ωj(φi(α)) =

νh(φi(αj)) > 0 as desired.

(ii): Set p1 = p/a, where a is a coefficient of p of the least ν-valuation. As νG(p1) = 0, p1 ∈ Rν [X].
Since S =

⋂t
j=1Rωj (see [9, Corollary 3.1.4]), it follows that, for every j = 1, . . . , t, we have p1(α) ∈

Rν [α] ⊆ S ⊆ Rωj and

ωj(p(α)) = ωj(a) + ωj(p1(α)) = ν(a) + ωj(p1(α)) = ν
G(p(X)) + ωj(p1(α)) ≥ νG(p(X))

as claimed.
(iii): Fix a j = 1, . . . , t. Since

∏s
i=1 φi(α)

li ≡ f(α) ≡ 0 (modMωj ); therefore, ωj(
∏s
i=1 φi(α)

li) > 0.

Thus, ωj(φi(α)) > 0 (and so φi(α) ∈ Mωj ) for some i = 1, . . . , s. For k = 1, . . . , s with k �= i, as φi
and φk are coprime modulo Mν , we let sk, tk ∈ Rν [X] be such that skφi + tkφk ≡ 1 (modMν). Then
sk(α)φi(α) + tk(α)φk(α) = 1 + h(α) for some h ∈ Mν [X]. As ν

G(h) > 0, it follows from (ii) that
ωj(h(α)) > 0 and so h(α) ∈ Mωj . Since φi(α) ∈ Mωj and sk(α) ∈ Rν [α] ⊆ S ⊆ Rωj ; therefore,
sk(α)φi(α)) ∈ Mωj . Thus, tk(α)φk(α) ∈ Rωj −Mωj . Hence, ωj(tk(α)φk(α)) = 0 and so ωj(φk(α)) = 0,
yielding the uniqueness of i such that ωj(φi(α)) > 0.
(iv): Define the map ψj : kν [X] → Rωj/Mωj by p(X) 
→ p(α) + Mωj . Since Mν ⊆ Mωj , ψj

is a well-defined ring homomorphism. As ωj(p(α)) = νG(p(X)) + ωj(p1(α)) (see (ii)), it follows that
ωj(p(α)) = νG(p(X)) if and only if ωj(p1(α)) = 0, if and only if p1(α) ∈ Rωj − Mωj , if and only if

p1(X) �∈ kerψj . By (iii), let φi be such that ωj(φi(α)) > 0. Then φi(α) ∈Mωj and so φi ∈ kerψj . Since
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kerψj is a principal ideal of kν [X] and φi is irreducible over kν , kerψj is generated by φi. It follows that

ωj(p(α)) = ν
G(p) if and only if φi does not divide p1. �

Keeping the notation of Assump’s, in what follows we let qi, ri ∈ Rν [X] be the quotient and the
remainder upon the Euclidean division of f by φi for i = 1, . . . , s.
In [5, Lemma 2.1(b)], it was shown that Γ+ν contains a smallest element in case Rν [α] is integrally

closed and li ≥ 2 for some i = 1, . . . , s. Below, we prove this fact differently with something more.
Lemma 2.3. Keep the notation and assumptions of Lemma 2.2. If Rν [α] is integrally closed and

I = {i | li ≥ 2, i = 1, . . . , s} is not empty, then Γ+ν has a minimum element with min(Γ+ν ) = νG(ri) for
every i ∈ I.
Proof. For i ∈ I, let q∗i , r∗i ∈ Rν [X] be the quotient and remainder upon the Euclidean division

of qi by φi. Since φi divides both f and qiφi; therefore, φi divides ri. But, as φi is monic, deg(φi) =
deg(φi) > deg(ri) ≥ deg(ri). This implies that ri is zero and so νG(ri) > 0. Thus, νG(ri) ∈ Γ+ν . Now as
f = qiφi and φi

