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Abstract: Let (K,v) be an arbitrary-rank valued field, let R, be the valuation ring of (K,v), and
let K(a)/K be a separable finite field extension generated over K by a root of a monic irreducible
polynomial f € R,[X]. We give some necessary and sufficient conditions for R,[a] to be integrally
closed. We further characterize the integral closedness of R, [a] which is based on information about
the valuations on K(a) extending v. Our results enhance and generalize some existing results as well
as provide applications and examples.
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1. Introduction

Given a valued field (K, v), we denote by K an algebraic closure of K; by R,, the valuation ring of v;
by M, the maximal ideal of R,; by k, = R, /M,, the residue field of v; and by I',, the (totally ordered
abelian) value group of v. We denote the set of elements g € I, such that g > 0 by I'; and a minimum
element of T}, if any, by min(T';}). We also denote by v the Gaussian extension of v to the field K (X)
of rational functions; i.e., given f(X) = >_1",a; X" € K[X], we put v“(f) = min{v(ayp),...,v(an)} and
extend to K (X) as v%(f/g) = v¢(f) —v(g) for f,g € K[X] and g # 0.

Let (K,v) be a valued field of arbitrary rank, let f € R,[X] be a monic irreducible separable
polynomial, let « € K be a root of f, let L = K(a) be the simple field extension over K generated

by a, and let S be the integral closure of R, in L. Assume that f = Hfzoali is the monic irreducible
factorization of f over k,, and ¢; € R,[X] is a monic lifting of ¢; for i = 1,...,s. For the sake of brevity,
we will refer to these notations and assumptions as Assump’s.

Under Assump’s, if R, is a discrete valuation ring and M,, does not divide the index ideal [S : R, [o]],
then the well-known theorem of Dedekind (see [1, Proposition 8.3] for instance) gives the factorization
of the ideal M, S; namely, M,S = [[;_, péi, where p; = M, S + ¢;(«)S with residue degree deg(¢;).
Dedekind in [2] gave a criterion for the divisibility of [S : R[a]] by M, that was also extended in [3].
Considering an arbitrary valuation v in general, Ershov in [4] introduced a nice generalized version of
Dedekind’s Criterion. Namely, he showed that if we write f in the form

S
fF=11Iei +=1
i=1
for some m € M, and T € (R, — M,)[X]; then R,[qa] is integrally closed (i.e. R,[a] = 9) if and only if
either [; = 1 foralli=1,...,s or, else, v(r) = min(T'}}) and ¢; does not divide T for all those i = 1,...,s

with I; > 2. Khanduja and Kumar gave a different elegant proof of Ershov’s result in [5, Theorem 1.1].
Assuming Assump’s, the following Theorem 2.5 gives a new characterization of the integral closed-
ness of R,[a], where we utilize the Euclidean division of f by ¢; for all i« = 1,...,s, I; > 2, with
a motivation to enhance its application as compared to [5, Theorem 1.1]. Theorem 2.5 further improves
[5, Theorem 4.1] as it does not require K to be Henselian. Using our techniques, moreover, we give a sim-
pler proof of some significant result proved in [6, Theorem 1.3] which gives a complete characterization
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of the integral closedness of R,[a] which is based on the valuations of L extending v and their values
at ¢;(a). We also compute the ramification indices and residue degrees of all valuations of L extending v
(Corollary 2.10). Some further applications and examples are given in Section 3.

2. The Main Results

Keeping the notations of Assump’s, denote by (K”,v") a Henselization of (K,v) and by v" the
unique extension of v to the algebraic closure K" of K"

We begin this section with the following important well-known result which we present without proof
(see, for instance, [7, 17.17]). The result asserts a one-to-one correspondence between the valuations on L
extending v and the irreducible factors of f over K".

