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Abstract: Under study are the arithmetic properties of second maximal subgroups of finite groups.
Generally speaking, we investigated the problem by Monakhov [1, Problem 19.54] and developed the
research of Meng and Guo [2, Theorem B] by weakening the condition of solvability.
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1. Introduction

All groups is finite. We will adhere to the notation of [3, 4]. In particular, |G| denotes the order of
a group G (or a set G), while π(G) denotes the set of all prime divisors of |G|. Let HG be the core of H
in G when H ≤ G and let M < ·G signify that M is a maximal subgroup of G. Put

Max(G,H) = {M < ·G | H ≤M}, Max1(G,H) = {M < ·G | H < ·M}.
Let Irr(G) be the set of all irreducible complex characters of G. An element x of G is called nonvanishing
if χ(x) �= 0 for all χ ∈ Irr(G).
Next, we recall some known research that is tightly related to our study.
Firstly, we need to list the following problem by Monakhov [1, Problem 19.54] which motivated our

research.

Problem. What are the chief factors of a finite group whose no 2-maximal subgroup is m-maximal
for any m ≥ 3?
Addressing the problem, Meng and Guo [2] considered the properties of the second maximal subgroup

of a group and the structure of a WSM -group under the universe of solvable groups, where the WSM -
group is equal to the group satisfying the condition of the above problem.
On the other hand, Isaacs, Navarro, and Wolf conjectured in [5] that every nonvanishing element of

a solvable group G is contained in the Fitting subgroup F (G). In [6], Guo, Skiba, and Tang introduced
the concept of boundary factors and traces of subgroups in finite groups and investigated the solvability
of a group by considering the traces of maximal subgroups.
Continuing to study the Problem and developing the research of Meng and Guo [2], we will investigate

the numerical structure of a second maximal subgroup of a group by weakening the condition of solvability.
Meanwhile, viewing from the conjecture in [5] and the result in [6], we also consider the relationship
between the conjecture and the traces of second maximal subgroups of a group. Here we obtained the
following results:

Theorem 1.1. Let G be a WSM -group and let x be a nonvanishing element of G. If each second
maximal subgroup of G has a nilpotent trace, then G is solvable and x ∈ F (G).
Theorem 1.2. Let H < ·M < ·G and |M : H| = pα, where p ∈ π(G). If H is a CAP -subgroup

of G, then |Max(G,H)\Max1(G,H)| ≤ 1.
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2. Preliminaries

For the sake of convenience, we start with listing some known results that will be useful in this paper.

Lemma 2.1 [2, Lemma 1]. Let G be a group and let H be a subgroup of G. If there exists M ,
X ∈ Max(G,H) such that H is maximal in M and H is not maximal in X, then HG =MG.
Lemma 2.2 [2, Theorem B]. Let G be a solvable group and let H be a weak second maximal

subgroup of G. Then there exists at most one X ∈ Max(G,H) such that H is not maximal in X.
Lemma 2.3. Let G be a group. If every second maximal subgroup of G is nilpotent, then G is

either solvable or isomorphic to PSL(2, 5) or SL(2, 5).

Proof. See [7] and [8].

3. The Main Results

In [6], Guo, Skiba, and Tang introduced the concept of boundary factors and traces of subgroups in
finite groups. Next, we will study the construction of a nonvanishing element of a group by the nilpotency
of the traces of second maximal subgroups of G.

Theorem 3.1. Let G be a WSM -group and let x be a nonvanishing element of G. If each second
maximal subgroup of G has a nilpotent trace, then G is solvable and x ∈ F (G).
Proof. By [2, Theorem A], we only need to prove that G is solvable.
If there exists a second maximal subgroup H of G such that H = 1, then there is a maximal subgroup

M of G such that |M | is a prime. By [9, Chapter IV, Theorem 7.4], G is solvable. Hence every second
maximal subgroup of G is nontrivial. Now we assert that G is not nonabelian simple. Otherwise, G
is nonabelian simple. Since each second maximal subgroup of G has a nilpotent trace, every second
maximal subgroup of G is nilpotent. By Lemma 2.3 G ∼= A5, where A5 is the alternating group of
degree 5. However, A5 is not a WSM -group by [10].
Further, we may choose a minimal normal subgroup L of G and consider the quotient group G/L.