2
divides f , we see that φi must divide qi. Applying a similar argument to the expression

qi = q∗i φi + r∗i , we get that r∗i is zero. Thus, ν
G(r∗i ) > 0 and so νG(r∗i ) ∈ Γ+ν . To the contrary, suppose

that τi ∈ Γ+ν is such that τi < νG(ri), and set δi = min{τi, νG(ri)− τi, νG(r∗i )}. As δi ∈ Γ+ν , let di ∈ Rν
be such that ν(di) = δi and set θi = qi(α)/di. Let ω be a valuation of L extending ν. We show that
θi ∈ Rω and, since ω is arbitrary, it would follow that θi ∈ S [9, Corollary 3.1.4]. As f(α) = 0; therefore,
θi = −ri(α)/(diφi(α)). By Lemma 2.2, let j ∈ {1, . . . , s} be the unique index such that ω(φj(α)) > 0
and ω(φk(α)) = 0 for all k ∈ {1, . . . , s} − {j}. If i �= j, then ω(φi(α)) = 0 and

ω(θi) = ω(ri(α))− ω(di) = ω(ri(α))− ν(di) ≥ νG(ri)− δi > δi − δi = 0,
and so θi ∈ Rω in this case. Assume, on the other hand, that i = j. If ω(φi(α)) > δi, then as q

∗
i is monic

and ω(q∗i (α)) ≥ νG(q∗i ) = 0 (Lemma 2.2), we have
ω(qi(α)) ≥ min{ω(q∗i (α)φi(α)), ω(r∗i (α))} ≥ min{ω(φi(α)), νG(r∗i )} ≥ δi.

So, ω(θi) = ω(qi(α)) − ω(di) ≥ δi − δi = 0, which implies that θi ∈ Rω in this case too. If, on the other
hand, ω(φi(α)) ≤ δi; then

ω(θi) = ω(ri(α))− ω(di)− ω(φi(α)) ≥ νG(ri)− δi − δi ≥ νG(ri)− τi − δi ≥ δi − δi = 0.
So θi ∈ Rω in this case as well. It follows now from the above argument that θi ∈ S. But, as qi is monic
and 1/di �∈ Rν , it is clear that θi �∈ Rν [α], contradicting the assumption that Rν [α] is integrally closed.
Hence, νG(ri) is the minimum element of Γ

+
ν as claimed. �

Lemma 2.4. Keep the notation and assumptions of Lemma 2.2. If min(Γ+ν ) = σ, then ω(φi(α)) =
σ/li for all i ∈ {1, . . . , s} with νG(ri) = σ and for every valuation ω of L extending ν such that
ω(φi(α)) > 0.

Proof. Let i ∈ {1, . . . , s} and let ω be a valuation of L extending ν such that ω(φi(α)) > 0. Write f
in the form f = miφ

li
i + niφi + ri, with mi, ni ∈ Rν [X] and νG(mi) = 0, while φi does not divide mi,

νG(ni) > 0, and deg(ri) < deg(φi). Notice that if li = 1 then mi = qi and ni = 0. By Lemma 2.2,
ω(ni(α)) ≥ νG(ni) ≥ σ, ω(mi(α)) = νG(mi) = 0, and ω(ri(α)) = νG(ri) = σ as φi divides neither mi
nor ri. We then have

liω(φi(α)) = ω(mi(α)φ
li
i (α)) = ω(ni(α)φi(α) + ri(α)) = ω(ri(α)) = ν

G(ri) = σ

as claimed. �
Now we get to our first main result which computationally enhances [5, Theorem 1.1] as well as

improves [5, Theorem 4.1] in the sense that K is not assumed to be Henselian.