Lemma 2.1. Keep the notation and assumptions of Assump’s. Let f = ]_[;:1 fj be the factor-
ization of f into a product of distinct monic irreducible polynomials over K. Then there are exactly t
extensions wi,...,w; of v to L. Moreover, if o is a root of f; in K" for j € {1,...,t}, then the
valuation w; corresponding to f; is precisely the valuation on L satisfying wi(h(a)) = v*(h(a;)) for
all h € K[X].

The following result is a generalization of [8, Lemma 2.1] to arbitrary-rank valuations.

Lemma 2.2. Keep the notation and assumptions of Assump’s and Lemma 2.1.

(i) For every i =1,...,s, there is some j =1,...,t such that w;j(¢;(a)) > 0.

(i) wj(p(a)) > V% (p(X)) for every j = 1,...,t and every nonzero p € R, [X].

(ili) For every j = 1,...,t, there exists a unique i = 1,...,s such that w;j(¢;(a)) > 0. Moreover,
wj(¢r(a)) =0 forallk #i, k=1,...,s.

(iv) Equality holds in (ii) if and only if ¢; does not divide (p/a) for the unique index i associated
to w; in (iii), where a is any coefficient of p of a minimum v-valuation.

PROOF. (i): Since k,n iky; thereﬁ)re, [T, @li = H§:1 fj. So, for a fixed i = 1,...,s, there is
some j = 1,...,t such that ¢; divides f;. Since f; is irreducible, it follows from Hensel’s Lemma that
fi = @i for some 1 < w; < l;. Let aj € K" be a root of fj. As fi(ej) = 0, we have ¢i(aj)uj =
ﬁ(aj) = 0 modulo M. Thus, ¢;(a;)* € M and so ¢;(e;) € M. Now, by Lemma 2.1, w;(¢i(a)) =
vh(¢i(ej)) > 0 as desired.

(ii): Set p1 = p/a, where a is a coefficient of p of the least v-valuation. As v%(p1) = 0, p1 € R, [X].
Since S = ﬂ;zl Ry, (see [9, Corollary 3.1.4]), it follows that, for every j = 1,...,t, we have pi(a) €
Ry[a] €S C R, and

wi(p(e)) = wj(a) + wj(p1(@)) = v(a) +wi(p1(a)) = v (P(X)) + wj(p1(a)) = v (p(X))

as claimed.

(ili): Fix a j = 1,...,t. Since []]_; ¢i(a)" = f(a) = 0 (mod M,,); therefore, w;(T];_; ¢i(a)") > 0.
Thus, wj(#i(a)) > 0 (and so ¢;(a) € M,,) for some i = 1,...,s. For k = 1,...,s with k # i, as b
and ¢y, are coprime modulo M,, we let sg,tx € R,[X] be such that 35¢; + fxd, = 1 (mod M,). Then
sp(@)gi(a) + tr(a)pr(a) = 1 4 h(a) for some h € M,[X]. As vS(h) > 0, it follows from (ii) that
wj(h(a)) > 0 and so h(a) € M,;. Since ¢;j(a) € M, and si(a) € R,[a] € S C R,; therefore,
se(a)gi(a)) € M,,;. Thus, tp(a)pr(a) € Ry, — M,,,. Hence, w;(tx(a)pr(a)) = 0 and so w;(¢r(a)) = 0,
yielding the uniqueness of ¢ such that w;(¢;(e)) > 0.

(iv): Define the map v; : k,[X] — Ry;/M,,; by p(X) = p(a) + My,. Since M, C M,,, ¥;
is a well-defined ring homomorphism. As w;(p(a)) = v%(p(X)) + w;(p1(a)) (see (ii)), it follows that
wi(p(a)) = vC(p(X)) if and only if w;(pi(e)) = 0, if and only if p1(a) € R, — M,,, if and only if
P1(X) ¢ ker ;. By (iii), let ¢; be such that w;(¢;(a)) > 0. Then ¢;(a) € M, and so ¢i € ker1p;. Since
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ker); is a principal ideal of k,[X] and ¢; is irreducible over k,, ker 1; is generated by ¢;. It follows that
w;(p(a)) = v%(p) if and only if ¢; does not divide p;. O

Keeping the notation of Assump’s, in what follows we let ¢;,7; € R,[X]| be the quotient and the
remainder upon the Euclidean division of f by ¢; fori=1,...,s.

