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LOCALLY FINITE PERIODIC GROUPS SATURATED WITH
FINITE SIMPLE ORTHOGONAL GROUPS OF ODD DIMENSION
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Abstract: Suppose that n is an odd integer, n > 5. We prove that a periodic group G, saturated
with finite simple orthogonal groups O, (q) of odd dimension over fields of odd characteristic, is iso-
morphic to O, (F) for some locally finite field F' of odd characteristic. In particular, G is locally finite
and countable.
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Introduction

Let M be some set of finite groups. A group G is said to be saturated with groups from M, if each
finite subgroup of G lies in a subgroup isomorphic to some element of M.
The main goal of the paper is to prove the following result:

Theorem. Suppose that m is an integer, m > 2, and M is a set whose elements are finite simple
orthogonal groups of dimension n = 2m + 1 over fields of odd characteristic. If G is a periodic group
saturated with groups from M, then G is isomorphic to a simple orthogonal group O,,(F') for some locally
finite field F'.

A particular case of this theorem was proved in [1].

1. Preliminary Facts

We will be using the notation and results of [2,3]. Recall some of them.

Suppose that F' is a field of odd characteristic, n = 2m + 1 is an odd integer, n > 5, and V is
a vector space of dimension n over F, while e = {e1,e,...,e,} is a basis for V over F. Let f be a
symmetric bilinear form on V such that f(e;,e;) =1 and f(e;,e;) = 0 for all 4,5 € {1,2,...,n}, ¢ # j.
The basis e is called the standard basis for f. Suppose that f; is a symmetric bilinear form on V such
that fi(e;,e;) = p, where p is an element of F' which is not a square, while fi(e;, e;) = 0 for all 4 and j
satisfying ¢ # j. Then f and f; are not isometric, and every nondegenerate form on V is isometric to f
or fi. The group of linear transformations of V that preserve f, preserves fi as well and is denoted
by GO(V). The subgroup SO(V) = GO(V) N SL(V) has index 2 in GO(V) and is called the special
orthogonal group V. The group Q,(F) = Q(V) = [SO(V),SO(V)] is simple and GO(V)/Q(V) is an
elementary abelian group of order 4. The group ,,(F) = O, (F) is isomorphic to a simple group B, (F)
of Lie type B.

Suppose that t is an involution (i.e. an element of order 2) from L = Q(V'). Then V is an orthogonal
direct sum of the subspaces V*(t) = {v € V | vt = v} and V~(t) = {v € V | vt = —v}. Denote the
dimensions of V' (t) and V= (t) by d(t) and r(t). It is clear that d(t) and r(t) are the defect and the rank
of the transformation ¢ — 1 respectively. T'wo involutions ¢,¢; € Q(V') conjugate if and only if d(¢) = d(t1).
Therefore, 2, (F') contains exactly m = (n — 1)/2 classes of conjugated involutions.
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Lemma 1. Let A be a maximal elementary abelian subgroup of L = Q(V). Then |A| = 271 or
|A| = 2772 O (A) = A, and each involution from L is conjugate to an involution from A. If involutions t
and t; from L are contained in A and conjugate in L; i.e., d(t) = d(t1); then t and t; are conjugate
in NL (A)

Let t be an involution from A. If d(t) = 1, then [tNt(Y)] is equal to n if |[A] = 2*1; and 1, if
|A| = 272, If d(t) # 1, then [tNe(A)| > n.

The normalizer N (A) in L acts transitively by conjugation on each of the sets Dg = {t € A | d(t) =
s}, s =1,3,.... In the case when |A| = 2"~1  the subgroup Ny(A) has a subgroup Ny > A such that
|INL(A) : No| <2, Ny~ A: Alt(n) and Ny acts transitively by conjugation on each of the sets Ds.