Theorem 2.5. Keep the notation and assumptions of Lemma 2.2.
(i) If li = 1 for all i = 1, . . . , s, then Rν [α] is integrally closed.
(ii) If I = {i | li ≥ 2, i = 1, . . . , s} is not empty, then Rν [α] is integrally closed if and only if

νG(ri) = min(Γ
+
ν ) for every i ∈ I.
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Proof. (i): Assume that li = 1 for all i = 1, . . . , s. An arbitrary element of S is of the form θ =
h(α)/b for some b ∈ Rν and h ∈ Rν [X], with νG(h) = 0 and deg(h) < deg(f). Since f is monic, deg(h) ≤
deg(h) < deg(f) = deg(f). As li = 1 for all i = 1, . . . , s, there is some i = 1, . . . , s such that φi does not
divide h. For such a fixed i, let ω be a valuation of L extending ν such that ω(φi(α)) > 0, which exists
by Lemma 2.2. Hence, ω(h(α)) = νG(h) = 0. If ν(b) > 0, then ω(θ) = ω(h(α))− ω(b) = 0− ν(b) < 0.
Thus θ �∈ S, which is a contradiction. Hence, ν(b) = 0, which implies that θ ∈ Rν [α]. This shows that
S = Rν [α] and so Rν [α] is integrally closed.

(ii): Assume that I �= ∅. If Rν [α] is integrally closed, then it follows from Lemma 2.3 that νG(ri) is
the minimum element of Γ+ν for every i ∈ I, as claimed.
Conversely, put min(Γ+ν ) = σ and let π ∈ Rν be such that ν(π) = σ. Assume that νG(ri) = σ for

every i ∈ I. We aim at proving that Rν [α] is integrally closed. By an appropriate choice of a lifting
of φi, we begin by showing that we can also assume that ν

G(ri) = σ for i �∈ I. Let i �∈ I, and assume
that νG(ri) > σ. If δ ∈ Γ+ν with σ < δ < 2σ, then δ − σ ∈ Γ+ν with δ − σ < 2σ − σ = σ contradicting
the minimality of σ. So there is no element of Γ+ν lying strictly between σ and 2σ. So, ν

G(ri) ≥ 2σ. Let
q∗i , r∗i ∈ Rν [X] be the quotient and remainder upon the Euclidean division of qi by φi. Put φ∗∗i = φi + π,
q∗∗i = qi − πq∗i , and r∗∗i = ri − πr∗i + π2q∗i . Then

q∗∗i φ
∗∗
i + r

∗∗
i = (qi − πq∗i )(φi + π) + ri − πr∗i + π2q∗i = qiφi + ri = f.

It can be easily checked that q∗∗i and r∗∗i are the quotient and remainder upon the Euclidean division of f
by φ∗∗i (if deg(r∗∗i ) ≥ deg(φ∗∗i ); then we replace r∗∗i by the remainder upon the Euclidean division of r∗∗i
with φ∗∗i and replace q∗∗i with q∗∗i +Qi, where Qi is the quotient upon the Euclidean division of r∗∗i by φ∗∗i ).
Since li = 1, r∗i is nonzero, and so ν

G(πr∗i ) = ν(π) = σ. As νG(ri) ≥ 2σ and νG(π2q∗i ) ≥ ν(π2) = 2σ, it

follows that νG(r∗∗i ) = νG(πr∗i ) = σ. So, replacing φi by φi+π, we can assume that νG(ri) = σ. We thus
assume in the remainder of the proof that νG(ri) = σ for all i = 1, . . . , s. We finally get to proving
that Rν [α] is integrally closed. Assume to the contrary that there exists some θ ∈ S−Rν [α]. Then θ can
be written as θ = g(α)/b for some b ∈ Rν and g ∈ Rν [X] with ν(b) ≥ σ, νG(g) = 0, and deg(g) < deg(f).
Given i = 1, . . . , s, let mi ≥ 0 be the highest power of φi dividing g. Since deg(g) < deg(f), there
must exist some i = 1, . . . , s such that mi ≤ li − 1. For such an i, apply the Euclidean division of g
by φmii to get g = Siφ

mi
i + Ti, where Si, Ti ∈ Rν [X], while φi does not divide Si, and ν

G(Ti) ≥ σ.