In [5, Lemma 2.1(b)], it was shown that I contains a smallest element in case R[] is integrally
closed and I; > 2 for some i = 1,...,s. Below, we prove this fact differently with something more.

Lemma 2.3. Keep the notation and assumptions of Lemma 2.2. If R,[a] is integrally closed and
I=1{i|l;>2,i=1,...,s} is not empty, then T} has a minimum element with min(T'}") = v%(r;) for
every i € I.

ProoF. For i € I, let ¢, r; € R,[X] be the quotient and remainder upon the Euclidean division
of g; by ¢;. Since ¢; divides both f and @;¢;; therefore, ¢; divides 7;. But, as ¢; is monic, deg(¢;) =
deg(¢;) > deg(r;) > deg(7;). This implies that 7; is zero and so v%(r;) > 0. Thus, v%(r;) € I'}. Now as
f =qip; and @2 divides f, we see that ¢; must divide g;. Applying a similar argument to the expression
G = q'¢; + 1}, we get that r} is zero. Thus, v (r¥) > 0 and so v%(r}) € T'}. To the contrary, suppose
that 7, € T') is such that 7; < VG(T'i), and set §; = min{Ti,Z/G(ri) — T, VG(T,Z")}. As §; e T}, let d; € R,
be such that v(d;) = J; and set 0; = g;(«)/d;. Let w be a valuation of L extending v. We show that
0; € R, and, since w is arbitrary, it would follow that 6; € S [9, Corollary 3.1.4]. As f(«) = 0; therefore,
0; = —ri(a)/(di¢i(«)). By Lemma 2.2, let j € {1,...,s} be the unique index such that w(¢;(c)) > 0
and w(¢r(a)) =0 for all k € {1,...,s} —{j}. If i # j, then w(¢;(a)) = 0 and

w(0;) = w(ri(@)) — w(d;) = w(ri(a)) —v(d;) > v (r;) — 8 > 8 — 6; =0,
and so 0; € R,, in this case. Assume, on the other hand, that i = j. If w(¢;(a)) > d;, then as ¢ is monic
and w(gf(a)) > v%(qf) = 0 (Lemma 2.2), we have

wlai(e)) = min{u(g; (2)6(@), w(r7 ()} = minfe(é1()), V() 2 61
So, w(#;) = w(gi(a)) — w(d;) > 6; — 6; = 0, which implies that 6; € R, in this case too. If, on the other
hand, w(¢i(a)) < d;; then

w(@z) = w(ri(a)) — w(dl) — w(gbl(a)) Z I/G(T’i) — 51 — (51 Z I/G(T'i) — T; — (51 Z 51 — 51 =0.

So 6; € R,, in this case as well. It follows now from the above argument that 6; € S. But, as g; is monic

and 1/d; € R, it is clear that 0; € R, [a], contradicting the assumption that R, [c] is integrally closed.
Hence, v%(r;) is the minimum element of I’} as claimed. [

Lemma 2.4. Keep the notation and assumptions of Lemma 2.2. If min(T'}) = o, then w(¢;(a)) =
o/l; for all i € {1,...,s} with v%(r;) = o and for every valuation w of L extending v such that
w(¢i()) > 0.

PROOF. Leti € {1,...,s} and let w be a valuation of L extending v such that w(¢;(«)) > 0. Write f
in the form f = m@il + nyp; + 14, with mg,n; € R,[X] and v%(m;) = 0, while ¢; does not divide 7,
v%(n;) > 0, and deg(r;) < deg(¢;). Notice that if [; = 1 then m; = ¢; and n; = 0. By Lemma 2.2,
w(ni(a)) > v%n;) > o, w(mi(a)) = v%(m;) = 0, and w(r;(a)) = v%(r;) = o as ¢; divides neither m;
nor 7;. We then have

Luw(di()) = w(mi(@)sl (@) = win(@)di(a) + i) = w(ri(a)) = ¥(ry) = o

as claimed. O

Now we get to our first main result which computationally enhances [5, Theorem 1.1] as well as
improves [5, Theorem 4.1] in the sense that K is not assumed to be Henselian.

