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LOCALLY FINITE PERIODIC GROUPS SATURATED WITH

FINITE SIMPLE ORTHOGONAL GROUPS OF ODD DIMENSION
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Abstract: Suppose that n is an odd integer, n ≥ 5. We prove that a periodic group G, saturated
with finite simple orthogonal groups On(q) of odd dimension over fields of odd characteristic, is iso-
morphic to On(F ) for some locally finite field F of odd characteristic. In particular, G is locally finite
and countable.
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Introduction

Let M be some set of finite groups. A group G is said to be saturated with groups from M , if each
finite subgroup of G lies in a subgroup isomorphic to some element of M .
The main goal of the paper is to prove the following result:

Theorem. Suppose that m is an integer, m ≥ 2, and M is a set whose elements are finite simple
orthogonal groups of dimension n = 2m + 1 over fields of odd characteristic. If G is a periodic group
saturated with groups fromM , then G is isomorphic to a simple orthogonal group On(F ) for some locally
finite field F .

A particular case of this theorem was proved in [1].

1. Preliminary Facts

We will be using the notation and results of [2, 3]. Recall some of them.
Suppose that F is a field of odd characteristic, n = 2m + 1 is an odd integer, n ≥ 5, and V is

a vector space of dimension n over F , while e = {e1, e2, . . . , en} is a basis for V over F . Let f be a
symmetric bilinear form on V such that f(ei, ei) = 1 and f(ei, ej) = 0 for all i, j ∈ {1, 2, . . . , n}, i �= j.
The basis e is called the standard basis for f . Suppose that f1 is a symmetric bilinear form on V such
that f1(ei, ei) = μ, where μ is an element of F which is not a square, while f1(ei, ej) = 0 for all i and j
satisfying i �= j. Then f and f1 are not isometric, and every nondegenerate form on V is isometric to f
or f1. The group of linear transformations of V that preserve f , preserves f1 as well and is denoted
by GO(V ). The subgroup SO(V ) = GO(V ) ∩ SL(V ) has index 2 in GO(V ) and is called the special
orthogonal group V . The group Ωn(F ) = Ω(V ) = [SO(V ), SO(V )] is simple and GO(V )/Ω(V ) is an
elementary abelian group of order 4. The group Ωn(F ) = On(F ) is isomorphic to a simple group Bm(F )
of Lie type B.
Suppose that t is an involution (i.e. an element of order 2) from L = Ω(V ). Then V is an orthogonal

direct sum of the subspaces V +(t) = {v ∈ V | vt = v} and V −(t) = {v ∈ V | vt = −v}. Denote the
dimensions of V +(t) and V −(t) by d(t) and r(t). It is clear that d(t) and r(t) are the defect and the rank
of the transformation t−1 respectively. Two involutions t, t1 ∈ Ω(V ) conjugate if and only if d(t) = d(t1).
Therefore, Ωn(F ) contains exactly m = (n− 1)/2 classes of conjugated involutions.
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Lemma 1. Let A be a maximal elementary abelian subgroup of L = Ω(V ). Then |A| = 2n−1 or
|A| = 2n−2, CL(A) = A, and each involution from L is conjugate to an involution from A. If involutions t
and t1 from L are contained in A and conjugate in L; i.e., d(t) = d(t1); then t and t1 are conjugate
in NL(A).

Let t be an involution from A. If d(t) = 1, then |tNL(A)| is equal to n if |A| = 2n−1; and 1, if
|A| = 2n−2. If d(t) �= 1, then |tNL(A)| > n.
The normalizer NL(A) in L acts transitively by conjugation on each of the sets Ds = {t ∈ A | d(t) =

s}, s = 1, 3, . . . . In the case when |A| = 2n−1, the subgroup NL(A) has a subgroup N0 ≥ A such that
|NL(A) : N0| ≤ 2, N0 � A : Alt(n) and N0 acts transitively by conjugation on each of the sets Ds.
Proof. The subgroup A is diagonal in some orthogonal basis e = {e1, . . . , en} for the space V ;

therefore, A = A∗ ∩ Ω(V ), where A∗ = {a∗ ∈ GO(V ) | eia∗ = ±ei}. Since A∗ contains −1 �∈ Ω(V ),
the order of A is at most 2n−1, and we may assume that either the basis e is standard or (ei, ei) = 1
for i > 1 and (e1, e1) = μ, where μ is not a square in F . We start with the second case. Thus, the
transformation c, satisfying

e1c = −e1, e2c = −e2, eic = ei for i > 2,
does not belong to Ω(V ); i.e., 〈c,−1〉 ∩ A = 1. On the other hand, every transformation a ∈ A∗ such
that e1a = e1 and d(a) is odd, is contained in A. Hence, |A| = 2n−2 and