PROOF. The subgroup A is diagonal in some orthogonal basis e = {eq,...,e,} for the space V;
therefore, A = A* N Q(V), where A* = {a* € GO(V) | e;a* = *e;}. Since A* contains —1 ¢ Q(V),
the order of A is at most 2”1, and we may assume that either the basis e is standard or (e;,e;) = 1
for ¢ > 1 and (e1,e1) = p, where p is not a square in F'. We start with the second case. Thus, the
transformation c, satisfying

eic= —e1, esc= —eq, e;c=¢;fori>2,

does not belong to Q(V); i.e., (¢,—1) N A = 1. On the other hand, every transformation a € A* such
that eja = e; and d(a) is odd, is contained in A. Hence, |A| = 2”2 and

A={a=[1,a9,...,a4) | a; = £1,i=2,...,n; d(a) is odd},

where [aq, ag, ..., a,] denotes the diagonal matrix with the element «; in the entry (i,7), 1 =1,2,...,n.
It is clear that the number of elements a € A such that d(a) = d is equal to 1, if d = 1; and
m=1)(n—-2)...(n—d+1)

(d—1)! ’
ifd>1.If2<i<j<k<nandc=c(ijk) is a transformation such that e;c = e;, ejc = ey, exc = e;,
and e;c = e, given | & {i,,k}; then [1,a0,...,0,]¢ = [1, B2, ..., Bn], where B; = ai, B = o, Bk = ay,
and B = oy, given | ¢ {i,j,k}. Obviously, ¢ € Ngo(v)(A) and the order of c is equal to 3; therefore,
c € Q(V). Conjugating a = [1, ag, ..., a,| by an element g, equal to the product ¢(iy, j1, k1) . . . c(iz, ji, ki)
for a suitable iy, js, ks, there is no difficulty in obtaining the element a9 = [1,1,...,1,—1,..., —1], where
the first d(a) of the diagonal elements equal 1, and the rest of them equal —1. This shows that every two
involutions t,t; € A, that are conjugate in L, i.e. involutions with condition d(t) = d(t1), are conjugate
in Ny (A). Moreover, there exists only one involution ¢ in A such that d(¢) = 1, and the number of
involutions ¢ with condition d(t) = d > 1 is equal to

L =D@m=2)...(n—d+1) (n-1)n-2)Fn—i
Ca1 = d—1) - 2 HB i

We will show that this number is more than n by induction on d > 3 (recall that d is odd and n > 5).
For d = 3,

—1)(n -2 2_3n+2
ci-1_ )2(” ) _n 2” >n+1>n.

Moreover, Cﬁfj = Cg:f; therefore, we may assume that d — 1 < n —d, i.e. d < "TH Now, given

i—1<d—1, we have %= > 1; i.e., [/ %= > 1, which implies that C?_1 > n.
Direct checking shows that Cgo1)(A) = A*, and hence CL(A4) = A.
Consider the standard basis e. Then

A={a=a1,00,...,04) | a1, 9,...,0p, € {1,—1}; d(a) is odd}.
In particular, C1(A) = A. Clearly, N* = Ngo)(A*) = A" : Sym(n) and N = N*N L = A: H, where
H ~ Sym(n) or Alt(n), acts transitively on the set of involutions ¢t € A with the common parameter d(t).
Thus, if t € A and d(t) = d, then || = C%. As before, it is an easy check that [¢t"| > n if d(t) > 1, and
(tN| =nifd(t) = 1.
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Lemma 2. Suppose that |F| = g, while A is a maximal elementary abelian subgroup L = Q(V') with
order 2!, and a and b are two distinct involutions from A such that d(a) = d(b) = 1 and K = (a,b).
Then Cr(a) = Ly : (b), where L1 ~ ,_;(V), €1 = g(mod4), and Cr,(K) = Lo x K, where Ly ~ Q,_2(q).
Moreover, Cr,(a) is maximal in L, and Cp(K) is maximal in Cf(a).

PrROOF. By Lemma 1, A contains n involutions ¢ for which d(¢) = 1 and all of them are conjugate
in Nz, (A). Moreover, N1, (A) acts double transitively on the set of such involutions; hence, all subgroups K
of the statement of Lemma 2 are conjugate in Np,(A).