Theorem 2.5. Keep the notation and assumptions of Lemma 2.2.

(i) Ifl; =1 for all i = 1,...,s, then R,[c] is integrally closed.

(i) IfI ={¢ |l > 2,4 =1,...,s} is not empty, then R,[a] is integrally closed if and only if
v (r;) = min(T}) for every i € I.
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PROOF. (i): Assume that [; =1 for all ¢ = 1,...,s. An arbitrary element of S is of the form 0 =
h(c)/b for some b € R, and h € R, [X], with v%(h) = 0 and deg(h) < deg(f). Since f is monic, deg(h) <
deg(h) < deg(f) = deg(f). Asl; =1 for alli=1,...,s, there is some i = 1,...,s such that ¢; does not
divide h. For such a fixed 4, let w be a valuation of L extending v such that w(¢;(a)) > 0, which exists
by Lemma 2.2. Hence, w(h(a)) = v%(h) = 0. If v(b) > 0, then w(f) = w(h(a)) — w(b) =0 —v(b) <O0.
Thus 6 ¢ S, which is a contradiction. Hence, v(b) = 0, which implies that § € R,[«]. This shows that
S = R,[a] and so R, [a] is integrally closed.

(ii): Assume that I # @. If R,[a] is integrally closed, then it follows from Lemma 2.3 that v%(r;) is
the minimum element of I'} for every i € I, as claimed.

Conversely, put min(T'}}) = o and let 7 € R, be such that v(7) = 0. Assume that v%(r;) = o for
every ¢ € I. We aim at proving that R,[a] is integrally closed. By an appropriate choice of a lifting
of ¢;, we begin by showing that we can also assume that v%(r;) = o for i ¢ I. Let i ¢ I, and assume
that v%(r;) > 0. If § € T} with 0 < § < 20, then § — o € I'} with § — 0 < 20 — 0 = o contradicting
the minimality of 0. So there is no element of T’} lying strictly between ¢ and 20. So, v%(r;) > 20. Let
qf,r’ € R,[X] be the quotient and remainder upon the Euclidean division of ¢; by ¢;. Put ¢;* = ¢; +,
¢ =q —mq;,and ri* =r; — 7] —|—772qu". Then

Q7+ 17 = (00— 7)) (Gi + ) + i — ]+ 7 = qigi +ri = .

It can be easily checked that ¢;* and r;* are the quotient and remainder upon the Euclidean division of f
by ¢7* (if deg(r}*) > deg(¢;*); then we replace r* by the remainder upon the Euclidean division of r}*
with ¢;* and replace ¢;* with ¢;*+@Q;, where Q; is the quotient upon the Euclidean division of r}* by ¢7*).
Since I; = 1, r} is nonzero, and so v%(nr}) = v(r) = 0. As v%(r;) > 20 and v%(n%q}) > v(r?) = 20, it
follows that 1% (r*) = v%(mr}) = 0. So, replacing ¢; by ¢; + 7, we can assume that v%(r;) = 0. We thus
assume in the remainder of the proof that v“(r;) = o for all i = 1,...,s. We finally get to proving
that R,[a] is integrally closed. Assume to the contrary that there exists some 6 € S — R, [a]. Then 6 can
be written as § = g(a)/b for some b € R, and g € R,[X] with v(b) > o, v%(g) = 0, and deg(g) < deg(f).
Given i = 1,...,s, let m; > 0 be the highest power of ¢; dividing g. Since deg(g) < deg(f), there
must exist some ¢ = 1,...,s such that m; < [; — 1. For such an i, apply the Euclidean division of g
by ¢I" to get g = S;¢" + T;, where S;,T; € R,[X], while ¢; does not divide S;, and v%(T}) > o.
By Lemma 2.2, let w be a valuation of L extending v such that w(¢;(a)) > 0. Since ¢; does not divide S;
and S; is monic, it follows from Lemma 2.2 that w(S;(a)) = v%(S;) = 0. Using Lemma 2.4, we then have
w(S;(a)di()™) = miw(¢i(a)) = mio/l;. Since w(Ti(a)) > v(T;) > o (by Lemma 2.2), it follows that

