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ON THE DECOMPOSITION OF PARTIALLY COMMUTATIVE

GROUPS OF VARIETIES AND THEIR DEFINING GRAPHS

E. I. Timoshenko UDC 512.5

Abstract: Considering the partially commutative groups of varieties which contain the variety of
all nilpotent groups of class 2 as well as the variety of all groups, we study the problems of their
decomposability into a direct product and a free product (in the variety).
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1. Introduction

The notion of direct product is one of the most important in group theory. The question of the
possibility of decomposing a group into a direct product has arisen constantly starting with the devel-
opment of the theory of finite and abelian groups. Alongside the classical studies, some comparatively
recent papers are also devoted to the study of this question for nilpotent groups (see, for example, [1, 2]).
Much attention has been paid to the question of a direct product decomposition of free groups of various
varieties. The following Problem 22 is formulated in [3]:
Is every nonabelian relatively free group of exponent equal to zero or a prime power not decomposable

into a direct product?
Neumann [4] and independently Olshanskii [5] gave a negative solution to the problem. However,

the free group F (M) of a varietyM does often admit no nontrivial direct decomposition. Some varieties
with this property are indicated in [3]. For example, if F (M) is nonabelian, residually nilpotent and has
exponent zero or a prime power then it is not decomposable into a direct product. In [6] there is observed
in particular that the free groups of varieties containing the product of the variety of abelian groups of
finite exponent by the variety of all abelian groups do not admit nontrivial direct products either.
Let Δ = (X;E) be a graph, where X is a nonempty set of vertices and E is the edge set. Henceforth,

all graphs are finite, X = {x1, . . . , xn}, undirected, and have no loops. A graph with a sole vertex and
empty edge set is called trivial.
Some graph Δ and a variety of groupsM uniquely defined the partially commutative group F (M,Δ)

of M; i.e.,

F (M,Δ) = 〈X | xixj = xjxi if (xi, xj) ∈ E; M〉.
The vertex set of the graph is simultaneously the generator set of the group. The graph Δ is called the
defining graph of F (M,Δ).
The union of graphs Γ1 = (V1;E1) and Γ2 = (V2;E2) is the graph Γ1 � Γ2 = (V1 ∪ V2;E1 ∪E2). The

join of Γ1 and Γ2 with disjoint vertex sets is the graph denoted by Γ1 �� Γ2, with vertex set V1 ∪ V2 and
edge set E1 ∪ E2 ∪ {(v;u); v ∈ V1;u ∈ V2}. It is easy to check that Γ �� Δ = (Γc ∪Δc)c, where Σc is the
complement of a graph Σ. A graph Δ is a graph join if and only if the graph Δc is disconnected.
There is a relationship between the direct decomposition of a partially commutative group and the

representation of the defining graph as a join. Obviously, F (M,Γ �� Δ) ∼= F (M,Γ) × F (M,Δ). The
main question we are interested in is as follows:
For what group varietiesM is the possibility of decomposing the group F (M,Δ) into a direct product

equivalent to the possibility of representing the defining graph as a graph join?
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Let N2 be the variety of all nilpotent groups of nilpotency class ≤ 2, let G be the variety of all
groups, and let S be a variety of soluble groups containing N2.
The above question is answered by Theorem 2 which strengthens Proposition 1 in [7].

Proposition 1. If a graph Γ is disconnected then the group G = F (S,Γ) is not decomposable
into a direct product.

Theorem 2. Suppose that the varietyM coincides withG orS. The group F (M,Δ) has a nontrivial
direct product if and only if Δ is the join of graphs with disjoint vertex sets.

Assume for example that Δ is a linear graph on four vertices or a cycle of length 5. Then the graphs
Δ ∼= Δc are connected. If M = G or M = S then the group F (M,Δ) admits only the trivial direct
decomposition.
The results of [4, 5] imply the existence of the nonabelian relatively free groups of exponent zero

which admit a nontrivial direct product decomposition. The free group of a variety may be regarded as
a partially commutative group whose defining graph is totally disconnected. Therefore, Theorem 2 fails
if it contains no constraints on the variety.
Theorem 2 yields

Corollary 3. Suppose that the varietyM coincides with G orS. Then the question of the possibility
of a nontrivial direct decomposition of the group F (M,Δ) is algorithmically solvable.

The group F (M,Δ) is called directly decomposable in the class of partially commutative groups of M
if F (M,Δ) is not representable as the direct product of two nontrivial partially commutative groups
in M.
Theorem 2 implies that if M coincides with G or S then so do the properties of a group to admit

a nontrivial direct decomposition and to be directly decomposable in the class of the partially commutative
groups of M.
Let G = 〈X;R,M〉 and H = 〈Y ;Q,M〉 be presentations in M of some groups G and H and assume

that the generator sets X and Y are disjoint. The group G � H = 〈X � Y ;R � Q,M〉 is called the
M-product of G and H.
Call the group F (M,Δ)M-decomposable if it can be obtained as theM-product of nontrivial partially

commutative groups in M.
A graph Δ is called elementary if Δ and Δc are connected graphs. A graph is elementary if and only

if it is not representable as a nontrivial union or join of graphs. Note that the trivial graph is elementary.
Theorem 2 gives

Corollary 4. Suppose that the variety M coincides with G or S. Then a graph Δ is elementary if
and only if the group F (M,Δ) has no nontrivial direct decomposition and is notM-decomposable either.