A = {a = [1, α2, . . . , αn] | αi = ±1, i = 2, . . . , n; d(a) is odd},
where [α1, α2, . . . , αn] denotes the diagonal matrix with the element αi in the entry (i, i), i = 1, 2, . . . , n.
It is clear that the number of elements a ∈ A such that d(a) = d is equal to 1, if d = 1; and

Cd−1n−1 =
(n− 1)(n− 2) . . . (n− d+ 1)

(d− 1)! ,

if d > 1. If 2 ≤ i < j < k ≤ n and c = c(i, j, k) is a transformation such that eic = ej , ejc = ek, ekc = ei,
and elc = el, given l �∈ {i, j, k}; then [1, α2, . . . , αn]c = [1, β2, . . . , βn], where βi = αk, βj = αi, βk = αj ,
and βl = αl, given l �∈ {i, j, k}. Obviously, c ∈ NGO(V )(A) and the order of c is equal to 3; therefore,
c ∈ Ω(V ). Conjugating a = [1, α2, . . . , αn] by an element g, equal to the product c(i1, j1, k1) . . . c(il, jl, kl)
for a suitable is, js, ks, there is no difficulty in obtaining the element a

g = [1, 1, . . . , 1,−1, . . . ,−1], where
the first d(a) of the diagonal elements equal 1, and the rest of them equal −1. This shows that every two
involutions t, t1 ∈ A, that are conjugate in L, i.e. involutions with condition d(t) = d(t1), are conjugate
in NL(A). Moreover, there exists only one involution t in A such that d(t) = 1, and the number of
involutions t with condition d(t) = d > 1 is equal to

Cd−1n−1 =
(n− 1)(n− 2) . . . (n− d+ 1)

(d− 1)! =
(n− 1)(n− 2)

2

d−1∏

i=3

n− i
i
.

We will show that this number is more than n by induction on d ≥ 3 (recall that d is odd and n ≥ 5).
For d = 3,

Cd−1n−1 =
(n− 1)(n− 2)

2
=
n2 − 3n+ 2

2
≥ n+ 1 > n.

Moreover, Cd−1n−1 = C
n−d
n−1 ; therefore, we may assume that d − 1 ≤ n − d, i.e. d ≤ n+1

2 . Now, given

i− 1 ≤ d− 1, we have n−ii > 1; i.e.,
∏n−1
i=3

n−i
i > 1, which implies that C

d−1
n−1 > n.

Direct checking shows that CGO(V )(A) = A
∗, and hence CL(A) = A.

Consider the standard basis e. Then

A = {a = [α1, α2, . . . , αn] | α1, α2, . . . , αn ∈ {1,−1}; d(a) is odd}.
In particular, CL(A) = A. Clearly, N

∗ = NGO(V )(A∗) = A∗ : Sym(n) and N = N∗ ∩ L = A : H, where
H � Sym(n) or Alt(n), acts transitively on the set of involutions t ∈ A with the common parameter d(t).
Thus, if t ∈ A and d(t) = d, then |tN | = Cdn. As before, it is an easy check that |tN | > n if d(t) > 1, and
|tN | = n if d(t) = 1.
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Lemma 2. Suppose that |F | = q, while A is a maximal elementary abelian subgroup L = Ω(V ) with
order 2n−1, and a and b are two distinct involutions from A such that d(a) = d(b) = 1 and K = 〈a, b〉.
Then CL(a) = L1 : 〈b〉, where L1 � Ωεn−1(V ), ε1 ≡ q(mod 4), and CL(K) = L0×K, where L0 � Ωn−2(q).
Moreover, CL(a) is maximal in L, and CL(K) is maximal in CL(a).