w(g(a)) = min{w(S;(a)p;(@)™),w(T;(a))} = min{m;o/l;,0} = m;o/l; < o.

Thus, w(f) = w(g(a)) — w(b) = w(g(a)) —v(b) < 0 —o = 0. Hence, § ¢ R, and so § ¢ S. This
contradiction leads to the conclusion that S = R,[a], as desired. [

The following corollary is immediate.

Corollary 2.6. Keep the assumptions of Theorem 2.5. If '}, does not have a minimum element,
then R,|a] is integrally closed if and only if l; =1 for alli =1,...,s.

The following corollary shows, in particular, that Theorem 2.5 is a new version of the generalized
Dedekind criterion which computationally improves [4, Theorem 1] and [5, Theorem 1.1] in the case of
separable extensions.

Corollary 2.7. Keep the assumptions of Theorem 2.5. If '} has a minimum element o and I =
{i|l; >2,i=1,...,s} is not empty, then R,[a] is integrally closed if and only if ¢; does not divide M

s l;
for every i € I, where M = T | P for any w € R, with v(m) = o.

s
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PROOF. Let ¢ € I. Since 7; zif — @ ¢; and ¢; divides f; therefore, 7; is divisible by ¢;. But as
deg(7;) < deg(r;) < deg(¢i) = deg(¢i), 7 must be zero. Thus,
S -
_ — I
a=¢:" ] ¢/

=L,

Let H; € R,[X] be such that ¢; = ¢k | P qbéj + wH; with 7 € R, such that v(w) = 0. Then

fz(dilIIq#+wm)@+n.

=L
Put
S l]
f-116!
M=—""1_¢cRIx].
T
Then

I1 ¢§7+7TH1‘>¢¢+T¢— 11 ¢7
» P2

J=Lj#i

(-

-
M = = H;p; + —.
™

T
Since M, H;¢; € R,[X], we must have X € R,[X] and so I/G(%) > 0. Clearly, ¢; divides M if and only

if ¢ divides (2). As deg((%)) < deg(7;) < deg(¢i) (see above), we conclude that ¢; divides M if and
“(

only if () is zero; i.e., v%(r;) > 0. Contrapositively, ¢; does not divide M if and only if v%(r;) = 0. O

Our second main result, Theorem 2.9 below, gives a characterization of the integral closedness of R, [«]
which is based on characterization of the extensions of v to L (see also [6, Theorem 1.3], where the proof
of our result is simpler and selfcontained).

In 1850, Eisenstein introduced his infamous criterion for testing irreducibility of polynomials over
valued fields in [10]. In 2008, Brown gave a simple proof of the most general version of Eisenstein—
Schénemann irreducibility criterion in [11]. Namely, if p € Z is prime and f € Zz] is such that f =
" + an_1¢" L + -+ + ag for some monic polynomial ¢ € Z[z] whose reduction modulo p is irreducible
and a; € Z[z] with deg(a;) < deg(¢) for i =0,...,n—1, then f is irreducible over Q if gcd(l/pG(ao), n)=1
and anG (a;) > (n — i)l/f (ap) > 0 for every i where v, is the p-adic valuation. In preparation for
Theorem 2.9, we introduce the following definition and prove some lemma that partially generalizes the
Eisenstein—Schonemann irreducibility criterion.