By Lemma 2.2, let ω be a valuation of L extending ν such that ω(φi(α)) > 0. Since φi does not divide Si
and Si is monic, it follows from Lemma 2.2 that ω(Si(α)) = ν

G(Si) = 0. Using Lemma 2.4, we then have
ω(Si(α)φi(α)

mi) = miω(φi(α)) = miσ/li. Since ω(Ti(α)) ≥ νG(Ti) ≥ σ (by Lemma 2.2), it follows that

ω(g(α)) = min{ω(Si(α)φi(α)mi), ω(Ti(α))} = min{miσ/li, σ} = miσ/li < σ.

Thus, ω(θ) = ω(g(α)) − ω(b) = ω(g(α)) − ν(b) < σ − σ = 0. Hence, θ �∈ Rω and so θ �∈ S. This
contradiction leads to the conclusion that S = Rν [α], as desired. �

The following corollary is immediate.

Corollary 2.6. Keep the assumptions of Theorem 2.5. If Γ+ν does not have a minimum element,
then Rν [α] is integrally closed if and only if li = 1 for all i = 1, . . . , s.

The following corollary shows, in particular, that Theorem 2.5 is a new version of the generalized
Dedekind criterion which computationally improves [4, Theorem 1] and [5, Theorem 1.1] in the case of
separable extensions.

Corollary 2.7. Keep the assumptions of Theorem 2.5. If Γ+ν has a minimum element σ and I =
{i | li ≥ 2, i = 1, . . . , s} is not empty, then Rν [α] is integrally closed if and only if φi does not divide M
for every i ∈ I, where M = f−∏s

i=1
φ
li
i

π for any π ∈ Rν with ν(π) = σ.
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Proof. Let i ∈ I. Since ri = f − qi φi and φi divides f ; therefore, ri is divisible by φi. But as
deg(ri) ≤ deg(ri) < deg(φi) = deg(φi), ri must be zero. Thus,

qi = φ
li−1
i

s∏

j=1,j �=i
φ
lj
j .

Let Hi ∈ Rν [X] be such that qi = φli−1i

∏s
j=1,j �=i φ

lj
j + πHi with π ∈ Rν such that ν(π) = σ. Then

f =

(

φli−1i

s∏

j=1,j �=i
φ
lj
j + πHi

)

φi + ri.

Put

M =

f −
s∏

j=1
φ
lj
j

π
∈ Rν [X].

Then

M =

(
φli−1i

s∏

j=1,j �=i
φ
lj
j + πHi

)
φi + ri −

s∏

j=1
φ
lj
j

π
= Hiφi +

ri

π
.

Since M,Hiφi ∈ Rν [X], we must have riπ ∈ Rν [X] and so νG
(
ri
π

) ≥ 0. Clearly, φi divides M if and only

if φ divides ( riπ ). As deg((
ri
π )) ≤ deg(ri) < deg(φi) (see above), we conclude that φi divides M if and

only if ( riπ ) is zero; i.e., ν
G(ri) > σ. Contrapositively, φi does not divide M if and only if ν

G(ri) = σ. �
Our second main result, Theorem 2.9 below, gives a characterization of the integral closedness ofRν [α]

which is based on characterization of the extensions of ν to L (see also [6, Theorem 1.3], where the proof
of our result is simpler and selfcontained).
In 1850, Eisenstein introduced his infamous criterion for testing irreducibility of polynomials over

valued fields in [10]. In 2008, Brown gave a simple proof of the most general version of Eisenstein–
Schönemann irreducibility criterion in [11]. Namely, if p ∈ Z is prime and f ∈ Z[x] is such that f =
φn + an−1φn−1 + · · · + a0 for some monic polynomial φ ∈ Z[x] whose reduction modulo p is irreducible
and ai ∈ Z[x] with deg(ai) < deg(φ) for i = 0, . . . , n−1, then f is irreducible over Q if gcd(νGp (a0), n) = 1
and nνGp (ai) ≥ (n − i)νGp (a0) > 0 for every i where νp is the p-adic valuation. In preparation for
Theorem 2.9, we introduce the following definition and prove some lemma that partially generalizes the
Eisenstein–Schönemann irreducibility criterion.