Alongside the decomposition of partially commutative groups of varieties into a direct product, we
will be interested in the question of decomposing these groups into an M-decomposition of partially
commutative groups and the related question about the representation of the defining graph as a union
and a join of elementary graphs. The answer is given by

Theorem 5. Suppose that the variety M coincides with G or S. Then the group F (M,Δ) can be
obtained from the partially commutative groups F (M,Γi), i = 1, . . . ,m, by taking direct products and
M-products; moreover, all graphs Γi are elementary.

Corollary 6. Suppose that the variety M coincides with G or S. Suppose that the graph Δ does
not include the linear graph L4 on four vertices as a subgraph. Then the group F (M,Δ) can be obtained
from infinite cyclic groups by taking direct products and M-products.

2. Auxiliary Results

Each graph uniquely defines a partially commutative group of the variety. The following proposition
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states that for a wide class of varieties only one defining graph corresponds to a partially commutative
group.

Proposition 7 [8]. Suppose that the variety of groups M contains the variety N2. The groups
F (Δ,M) and F (Γ,M) are isomorphic if and only if so are the graphs Δ and Γ.

Suppose that the vertex sets of graphs Δ1 and Δ2 are disjoint. If N2 ⊆M then Proposition 7 implies
that the group F (M,Δ) is the M-product of F (M,Δ1) and F (M,Δ2) if and only if Δ = Δ1 ∪Δ2.
Let

X⊥ = {x ∈ X | (x, y) ∈ E for all x �= y ∈ X}.
The following proposition will be used in the proof of Theorem 2:

Proposition 8 [7]. Let M be a variety of groups containing N2. Suppose that G = F (M,Δ)
decomposes into a direct product H × A, where A is an abelian group. Then H ∼= F (M,Γ), where Γ is
the subgraph in Δ induced by some set of vertices including X\X⊥.

3. The Proofs of the Lemmas and Main Results

Lemma 9. Let n, n ≥ 2, be the number of vertices in a graph Δ and let Δi be obtained from Δ
by removing the ith vertex and the incident edges. Suppose that each graph Δi is a graph join. Then Δ
is also a graph join.

Proof. The hypothesis implies that all graphs Δci are disconnected. Assume that Δ
c is a connected

graph. By [9, Theorem 3.4], each nontrivial connected graph contains at least two vertices that are not
articulation points. Let the ith vertex of Δc be its articulation point. Hence, (Δc)i is a connected graph
but (Δc)i = (Δi)

c. Since the last graph is disconnected, we get a contradiction.

Lemma 10. Let G = F (N2,Δ) and let A and B be normal subgroups in G such that G = AB,
G′ < A, G′ < B, and [A,B] = 1. Then Δ is the join of some graphs Δ1 and Δ2 with disjoint vertex sets.
Proof. If G is an abelian group then Δ is a complete graph, and the lemma holds. Therefore, we

will assume that G is nonabelian. Then at least one of the groups A and B is nonabelian either. Let A
be a nonabelian group.
The proof will be carried out by induction on the number of vertices n of Δ. Let n = 2. Then

G is a free abelian group or a free group of rank N2. In the first case, the claim holds. Consider the
second case. Denote a basis for G by X = {x1, x2}. Since A is nonabelian, A contains noncommuting
elements a1 and a2. Then

a1 ≡ xl11 xl22 (modG′), a2 ≡ xr11 xr22 (modG′), [a1, a2] �= 1.
Since [a1, B] = [a2, B] = 1; therefore, B ≤ G′, which contradicts the hypothesis.
Suppose that the lemma holds for graphs whose number of vertices is ≤ n− 1.
Let Δ be a graph on vertices X = {x1, . . . , xn}. Given i = 1, . . . , n, denote by Δi the subgraph in Δ

induced by X\{xi}. Let ϕi be the homomorphism (retraction)
ϕi : F (M,Δ) −→ F (M,Δi)

such that xi �→ 1 and xj �→ xj if i �= j. Put ϕi(G) = Gi, ϕi(A) = Ai, and ϕi(B) = Bi.
We have Gi = AiBi. Since G

′ < A, it follows that G′i ≤ Ai. Suppose that G′i = Ai for some i.
Denote by 〈x, y, . . . 〉 the subgroup in G generated by elements x, y, . . . and designate as 〈x, y, . . . 〉G the
normal subgroup generated by these elements. We get