Proof. By Lemma 1, A contains n involutions t for which d(t) = 1 and all of them are conjugate
in NL(A). Moreover, NL(A) acts double transitively on the set of such involutions; hence, all subgroupsK
of the statement of Lemma 2 are conjugate in NL(A).
Since CGO(V )(a) = GO(V

+)×GO(V −), where
V + = {v ∈ V | va = v}, V − = {v ∈ V | va = −a};

therefore, CL(a) = CGO(V )(a)∩Ω(V ) includes Ω(V −) as a subgroup of index 2. The proof of Lemma 11.53
in [2] implies that Ω(V −) = Ωε(V −), where ε is defined by a congruence q ≡ ε1(mod 4) and a is the only
involution in Ω(V −) such that d(a) = 1; hence, b �∈ Ω(V −) and CL(a) = Ω(V −)〈b〉. Further,

CL(K) = CCL(a)(b) = 〈b〉 × CΩ(V −)(b) = L0 ×K,
where L0 � Ωn−2(q). The maximality of CL(K) in CCL(a)(b) and of CL(a) in L follows from the
maximality of geometric subgroups of Ωn(q) and Ω

ε
n−1(q) (see Tables 3.5.D, E, and F in [4] and Tables 8.31,

33, 39, 50, 52, 58, 66, 68, 74, 82, 84, and 85 in [3].

2. Proof of the Theorem

Let n be an odd integer, n ≥ 5, while G is a periodic group such that its every subgroup lies in
a subgroup isomorphic to Ωn(q) for some odd q which is a power of a prime. Our goal is to show that G
is isomorphic to Ωn(F ) for a suitable locally finite field F .
Because Ω5(q) � S4(q), according to [5] it is true for n = 5. By induction we may assume that n ≥ 7,

and the claim is true when n is replaced with n− 1.
LetM(G) be the set of all subgroups of G isomorphic to elements ofM , while L = {Ωn(q) | q is odd}.

If M(G) has a subgroup isomorphic to Ωn(q), where q ≡ 1(mod 4), then we fix and denote by L = L(q)
one of such subgroups. If there are no such subgroups, then we fix and denote as L = L(q) some
(arbitrary) element ofM(G). In both cases we will identify L with Ω(V ), where V is an orthogonal space
of dimension n over a field of order q.
We will also fix an elementary abelian 2-subgroup A of order 2n−1 from L, elements a and b from A,

and a subgroup K as they are defined in Lemma 2. If L1 is a subgroup of G isomorphic to Ω(V1) for some
space V1 of dimension n over a field of order q1, and t is an involution from L1; then denote by dL1(t)
the dimension of the space of fixed points of t in V1.

Lemma 3. CG(A) = A, NG(A) contains a subgroup of index 1 or 2 coinciding with N0 � A : Alt(n)
from Lemma 1.

Proof. Suppose that c ∈ CG(A). Then C = 〈c, A〉 is a finite subgroup lying in some element
L1 ∈M(G). Applying Lemma 1 with L1 instead of L, we get that c ∈ CL1(A) = A. So, CG(A) = A, and
therefore NG(A) is a finite subgroup lying in some L2 ∈ M(G). Now we use Lemma 1 with L2 in place
of L and derive that NG(A) includes N0 as a subgroup of index 1 or 2.

Lemma 4. If K ≤ L1 ∈M(G), then dL1(a) = dL1(b) = d(a) = 1.
Proof. Let A1 be a maximal elementary abelian 2-subgroup of L1 including K.
If A1 = A, Lemma 1 with L1 in place of L implies that the subgroup N0 lies in L1. Because

|aN0 | = |bN0 | = n, we have dL1(a) = dL1(b) = 1 = dL(a). In this case the claim of the lemma is true.
Suppose that A1 ≤ A and A1 �= A. Then |A : A1| = 2 by Lemma 1. Set C = CG(A1). It is clear

that A ≤ C; and, if t ∈ A \A1, then
CC(t) = CG(t) ∩ C = CG (〈t, A1〉) = CG(A) = A.
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By Shunkov’s Theorem [6], C is locally finite. Let N1 = NL1(A1) ≤ NG(A1). Since A1 is finite,
NG(A1)/C is finite, and so NG(A1) is a locally finite group. It follows that NG(A1) = CH, where H is
a finite subgroup including A. Suppose that H ≤ L2 ∈M(G).
Because A ≤ L2, we have dL2(a) = dL2(b) = 1. Lemma 1 implies that 1 = |aNG(A1)| = |aH |, which

yields that dL1(a) = dL1(b) = 1. On the other hand, by Lemma 1 A1 has the only involution i with
condition d(i) = 1; therefore, the case under consideration when A �= A1 ≤ A is impossible.
By induction on s = |A : (A1 ∩ A)| + |A1 : (A1 ∩ A)|, we will show that |A1| = |A| = 2n−1 and

dL1(a) = dL1(b) = 1.
If s ≤ 3, then either A = A1 ∩ A, or A1 = A1 ∩ A, and these cases are already done. Hence, we can

assume that A1 �= A1 ∩A �= A.
Let t ∈ A \ (A1 ∩A), t1 ∈ A1 \ (A1 ∩ A). Then R = 〈t, t1, A1 ∩ A〉 is finite, and so R ≤ L2 ∈M(G).