DEFINITION. We say that a monic polynomial g € R, [X] is v-Fisenstein—Schonemann if there exists
a monic polynomial 1) € R, [X] such that v is irreducible, g is a positive power of 1, and v% (1) = min(T}),
where r € R,[X] is the remainder upon the Euclidean division of g by ¢. In particular, if ¢(z) = =,
then g is said to be v-FEisenstein.

Lemma 2.8. Keep the assumptions of Theorem 2.5. If g € R,[X] is monic and v-Eisenstein—
Schénemann, then g is irreducible over K.

PROOF. Let ¢ € R,[X] be monic such that v is irreducible, g = El, and v%(r) = min(T}) = o,
where r € R,[X] is the remainder upon the Euclidean division of g by 1. Suppose to the contrary

that g = hihg for some nonconstant and monic hy, hy € R,[X]. Then hy = @ll and hy = @b for some
positive Iy and Iy with I; +1o = [. Assume that the Euclidean division of each of g, h1, and hy by 9 yields

g=qp+r, hi=q¢+ry, hy=Qx+r.

It is clear that r is the remainder upon the Euclidean division of the product rirs by 1. Since both Ay
and hy are positive powers of 1), both of 77 and 73 must be zero. So, v%(r1) > ¢ and v%(r3) > 0. Thus,
Z/G(r) > 20 > o (as 0 > 0), which is a contradiction. Hence, g is irreducible over R, and, consequently,
irreducible over K (by Gauss’s Lemma as R, is integrally closed). [
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Theorem 2.9. Keep the assumptions of Theorem 2.5. The following are equivalent:

(i) Ry[a] is integrally closed.

(ii) v has exactly s distinct extensions wi,...,ws to L, and if I = {i | l; > 2,9 = 1,...,s} is not
empty; then l;w;(¢;(«)) is the minimum element of T} for every i € I, where w; is a valuation satisfying
wi(¢i(a)) > 0 which exists by Lemma 2.2.

PROOF. Assume that R,[a] is integrally closed. Since k, = k,» and f = []}_; @, Hensel’s Lemma

yields a factorization f = [[;_, f; over K" such that f; = gbil fori =1,...,s. In order for us to invoke
Lemma 2.1, we need to show that the factors fi,..., fs are all irreducible over K", If i € {1,...,s} — I,
then f; is immediately irreducible over K" since f; = ¢; is irreducible. If i € I, then we set to show
that f; is v"-Eisenstein-Schénemann and thus irreducible by Lemma 2.8. Since R, [a] is integrally closed
and I; > 2, it follows from Lemma 2.3 that I't has a minimum element o and v%(r;) = 0. Notice that
as Iy, = I' n; therefore, o is the minimum element of F:rh as well. Let ¢f,r’ € R n[X] be, respectively,
the quotient and remainder upon the Euclidean division of f; by ¢;. Letting G; = H;:L ot fj, we write
f = fiGi = ¢; ¢;G; +7r;G;. Using the Euclidean division again to divide r;G; by ¢;, let r;G; = ¢} ¢; +r]™,
with ¢*,r** € R »[X]. Then

f=qiGi +q7" i +ri" = (¢;Gi +q; )i + 17"

Owing to the uniqueness of the remainder, r; = r;*. Thus, th(r;“*) = th(ri) = v9(r) = 0. If
th(rf) > o, then I/hG(rfGi) > o and so Z/hG(rf*) > o; a contradiction. Thus, uhG(ri) = o and we
conclude that f; is v"-Eisenstein-Schénemann as desired. It follows now by Lemma 2.1 that there are
exactly s valuations wy,...,w, of L extending v; and by Lemma 2.4 l;w;(¢;(«)) = o for the valuation w;
of L extending v with w;(¢;(a)) > 0.