A ≤ ϕ−1i (Ai) = ϕ−1i (G′i) = 〈G′, kerϕi〉 = 〈G′, 〈xi〉G〉 = 〈G′, xi〉.
It follows that A is an abelian group; a contradiction. Hence, G′i < Ai. If B is nonabelian then G′i < B
for all i. Assume that G′i = Bi for some i and the group B is abelian. Then

B ≤ ϕ−1i (Bi) = ϕ−1i (G′i) = 〈G′, kerϕi〉 = 〈G′, 〈xi〉G〉 = 〈G′, xi〉.
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Choose b ∈ B\G′. There are c ∈ G′ and 0 �= l ∈ Z such that b = cxli. From [A,B] = 1 it follows that x
l
i

lies in the center Z (G) of G. Proposition 4 in [10] gives the description of Z (G):

Z (G) = G′ × 〈xi1〉 × · · · × 〈xim〉,
where for j = 1, . . . ,m the vertex xij is adjacent to each vertex of the graph different from xij . Conse-
quently, Z (G) is isolated in G. Hence, xi ∈ Z (G). Therefore, Δ is the join of Γi = ({xi};∅) and Δi.
Thus, we may assume that G′i < Ai and G′i < Bi for all i. By the induction assumption, each

graph Δi is a join. Hence, by Lemma 9, so is Δ. The lemma is proved.

Proof of Theorem 2. Suppose that the number n of vertices in the graph is 2. If the vertices are
adjacent then F (M,Δ) is a free abelian group and the graph is the join of trivial graphs. If the vertices
are nonadjacent then F (M,Δ) is a free group of rank 2 that has no nontrivial direct decompositions or
a free group of rank 2 in S. Free nilpotent groups have no nontrivial direct decompositions. Therefore,
F (S,Δ) is indecomposable into a nontrivial direct product either. We may assume that n > 2.
If Δ is the join of two graphs then the group F (M,Δ) is directly decomposable for every varietyM.
Suppose the contrary; i.e., F (M,Δ) admits a nontrivial direct decomposition. Consider the two cases

separately:
1. Let M = G. Then F (G,Δ) is a free partially commutative group. For this group, the following

proposition was proved in [11]: If the number of vertices in Δ is greater than 2 and the complement Δc

of Δ is a connected graph then for all nontrivial elements x, y ∈ F (G,Δ) there is an element z such that
[x, yz] �= 1.
It follows immediately that F (G,Δ) is not directly decomposable if Δc is a connected graph. There-

fore, Δc is a connected graph, which is equivalent to the fact that Δ is a graph join.
2. LetM = S. Then the group F (N2,Δ) admits a nontrivial direct decomposition A×B. Let at least

one of the factors A and B be abelian, for example, A. By Proposition 8, B ∼= F (N2,Γ). The group A
is defined by a complete graph Σ whose vertex set is disjoint from the vertex set of Γ. Consequently,

F (N2,Δ) ∼= F (N2,Σ)× F (N2,Γ) ∼= F (N2,Γ �� Σ).
By Proposition 7, we conclude that Δ ∼= Γ �� Σ.
If the groups A and B are nonabelian then G = AG′ ·BG′, and the theorem follows from Lemma 10.

The theorem is proved.

Proof of Theorem 5. If Δ is nonelementary then one of the graphs Δ or Δc is disconnected.
Suppose that Δ is disconnected. Then

Δ =
l⊔

i=1

Δi, l > 1.

If some connected component Δi possesses the property that its complement Δ
c
i is not a connected

graph, then Δi is representable as the join of some graphs Δij where each of the graphs Δij cannot be
representable as a join of graphs. Continuing this process, we arrive at a representation of Δ through
elementary graphs Γm, by using the operations of union and join. Therefore, F (M,Δ) can be obtained
from the groups F (M,Γm), m = 1, . . . , r, by direct products and M-products. The theorem is proved.

Proof of Corollary 6. We may assume that Δ = (X;E) be a connected nontrivial graph.
Since Δ does not include L4 as a subgraph, the diameter d(Δ) is at most 2. The case of d(Δ) = 1 is
trivial. Let d(Δ) = 2. Denote the distance between vertices x and y in Δ by r(x, y). Choose a vertex x0
in Δ that is not an articulation point. Such vertex exists by [9, Theorem 3.4]. Let

X1 = {x ∈ X | r(x0, x) = 1}, X2 = {x ∈ X | r(x0, x) = 2}.
If X2 = ∅ then Δ is a star. If X2 �= ∅ then x0 is an articulation point. This contradicts the hypothesis.
The corollary is proved.

Acknowledgment. While writing the article, the author asked Viktor Petrovich Il’ev about the
validity of the assertion formulated as Lemma 9 here and got an affirmative answer from him as well
as a proof, for which the author is grateful to V. P. Il’ev. The proof of Lemma 9 given in the article is
somewhat different from V. P. Il’ev’s proof.
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