Suppose that 〈t, A1 ∩A〉 ≤ A2, where A2 is a maximal elementary abelian subgroup in L2. Then
|A2| ≥ |A2 ∩A| > |A1 ∩A|.

By the inductive hypothesis, |A2| = |A| and dL2(a) = dL2(b) = d(a) = 1. Further, 〈t1, A1 ∩A〉 ≤ L1 ∩L2
and 〈t1, A1 ∩ A〉 ≤ A3, where A3 is a maximal elementary abelian 2-subgroup of L2. Because a, b ∈ A3,
we have |A3| = |A|. Moreover, |A3 ∩ A1| > |A ∩ A1|. By the inductive hypothesis, dL1(a) = dL1(b) =
dL2(a) = 1. The lemma is proved.

Lemma 5. CG(K) = K×R, where R � Ωn−2(F ) for some locally finite field F of odd characteristic.
Proof. Let C = CG(K)/K. We want to show that C is saturated with groups from the set

M1 = {Ωn−2(q) | q is odd}.
Suppose that X is a finite group from C, while X is the full preimage of X in G. By condition,

K ≤ X ≤ L1 ∈M(G); and by Lemma 2 CL1(K) = K ×R1, where R1 � Ωn−2(q1) for odd q1. Thus, C is
saturated with groups from the setM1 = {Ωn−2(q) | q is odd}. By the inductive hypothesis, C � Ωn−2(F )
for some locally finite field F of odd characteristic. In particular, C is a locally finite group. We will
show that [C,C] ∩ K = 1. Let c ∈ [C,C]. Then c = [c1, c2][c3, c4] . . . [cp−1cp] for some p and suitable
elements c1, . . . , cp ∈ C. The subgroup 〈K, c1, . . . , cp〉 is finite and lies in K × Y , where Y � Ωn−2(q2)
for some q2. It is clear that c ∈ Y and c �∈ K. Since C = K[C,C]; therefore, C = K × [C,C], and the
lemma is proved.

Lemma 6. CG(K) lies in a subgroup P of CG(a) which is the union of an ascending sequence of
subgroups Pi, i = 1, 2, . . . , isomorphic to Ω

λ
n−1(qi).2, with qi = λ1 (mod 4), λ ∈ {+,−}, and λ depends

on the choice of L and is common for all i.

Proof. By Lemma 5, CG(K) is locally finite and countable. If CG(K) is finite, then we may
assume that CG(K) = CL(K), and the lemma is true by Lemma 2. Suppose that CG(K) is infinite and
CG(K) = {gi | i ∈ N}. Put P0 = CL(a). Let gi1 be an element of CG(K) not belonging to P1, and
the number i1 is the smallest of those subject to that condition. The subgroup 〈CP0(K), N0〉 coincides
with P0 by Lemma 2. Let L1 be an element ofM(G) containing CP0(K) and let gi be the first element in
order not belonging to CP0(K). By condition, L1 � Ωn(q1) for some q1. The subgroup CL1(K) is maximal
in CL1(a); and, because N0 �≤ C(K), the subgroup 〈CL1(K), N0〉 coincides with CL1(a) � Ωλn−1(q1).2.
Since CL0(K) < CL1(K); therefore, P0 = CL0(a) < CL1(a) = P1.
Similarly, let L2 be an element of M(G) including CP1(K) and let gi2 be the first element in order

not belonging to CP1(K). As before, P2 = CL2(a), and P2 includes CL1(a). Proceeding this construction
of the subgroups Pi’s in a similar way, we will get an ascending sequence of subgroups Pi � Ωλn−1(qi)
whose union P includes CG(a). The lemma is proved.

Lemma 7. P = CG(a).