Definition. We say that a monic polynomial g ∈ Rν [X] is ν-Eisenstein–Schönemann if there exists
a monic polynomial ψ ∈ Rν [X] such that ψ is irreducible, g is a positive power of ψ, and νG(r) = min(Γ+ν ),
where r ∈ Rν [X] is the remainder upon the Euclidean division of g by ψ. In particular, if ψ(x) = x,
then g is said to be ν-Eisenstein.

Lemma 2.8. Keep the assumptions of Theorem 2.5. If g ∈ Rν [X] is monic and ν-Eisenstein–
Schönemann, then g is irreducible over K.

Proof. Let ψ ∈ Rν [X] be monic such that ψ is irreducible, g = ψ
l
, and νG(r) = min(Γ+ν ) = σ,

where r ∈ Rν [X] is the remainder upon the Euclidean division of g by ψ. Suppose to the contrary

that g = h1h2 for some nonconstant and monic h1, h2 ∈ Rν [X]. Then h1 = ψ
l1
and h2 = ψ

l2
for some

positive l1 and l2 with l1+ l2 = l. Assume that the Euclidean division of each of g, h1, and h2 by ψ yields

g = qψ + r, h1 = q1ψ + r1, h2 = Q2ψ + r2.

It is clear that r is the remainder upon the Euclidean division of the product r1r2 by ψ. Since both h1
and h2 are positive powers of ψ, both of r1 and r2 must be zero. So, ν

G(r1) ≥ σ and νG(r2) ≥ σ. Thus,
νG(r) ≥ 2σ > σ (as σ > 0), which is a contradiction. Hence, g is irreducible over Rν and, consequently,
irreducible over K (by Gauss’s Lemma as Rν is integrally closed). �
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Theorem 2.9. Keep the assumptions of Theorem 2.5. The following are equivalent:
(i) Rν [α] is integrally closed.
(ii) ν has exactly s distinct extensions ω1, . . . , ωs to L, and if I = {i | li ≥ 2, i = 1, . . . , s} is not

empty; then liωi(φi(α)) is the minimum element of Γ
+
ν for every i ∈ I, where ωi is a valuation satisfying

ωi(φi(α)) > 0 which exists by Lemma 2.2.

Proof. Assume that Rν [α] is integrally closed. Since kν = kνh and f =
∏s
i=1 φ

li
i , Hensel’s Lemma

yields a factorization f =
∏s
i=1 fi over K

h such that fi = φlii for i = 1, . . . , s. In order for us to invoke

Lemma 2.1, we need to show that the factors f1, . . . , fs are all irreducible over K
h. If i ∈ {1, . . . , s} − I,

then fi is immediately irreducible over K
h since fi = φi is irreducible. If i ∈ I, then we set to show

that fi is ν
h-Eisenstein–Schönemann and thus irreducible by Lemma 2.8. Since Rν [α] is integrally closed

and li ≥ 2, it follows from Lemma 2.3 that Γ+ has a minimum element σ and νG(ri) = σ. Notice that
as Γν = Γνh ; therefore, σ is the minimum element of Γ

+
νh
as well. Let q∗i , r∗i ∈ Rνh [X] be, respectively,

the quotient and remainder upon the Euclidean division of fi by φi. Letting Gi =
∏s
j=1,j �=i fj , we write

f = fiGi = q
∗
i φiGi+r

∗
iGi. Using the Euclidean division again to divide r

∗
iGi by φi, let r

∗
iGi = q

∗∗
i φi+r

∗∗
i ,

with q∗∗i , r∗∗i ∈ Rνh [X]. Then
f = q∗i φiGi + q

∗∗
i φi + r

∗∗
i = (q

∗
iGi + q

∗∗
i )φi + r

∗∗
i .