Conversely, assume that there are exactly s valuations wy, . ..,ws of L extending v, and if I = {i | [; >
2,i=1,...,s} is not empty, then l;w;(¢;(c)) is the minimum element of '} for every i € I and every w;
satisfying w;(¢i(a)) > 0. If I = @, then R,[c] is integrally closed by Theorem 2.5. Assume that I # &.
Following Theorem 2.5, in order to show that R, [a] is integrally closed, it suffices to prove that v (r;) = o
for every i € I, where 0 = min(T'}). Let w; be the valuation of L extending v such that w;(¢;(a)) > 0
(by Lemma 2.2). Then, by assumption, liw;(¢i(e)) = 0. Write f in the form f = m;@l + ni¢; + r; for
mi,n; € R,[X] with v%(m;) = 0. Thus ¢; does not divide m;, v%(n;) > 0, and deg(r;) < deg(¢;). Since
f(a) =0, we have r; = —migbé" —n;¢p;. We can see (using Lemma 2.2(ii)) that

wi(ni(a)gi(@)) = wi(ni(a)) + wi(¢i(@)) > wi(ni(a)) > v%(n;) > o,
and (where w;(m;(a)) = v%(m;) = 0 by Lemma 2.2(iv))
wi(mi(a)pi(a)) = wi(gi(a)') = lLiwi(¢i(@)) = 0.

*

So,
wilri(@)) = wi (—mi(@)éi(a)t* = ni@)éi()) = o.

Since deg(r;) < deg(¢;), ¢; does not divide 7. So, by Lemma 2.2(iv), % (r;) = w;(ri(a)) = ¢ and the
proof is complete. [J
With the notation of Theorem 2.9, given a valuation w; of L extending v, we denote the ramification
index [[y, : I'y] by e(w;/v) and the residue degree [k, : k,] by f(wi/v). The following fundamental
inequality is well known (see [9, Theorem 3.3.4] for instance):
S

S /v f(wifv) < L K]

i=1
When R, [o] is integrally closed, we calculate in the next corollary the ramification indices e(w;/v) and
residue degrees f(w;/v) and show consequently that the above inequality is indeed an equality.
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Corollary 2.10. Keep the notation and assumptions of Theorem 2.9. If R, [a] is integrally closed,
then e(w;/v) = l; and f(w;/v) = deg(¢;) for all i = 1,...,s and, furthermore, y ;_, e(w;/v)f(w;/v) =
[L: K].

PrOOF. We show first that e(w;/v) > I; and f(w;/v) > deg(¢;) for every i = 1,...,s. If [; = 1 for

some i = 1,...,s, then clearly e(w;/v) > I;. Since f; = ¢;, it follows that, for any root «; of fi, ¢; is the
minimal polynomial of @; over k, and so
deg(¢s) = deg(ei) = [ku(@) : k] < [ku, : ko] = flwi/v).
If l; > 2 for some ¢ = 1,...,s, then it follows from Theorem 2.9(ii) that w;(¢i(a)) = o/l;, where
o = min([}). So, I', C[o/l;] C Ty, and
li=[Tylo/li] :T)] < [Ty, : Tv] = e(w;/v).

Also, for a root o of f;, we have ¢;(a;)" = f;(a;) = 0 implying that ¢;(@;) = 0 in k,,. Since ¢; is monic
and irreducible over k,; therefore,

deg(¢i) = deg(¢i) = [k (7) : k] < [ku, : k] = fwi/v).

Now, the above argument yields

s

> e(wi/v)f(wi/v) =Y lideg(¢i) = Y lideg(¢i) = deg(f) = deg(f) = [L : K].
i=1 ;

i=1 i=1
Thus, by this and the fundamental inequality, we get the claimed equality

S

Ze(wi/’/)f(wi/”) =[L: K]

i=1
Furthermore, since [; < e(w;/v) and deg(¢;) < f(w;/v) for alli =1,...,s with

D lideg(di) = Y elwi/v) f(wi/v),
=1

=1

we conclude that I; = e(w;/v) and deg(¢;) = f(w;/v) for every i =1,...,s. O

3. Applications and Examples

Corollary 3.1. Keep the assumptions of Theorem 2.5 with f(X) = X" — a € R,[X] irreducible of
degree n > 2 and a € M,,.