Since Caovy(a) = GO(VT) x GO(V™), where

Vi={veV|va=v}, V ={veV ] va=—al;

therefore, Cr(a) = Cgo(v)(a)N(V) includes (V' 7) as a subgroup of index 2. The proof of Lemma 11.53
in [2] implies that Q(V ™) = Qf(V ™), where ¢ is defined by a congruence ¢ = €1(mod 4) and a is the only
involution in (V™) such that d(a) = 1; hence, b ¢ Q(V ™) and Cr(a) = Q(V7)(b). Further,

CL(K) = Cgy(a)(b) = (b) x Cqy—(b) = Lo x K,

where Lo ~ Q, 2(¢q). The maximality of CL(K) in Cg¢, (4)(b) and of Cp(a) in L follows from the
maximality of geometric subgroups of Q,,(¢) and €25, _;(¢) (see Tables 3.5.D, E, and F in [4] and Tables 8.31,
33, 39, 50, 52, 58, 66, 68, 74, 82, 84, and 85 in [3].

2. Proof of the Theorem

Let n be an odd integer, n > 5, while G is a periodic group such that its every subgroup lies in
a subgroup isomorphic to €, (q) for some odd ¢ which is a power of a prime. Our goal is to show that G
is isomorphic to Q,(F') for a suitable locally finite field F'.

Because Q5(q) ~ S4(q), according to [5] it is true for n = 5. By induction we may assume that n > 7,
and the claim is true when n is replaced with n — 1.

Let M (G) be the set of all subgroups of G isomorphic to elements of M, while L = {Q,(q) | g is odd}.
If M(G) has a subgroup isomorphic to Q,(q), where ¢ = 1(mod 4), then we fix and denote by L = L(q)
one of such subgroups. If there are no such subgroups, then we fix and denote as L = L(q) some
(arbitrary) element of M (G). In both cases we will identify L with Q(V'), where V' is an orthogonal space
of dimension n over a field of order q.

We will also fix an elementary abelian 2-subgroup A of order 2"~ ! from L, elements a and b from A,
and a subgroup K as they are defined in Lemma 2. If L; is a subgroup of G isomorphic to 2(V7) for some
space V7 of dimension n over a field of order ¢;, and ¢ is an involution from L;; then denote by dr,(t)
the dimension of the space of fixed points of ¢ in V7.

Lemma 3. Cg(A) = A, Ng(A) contains a subgroup of index 1 or 2 coinciding with Ny ~ A : Alt(n)
from Lemma 1.

PROOF. Suppose that ¢ € Cg(A). Then C = (¢, A) is a finite subgroup lying in some element
L; € M(G). Applying Lemma 1 with L; instead of L, we get that ¢ € Cr,(A) = A. So, Cq(A) = A, and
therefore Ng(A) is a finite subgroup lying in some Ly € M(G). Now we use Lemma 1 with Ly in place
of L and derive that Ng(A) includes Ny as a subgroup of index 1 or 2.

Lemma 4. If K < L; € M(G), then dr,(a) = dr,(b) = d(a) = 1.

PRrROOF. Let A; be a maximal elementary abelian 2-subgroup of L; including K.

If Ay = A, Lemma 1 with L; in place of L implies that the subgroup Ny lies in L;. Because
la™Vo| = |bVo| = n, we have dr,(a) = dr,(b) = 1 = dr(a). In this case the claim of the lemma is true.

Suppose that A; < A and A; # A. Then |A: A;| = 2 by Lemma 1. Set C = Cg(A;). It is clear
that A < C; and, if t € A\ A, then

Ce(t) = Ca(t)NC = Cg ({t, A1)) = Ca(A) = A.
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By Shunkov’s Theorem [6], C is locally finite. Let Ny = Np,(A;) < Ng(Ap). Since A; is finite,
Ng(A1)/C is finite, and so Ng(A;) is a locally finite group. It follows that Ng(A41) = CH, where H is
a finite subgroup including A. Suppose that H < Ly € M(G).

Because A < Ly, we have dr,(a) = d,(b) = 1. Lemma 1 implies that 1 = |aV¢(41)| = |af|, which
yields that dr,(a) = dr,(b) = 1. On the other hand, by Lemma 1 A; has the only involution ¢ with
condition d(i) = 1; therefore, the case under consideration when A # A; < A is impossible.