Owing to the uniqueness of the remainder, ri = r∗∗i . Thus, νh
G
(r∗∗i ) = νh

G
(ri) = νG(ri) = σ. If

νh
G
(r∗i ) > σ, then νh

G
(r∗iGi) > σ and so νh

G
(r∗∗i ) > σ; a contradiction. Thus, νh

G
(r∗i ) = σ and we

conclude that fi is ν
h-Eisenstein–Schönemann as desired. It follows now by Lemma 2.1 that there are

exactly s valuations ω1, . . . , ωs of L extending ν; and by Lemma 2.4 liωi(φi(α)) = σ for the valuation ωi
of L extending ν with ωi(φi(α)) > 0.
Conversely, assume that there are exactly s valuations ω1, . . . , ωs of L extending ν, and if I = {i | li ≥

2, i = 1, . . . , s} is not empty, then liωi(φi(α)) is the minimum element of Γ+ν for every i ∈ I and every ωi
satisfying ωi(φi(α)) > 0. If I = ∅, then Rν [α] is integrally closed by Theorem 2.5. Assume that I �= ∅.
Following Theorem 2.5, in order to show that Rν [α] is integrally closed, it suffices to prove that ν

G(ri) = σ
for every i ∈ I, where σ = min(Γ+ν ). Let ωi be the valuation of L extending ν such that ωi(φi(α)) > 0
(by Lemma 2.2). Then, by assumption, liωi(φi(α)) = σ. Write f in the form f = miφ

li
i + niφi + ri for

mi, ni ∈ Rν [X] with νG(mi) = 0. Thus φi does not divide mi, νG(ni) > 0, and deg(ri) < deg(φi). Since
f(α) = 0, we have ri = −miφlii − niφi. We can see (using Lemma 2.2(ii)) that

ωi(ni(α)φi(α)) = ωi(ni(α)) + ωi(φi(α)) > ωi(ni(α)) ≥ νG(ni) ≥ σ,
and (where ωi(mi(α)) = ν

G(mi) = 0 by Lemma 2.2(iv))

ωi(mi(α)φi(α)
li) = ωi(φi(α)

li) = liωi(φi(α)) = σ.

So,

ωi(ri(α)) = ωi

(
−mi(α)φi(α)li − ni(α)φi(α)

)
= σ.

Since deg(ri) < deg(φi), φi does not divide ri. So, by Lemma 2.2(iv), ν
G(ri) = ωi(ri(α)) = σ and the

proof is complete. �
With the notation of Theorem 2.9, given a valuation ωi of L extending ν, we denote the ramification

index [Γωi : Γν ] by e(ωi/ν) and the residue degree [kωi : kν ] by f(ωi/ν). The following fundamental
inequality is well known (see [9, Theorem 3.3.4] for instance):

s∑

i=1

e(ωi/ν)f(ωi/ν) ≤ [L : K].

When Rν [α] is integrally closed, we calculate in the next corollary the ramification indices e(ωi/ν) and
residue degrees f(ωi/ν) and show consequently that the above inequality is indeed an equality.
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Corollary 2.10. Keep the notation and assumptions of Theorem 2.9. If Rν [α] is integrally closed,
then e(ωi/ν) = li and f(ωi/ν) = deg(φi) for all i = 1, . . . , s and, furthermore,

∑s
i=1 e(ωi/ν)f(ωi/ν) =

[L : K].

Proof. We show first that e(ωi/ν) ≥ li and f(ωi/ν) ≥ deg(φi) for every i = 1, . . . , s. If li = 1 for
some i = 1, . . . , s, then clearly e(ωi/ν) ≥ li. Since fi = φi, it follows that, for any root αi of fi, φi is the
minimal polynomial of αi over kν and so

deg(φi) = deg(φi) = [kν(αi) : kν ] ≤ [kωi : kν ] = f(ωi/ν).
If li ≥ 2 for some i = 1, . . . , s, then it follows from Theorem 2.9(ii) that ωi(φi(α)) = σ/li, where
σ = min(Γ+ν ). So, Γν ⊆ Γ[σ/li] ⊆ Γωi and