1. If T} has no minimum element, then R, [a] is not integrally closed.

2. If min(T'}) = o, then R,[a] is integrally closed if and only if v(a) = o.

ProOOF. This is a direct application of Theorem 2.5. [

Corollary 3.2. Keep the assumptions of Theorem 2.5. Let min(I'}) = o and let g € R,[X] be
monic. If g is v-Eisenstein and L = K (0) for some root 0 of g, then R, [0)] is integrally closed.

PrOOF. By Lemma 2.8, g is irreducible over K. Now, the remaining part is straightforward from
Theorem 2.5. [J

Corollary 3.3. Let f(X) = X" —a € R,[X], min(I'") = o, v(a) = mo for some m € N. Let
L = K(0) for a root 8 of f(X). If m and n are coprime; then f is irreducible over R and R[0"/m"| is the
integral closure of R in L, where m € R,, is such that v(w) = o, and u,v € Z are the unique integers such
that mv—nu=1and 0 <v < n.

PrROOF. Let A = a¥/n™. Then v(A) = (mv — nu)o = o. By Lemma 2.8, g(X) = X" — A is
irreducible over R,. Furthermore, 0”/7" is a root of g. So [K(6"/x") : K| = n. Therefore, K(0) =
K (0¥/m") and f is irreducible over K. By Corollary 3.2, R,[6V/7"] is integrally closed. O
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EXAMPLE 1. Let > be the lexicographic order on 72 i.e., (a,b) > (c,d) if and only if (a < ¢) or
(a = cand b < d). Then (Z2,>) is a totally ordered abelian group. Let F be a field and K = F(X,Y),
the field of rational functions over F in indeterminates X and Y. Define the valuation v : K — 72U {oc}
by 0 # Zi,j ai j X'Y7 — min{(i,j) | a;; # 0} for Zi,j a; j X'Y7 € F[X,Y], 0 — oo, and vG(f/g) =
Ve (f) —vC(g) for f,g € F[X,Y] with g # 0. Then, obviously, v is a discrete valuation on K of rank 2
whose value group is T', = (Z2,>). Let f(Z) = Z3+aZ+b € R,[Z] be irreducible and L = K («) for some
root a of f. Assume that v(a) > (0,0) and v(b) > (0,0). Then f(Z) = Z3. Let r be the remainder upon
the Euclidean division of f by Z. Noting that min(T'}) = (0, 1), it follows from Theorem 2.5 that R, [a]
is integrally closed if and only if v (r) = (0,1). In particular, if f(Z) = Z> 4+ Y, then R,[o] is integrally
closed; while if f(Z) = Z3 +YZ + X, then R,[a] is not integrally closed.

EXAMPLE 2. Let (F,v) be a valued field and let K = F(X) be the field of rational functions over F
in an indeterminate X. Given some positive irrational real A, define the valuation w : K — RU {oo} as
follows: w(0) = oo, for 0 # f(X) =>1 ja; X" € F[X], set w(f) = min{v(a;) + i), i}, and for f, g € F[X]
with g # 0, w(f/g) = w(f)—w(g) (see [9, Theorem 2.2.1]). Let f(Z) = Z3+aZ+b € R,[Z] be irreducible
and L = K(«a) for some root a of f. If (F,v) is the trivial valued field, then I',, = AZ. So, in this case, if
v(a) > 0 and v(b) > 0, then f(Z) = Z3. Hence, by Theorem 2.5, R,[a] is integrally closed if and only if
v(b) = X\. In particular, if f(Z) = Z% + X, then R,[a] is integrally closed. If F = Q and v is the p-adic
valuation on Q for some prime integer p, then I, = Z + AZ, which is dense in R and, thus, inf(T'})) = 0.
So, according to Theorem 2.5, R,[a] is integrally closed if and only if f is square-free. In particular, if
v(a) > 0 and v(b) > 0; then f(Z) = Z3 and so Ry[a] is not integrally closed.
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