By induction on s = |A : (A1 N A)| + |41 : (A1 N A)|, we will show that |A4;] = |A] = 2"! and
dLl(a) = dLl(b) =1.

If s <3, then either A = A1 N A, or Ay = A1 N A, and these cases are already done. Hence, we can
assume that A; # 41 N A # A.

Let t € A\ (A1 NA), t1 € A1\ (A1 N A). Then R = (t,t1, A1 N A) is finite, and so R < Ly € M(QG).
Suppose that (¢, A; N A) < Ay, where A is a maximal elementary abelian subgroup in Ly. Then

|A2| > |A2 ﬂA| > |A1 ﬂA|

By the inductive hypothesis, |As| = |A| and dr,(a) = dr,(b) = d(a) = 1. Further, (¢t1,A1 NA) < L;N Ly
and (t1, A; N A) < As, where A3 is a maximal elementary abelian 2-subgroup of Lo. Because a,b € As,
we have |As| = |A|. Moreover, |[A3 N Aj| > |A N Ay]. By the inductive hypothesis, dr,(a) = dr, (b) =
dr,(a) = 1. The lemma is proved.

Lemma 5. Cg(K) = K xR, where R ~ §,,_o(F') for some locally finite field F' of odd characteristic.

PROOF. Let C = Cg(K)/K. We want to show that C is saturated with groups from the set
M1 = {ang(q) | q is Odd}

Suppose that X is a finite group from C, while X is the full preimage of X in G. By condition,
K < X <L) € M(G); and by Lemma 2 Cr,(K) = K x Ry, where Ry ~ ,,_2(q1) for odd ¢;. Thus, C is
saturated with groups from the set M7 = {€2,,_2(q) | ¢ is odd}. By the inductive hypothesis, C ~ §,,_o(F)
for some locally finite field F' of odd characteristic. In particular, C' is a locally finite group. We will
show that [C,C]N K = 1. Let ¢ € [C,C]. Then ¢ = [c1, ¢2][c3,¢4] ... [cp—1¢p) for some p and suitable
elements cq,...,c, € C. The subgroup (K, ci,...,cp) is finite and lies in K x Y, where Y ~ Q,,_5(¢2)
for some ¢o. It is clear that ¢ € Y and ¢ ¢ K. Since C' = K|[C, C]; therefore, C = K x [C, (], and the
lemma is proved.

Lemma 6. Cg(K) lies in a subgroup P of Cg(a) which is the union of an ascending sequence of
subgroups P;, i = 1,2, ..., isomorphic to Q) ,(¢;).2, with ¢; = Al (mod4), A\ € {+,—}, and \ depends
on the choice of L and is common for all i.

PrOOF. By Lemma 5, Cg(K) is locally finite and countable. If Cg(K) is finite, then we may
assume that Cg(K) = Cr(K), and the lemma is true by Lemma 2. Suppose that Cg(K) is infinite and
Ca(K) ={g: | i € N}. Put Py = Cr(a). Let g;; be an element of C(K) not belonging to P;, and
the number ¢; is the smallest of those subject to that condition. The subgroup (Cp,(K), Ny) coincides
with Py by Lemma 2. Let L; be an element of M (G) containing Cp,(K) and let g; be the first element in
order not belonging to Cp,(K). By condition, L ~ ,(q1) for some ¢;. The subgroup Cf, (K) is maximal
in Cr,(a); and, because Ny £ C(K), the subgroup (Cy,(K), Ny) coincides with Cr,(a) ~ Q) (q1).2.
Since CL,(K) < Cr, (K); therefore, Py = Cr,(a) < Cr,(a) = P;.

Similarly, let La be an element of M(G) including Cp, (K) and let g;, be the first element in order
not belonging to Cp, (K). As before, P, = Cr,(a), and P includes C7,(a). Proceeding this construction
of the subgroups P;’s in a similar way, we will get an ascending sequence of subgroups P; ~ Q;\l_l(qi)
whose union P includes Cg(a). The lemma is proved.