li = [Γν [σ/li] : Γν ] ≤ [Γωi : Γν ] = e(ωi/ν).
Also, for a root αi of fi, we have φi(αi)

li = fi(αi) = 0 implying that φi(αi) = 0 in kωi . Since φi is monic
and irreducible over kν ; therefore,

deg(φi) = deg(φi) = [kν(αi) : kν ] ≤ [kωi : kν ] = f(ωi/ν).
Now, the above argument yields

s∑

i=1

e(ωi/ν)f(ωi/ν) ≥
s∑

i=1

li deg(φi) =
s∑

i=1

li deg(φi) = deg(f) = deg(f) = [L : K].

Thus, by this and the fundamental inequality, we get the claimed equality

s∑

i=1

e(ωi/ν)f(ωi/ν) = [L : K].

Furthermore, since li ≤ e(ωi/ν) and deg(φi) ≤ f(ωi/ν) for all i = 1, . . . , s with
s∑

i=1

li deg(φi) =
s∑

i=1

e(ωi/ν)f(ωi/ν),

we conclude that li = e(ωi/ν) and deg(φi) = f(ωi/ν) for every i = 1, . . . , s. �

3. Applications and Examples

Corollary 3.1. Keep the assumptions of Theorem 2.5 with f(X) = Xn − a ∈ Rν [X] irreducible of
degree n ≥ 2 and a ∈Mν .
1. If Γ+ν has no minimum element, then Rν [α] is not integrally closed.
2. If min(Γ+ν ) = σ, then Rν [α] is integrally closed if and only if ν(a) = σ.

Proof. This is a direct application of Theorem 2.5. �
Corollary 3.2. Keep the assumptions of Theorem 2.5. Let min(Γ+ν ) = σ and let g ∈ Rν [X] be

monic. If g is ν-Eisenstein and L = K(θ) for some root θ of g, then Rν [θ] is integrally closed.

Proof. By Lemma 2.8, g is irreducible over K. Now, the remaining part is straightforward from
Theorem 2.5. �
Corollary 3.3. Let f(X) = Xn − a ∈ Rν [X], min(Γ

+) = σ, ν(a) = mσ for some m ∈ N. Let
L = K(θ) for a root θ of f(X). If m and n are coprime; then f is irreducible over R and R[θv/πu] is the
integral closure of R in L, where π ∈ Rν is such that ν(π) = σ, and u, v ∈ Z are the unique integers such
that mv − nu = 1 and 0 ≤ v < n.

Proof. Let A = av/πnu. Then ν(A) = (mv − nu)σ = σ. By Lemma 2.8, g(X) = Xn − A is
irreducible over Rν . Furthermore, θ

v/πu is a root of g. So [K(θv/πu) : K] = n. Therefore, K(θ) =
K(θv/πu) and f is irreducible over K. By Corollary 3.2, Rν [θ

v/πu] is integrally closed. �
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Example 1. Let ≥ be the lexicographic order on Z2; i.e., (a, b) ≥ (c, d) if and only if (a < c) or
(a = c and b ≤ d). Then (Z2,≥) is a totally ordered abelian group. Let F be a field and K = F (X,Y ),
the field of rational functions over F in indeterminates X and Y . Define the valuation ν : K → Z2∪{∞}
by 0 �= ∑i,j ai,jXiY j 
→ min{(i, j) | ai,j �= 0} for

∑
i,j ai,jX

iY j ∈ F [X,Y ], 0 
→ ∞, and νG(f/g) =
νG(f) − νG(g) for f, g ∈ F [X,Y ] with g �= 0. Then, obviously, ν is a discrete valuation on K of rank 2
whose value group is Γν = (Z2,≥). Let f(Z) = Z3+aZ+b ∈ Rν [Z] be irreducible and L = K(α) for some
root α of f . Assume that ν(a) > (0, 0) and ν(b) > (0, 0). Then f(Z) = Z3. Let r be the remainder upon
the Euclidean division of f by Z. Noting that min(Γ+ν ) = (0, 1), it follows from Theorem 2.5 that Rν [α]
is integrally closed if and only if νG(r) = (0, 1). In particular, if f(Z) = Z3 + Y , then Rν [α] is integrally
closed; while if f(Z) = Z3 + Y Z +X, then Rν [α] is not integrally closed.