Proof. Suppose the contrary. Let t ∈ CG(a) \ P . The subgroup 〈K,Kt〉 is generated by the
elements a, b, and bt. Since 〈b, bt〉 is a finite group, so is 〈K,Kt〉. Because 〈K,Kt〉 lies in the subgroup L∗
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isomorphic to Ωn(q
∗) for some q∗; therefore,

〈K,Kt〉 ≤ D = CL∗(a) � Ωλn−1(q∗) · 2.

Now, K and Kt are conjugate in D, because A and At are conjugate in D and ND(A) acts double
transitively on the set of involutions a∗ ∈ A with condition αD(a∗) = 1. Let Γ be a graph with vertex set
Σ = {Kd | d ∈ D} such that two vertices Kr and Ks are adjacent if and only if [Kr,Ks] = 1. Suppose
that Δ is a connected component in Γ that includes K. Since K ≤ A and CN (K) �= CN (a), we have
KCN (a) �= {K}, and so |Δ| ≥ 2. Thus, if Δ �= Σ, then D acts on Σ by conjugation transitively and
imprimitively. Hence, the stabilizer of the vertex K in D equal to ND(K) is not maximal in D, which
is untrue. Therefore, Δ = Σ and there is a sequence t1, t2, . . . , tr = t of elements from CL∗(a) such that
1 = [K,Kt1 ] = [Kti ,Kti+1 ], i = 1, 2, . . . , r − 1. By induction on r, we will show that Ktr ≤ P . If r = 1,
then Kt ≤ CG(K); and by Lemma 6 Kt ≤ P . Suppose that r > 1 and Ktr−1 ≤ P . There exists u ∈ P
such that Kt1u = K and 1 = [K,Kt2u] = · · · = [Ktr−1u,Ktru], i = 2, . . . , r. By the inductive hypothesis,
Ktru ≤ P and Ktr ≤ P .
So, Kt ≤ P for every t ∈ CG(a). The subgroup P is locally finite; therefore, 〈K, t〉 is finite and lies

in L∗ ∈M(G). Suppose that H = CL∗(a). Then

H = 〈CL∗(K), NG(A) ∩ CL∗(a)〉 ≤ P.

Because t ∈ H, we have t ∈ P , and the lemma is proved.
Lemma 8. CG(a) lies in a subgroup Z � Ωn(F ) of G for some locally finite field F .
Proof. By Lemma 7, CG(a) is countable and locally finite. Let L0 = L and

CG(a) = CL0(a) ∪ {gi ∈ CG(a) | i ∈ N}.

The subgroup C1 = 〈CL(a), gi1〉, with gi1 the first element in order not belonging to L0, is finite and hence
lies in L1 ∈M(G). Because L0 includes NG(A) and CL1(a) is maximal in L1, the subgroup 〈C1, NG(A)〉
coincides with L1.

Let C2 = 〈C1, gi2〉, where gi2 is the first element in order which is not contained in L1. By condition,
C2 ≤ L2 ∈ M(G). It is clear that C2 ≤ CL2(a) and L2 includes NL(A) = NL2(A). Since CL2(a) is
maximal in L2 and NL2(A) �≤ CL2(a), the subgroup L2 coincides with 〈CL2(a), NL2(A)〉 and includes L1.
Reasoning similarly, we construct subgroups L3, L4, · · · ∈ M(G) with condition Li ≤ Li+1, i =

3, 4, . . . . The union Z of the so-obtained sequence includes CG(a). By the main result of each of the
papers [7–11], Z � Ωn(F ) for some locally finite field F , and the lemma is proved.
Lemma 9. Z = G.

Proof. By Lemma 8, Z is countable and locally finite. Suppose that g ∈ G and ag �= a. The
group 〈a, ag〉 is finite. Therefore, 〈a, ag〉 lies in such a subgroup R of the group G that is isomorphic
to Ωn(r) for some r. Let Δ be a set of involutions belonging to R and conjugate to a in G. Let Γ be
a graph with vertex set Δ such that two vertices ag1 and ag2 are adjacent if and only if [ag1 , ag2 ] = 1.
Since CR(a) is a maximal subgroup of R and |CR(a) ∩Δ| ≥ 2; we have by analogy to Lemma 8 that the
graph Γ is connected. This implies as in Lemma 8 that aG ⊆ Z, 〈aG〉 = Z, and Z � G. Because Z is
locally finite, 〈a, g〉 is finite, and we may assume that 〈a, g〉 ≤ R. Since 〈aR〉 = R; therefore, g ∈ 〈cR〉 ≤ Z.
The lemma is proved, which completes the proof of the theorem.
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