Lemma 7. P = Cg(a).

PROOF. Suppose the contrary. Let t € Cg(a) \ P. The subgroup (K, K!) is generated by the
elements a, b, and bt. Since (b, b') is a finite group, so is (K, K*). Because (K, K') lies in the subgroup L*
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isomorphic to Q,(¢*) for some ¢*; therefore,
(K,K") < D =Cp+(a) ~2_(¢*) - 2.

Now, K and K! are conjugate in D, because A and A’ are conjugate in D and Np(A) acts double
transitively on the set of involutions a* € A with condition ap(a*) = 1. Let I" be a graph with vertex set
¥ = {K? | d € D} such that two vertices K™ and K* are adjacent if and only if [K", K*] = 1. Suppose
that A is a connected component in I' that includes K. Since K < A and Cn(K) # Cn(a), we have
KOn(@) £ (K}, and so |A| > 2. Thus, if A # ¥, then D acts on ¥ by conjugation transitively and
imprimitively. Hence, the stabilizer of the vertex K in D equal to Np(K) is not maximal in D, which
is untrue. Therefore, A = 3 and there is a sequence t1,ta,...,t, =t of elements from Cp+(a) such that
1=[K,K"]=[K% K'+] i=1,2,...,7 — 1. By induction on r, we will show that Ktr < P. If r = 1,
then K* < Cg(K); and by Lemma 6 K* < P. Suppose that r > 1 and K'-1 < P. There exists u € P
such that K% = K and 1 = [K, K??¥] = ... = [K!—1% K%%] =2 ... r. By the inductive hypothesis,
Kt < P and K < P.

So, Kt < P for every t € Cg(a). The subgroup P is locally finite; therefore, (K, t) is finite and lies
in L* € M(G). Suppose that H = Cp+(a). Then

H = (Cp+(K), Na(A) N Cp-(a)) < P.

Because t € H, we have t € P, and the lemma is proved.

Lemma 8. Cg(a) lies in a subgroup Z ~ Q,(F) of G for some locally finite field F.
ProOOF. By Lemma 7, Cg(a) is countable and locally finite. Let Ly = L and

Cg(a) = Cry(a) U{gi € Ca(a) | i € N}.

The subgroup C; = (CL(a), ¢i, ), with g;, the first element in order not belonging to Ly, is finite and hence
lies in L1 € M(G). Because Ly includes Ng(A) and Cp, (a) is maximal in L;, the subgroup (Ci, Ng(A))
coincides with L;.

Let Cy = (C14, gi,), where g;, is the first element in order which is not contained in L;. By condition,
Cy < Ly € M(G). It is clear that Cy < Cp,(a) and Ls includes Np(A) = Ng,(A). Since Cr,(a) is
maximal in Ly and Nz, (A) £ Cr,(a), the subgroup Ly coincides with (Cr,(a), N1,(A)) and includes L.

Reasoning similarly, we construct subgroups Ls, Ly, --- € M(G) with condition L; < L;i1, i =
3,4,.... The union Z of the so-obtained sequence includes C¢(a). By the main result of each of the
papers [7-11], Z ~ Q,(F') for some locally finite field F', and the lemma is proved.

Lemma 9. 7 =(.

PrROOF. By Lemma 8, Z is countable and locally finite. Suppose that ¢ € G and a9 # a. The
group (a,a?) is finite. Therefore, (a,a?) lies in such a subgroup R of the group G that is isomorphic
to Qp(r) for some r. Let A be a set of involutions belonging to R and conjugate to a in G. Let I' be
a graph with vertex set A such that two vertices a9' and a9 are adjacent if and only if [a9',a%2] = 1.
Since Cr(a) is a maximal subgroup of R and |Cgr(a) N A| > 2; we have by analogy to Lemma 8 that the
graph T is connected. This implies as in Lemma 8 that ¥ C Z, (%) = Z, and Z < G. Because Z is
locally finite, (a, g) is finite, and we may assume that (a, g) < R. Since (af*) = R; therefore, g € (cf*) < Z.
The lemma is proved, which completes the proof of the theorem.
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