Example 2. Let (F, ν) be a valued field and let K = F (X) be the field of rational functions over F
in an indeterminate X. Given some positive irrational real λ, define the valuation ω : K → R ∪ {∞} as
follows: ω(0) =∞, for 0 �= f(X) =∑ni=0 aiXi ∈ F [X], set ω(f) = min{ν(ai) + iλ, i}, and for f, g ∈ F [X]
with g �= 0, ω(f/g) = ω(f)−ω(g) (see [9, Theorem 2.2.1]). Let f(Z) = Z3+aZ+b ∈ Rω[Z] be irreducible
and L = K(α) for some root α of f . If (F, ν) is the trivial valued field, then Γω = λZ. So, in this case, if
ν(a) > 0 and ν(b) > 0, then f(Z) = Z3. Hence, by Theorem 2.5, Rω[α] is integrally closed if and only if
ν(b) = λ. In particular, if f(Z) = Z3 +X, then Rω[α] is integrally closed. If F = Q and ν is the p-adic
valuation on Q for some prime integer p, then Γω = Z+ λZ, which is dense in R and, thus, inf(Γ+ω ) = 0.
So, according to Theorem 2.5, Rω[α] is integrally closed if and only if f is square-free. In particular, if
ν(a) > 0 and ν(b) > 0; then f(Z) = Z3 and so Rω[α] is not integrally closed.
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2. Dedekind R., “Über den zussamenhang zwischen der theorie der ideals und der theorie der hoheren cyclotimy
index,” Abh. Akad. Wiss. Gottingen, Math.-Phys. KL, vol. 23, 1–23 (1878).

3. Khanduja S. and Kumar M., “A generalization of Dedekind criterion,” Comm. Algebra, vol. 35, no. 5, 1479–1486
(2007).

4. Ershov Y., “A Dedekind criterion for arbitrary valuation rings,” Russian Acad. Sci. Dokl. Math., vol. 74, no. 2,
650–652 (2006).

5. Khanduja S. and Kumar M., “On Dedekind criterion and simple extensions of valuation rings,” Comm. Algebra,
vol. 38, no. 2, 684–696 (2010).

6. Jhorar B. and Khanduja S., “Reformulation of Hensel’s lemma and extension of a theorem of Ore,”Manuscripta
Math., vol. 151, no. 1–2, 223–241 (2016).

7. Endler O., Valuation Theory, Springer, Berlin (1972).
8. Deajim A. and El Fadil L., “On the integral closedness of R[α],” Math. Reports (in press).
9. Engler A. and Prestel A., Valued Fields, Springer, Berlin (2005).
10. Eisenstein G., “Über die Irreductibilität und einige andere Eigenschaften der Gleichung, von welcher die
Theilung der ganzen Lemniscate abhängt,” J. Reine Angew. Math., vol. 39, 160–179 (1850).

11. Brown R., “Roots of generalized Schönemann polynomials in Henselian extension fields,” Indian J. Pure Appl.
Math., vol. 39, no. 5, 403–410 (2008).

L. El Fadil

Department of Mathematics, Faculty of Sciences Dhar-Mahraz

University of Sidi Mohamed Ben Abdellah, Fes, Morocco

E-mail address: lhouelfadil2@gmail.com

M. Boulagouaz

Department of Mathematics, Faculty of Sciences and Technologies

University of Sidi Mohamed Ben Abdellah, Fes, Morocco

E-mail address: boulag@rocketmail.com

A. Deajim

Department of Mathematics, King Khalid University, Abha, Saudi Arabia

E-mail address: deajim@kku.edu.sa; deajim@gmail.com

875