If L is maximal in G, then G/L is of order q, with q a prime. If L is not maximal in G, then G/L satisfies
the hypothesis and G/L is solvable by induction on |G|. Hence G/L is solvable for every minimal normal
subgroup L of G. Further, L � Φ(G) and L is the unique minimal normal subgroup of G.
Let Lp be a Sylow p-subgroup of L where p is a largest prime divisor of |L|. Clearly, p > 3. By

the Frattini argument, G = LNG(Lp) = LM , where M is maximal in G and NG(Lp) ≤ M . Further,
L ∩ M �= 1 and MG = 1. Hence there is a maximal subgroup H of M such that L ∩ M ≤ H and
L ∩H = L ∩M is nilpotent by hypothesis. Then NL(Lp) = L ∩NG(Lp) ≤ L ∩M = L ∩H is nilpotent
and NL(Lp)/CL(Lp) is a p-subgroup. Further, O

p(G) < L by [11, Chapter X, Theorem 8.13] and L is
a p-subgroup of G. Hence, G is solvable since G/L is solvable.
In view of [12, Theorem 3.7], we can weaken the condition of solvability in [2, Theorem B] by the

following condition and arithmetic description of a second maximal subgroup of a group.

Theorem 3.2. Let H < ·M < ·G and |M : H| = pα, where p ∈ π(G). If H is a CAP -subgroup
of G, then |Max(G,H)\Max1(G,H)| ≤ 1.
Proof. Clearly, we may assume that HG = 1 and Xi ∈ Max(G,H)\Max1(G,H), where i=1,2.

Since H < ·M , H =M ∩X1 =M ∩X2. Also, HG =MG = 1 by Lemma 2.1.
Since G is primitive, G has one of the following structures by [3, Chapter A, Theorem 15.2]:
(1) G = LM , CG(L) = L and L is abelian, where L is the unique minimal normal subgroup of G;
(2) G = LM and L is nonabelian, where L is the unique minimal normal subgroup of G;
(3) G has exactly two minimal normal subgroups L and L∗ of G, while G = LM = L∗M and

L ∩M = L∗ ∩M = 1. Also, CG(L) = L∗, CG(L∗) = L and L ∼= L∗ ∼= LL∗ ∩M . Moreover, if V < G and
LV = L∗V = G, then L ∩ V = L∗ ∩ V = 1.
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By Lemma 2.2, we may assume that G is not solvable. Since H is a CAP -subgroup of G, we assert
that G is not simple. Otherwise, H = 1. Then M is a maximal subgroup of G of prime order and G is
solvable by [9, Chapter IV, Theorem 7.4]; a contradiction. To prove, we will coincide the following cases:

Case I: G has the structure (1) above.
If L � Xi for some i ∈ {1, 2}, then G = LXi and L∩Xi = 1. Further,M ∼=ML/L and Xi ∼= LXi/L.

Since HL/L < ·ML/L = LXi/L, H < ·Xi; a contradiction. So L ≤ X1 and L ≤ X2. Then LM ∩X1 =
LM ∩X2 = LH and |Max(G,H)\Max1(G,H)| ≤ 1.
Case II: G has the structure (3) above.
Since G = LM = L∗M , L ∩M = L∗ ∩M = 1, If there exists some Xi such that (Xi)G = 1 for

some i ∈ {1, 2}, then G = LXi = L∗Xi and L ∩Xi = L∗ ∩Xi = 1. Further, HL/L < ·ML/L = LXi/L,
H < ·Xi; a contradiction. So, (X1)G �= 1 and (X2)G �= 1. Then we assert that L ≤ (X1)G ∩ (X2)G
and L∗ ≤ (X1)G ∩ (X2)G. Otherwise, there exists R ∈ {L,L∗} and Xi for some i ∈ {1, 2} such that
RXi = G and R ∩Xi = 1. With the similar discussion of the above, H < ·Xi; a contradiction. Hence
LM ∩X1 = LM ∩X2 = LH and |Max(G,H)\Max1(G,H)| ≤ 1.
Case III: G has the structure (2) above.
Since H is a CAP -subgroup of G, H ∩ L = 1. Further, we consider the subgroup HL.
If HL = G, thenM =M ∩G =M ∩HL = H(M ∩L) andM ∩L is a p-subgroup since |M : H| = pα.

Also, M ∩ L is a minimal normal subgroup of M since H ∩ L = 1 and H < ·M . Now we assert that
NG(L ∩M) =M . Otherwise, NG(L ∩M) = G and L = L ∩M by the minimal normality of L. Further,
HL = G =M ; a contradiction. Hence NL(L∩M) = L∩NG(L∩M) = L∩M . Clearly, L∩M is a Sylow
p-subgroup of L. Thus, NL(L∩M) = L∩M = CL(L∩M). By the Burnside Theorem, L is p-nilpotent.
Since L ∩M �= 1, L is a p-subgroup of G and L = L ∩M ≤M . Then HL = G =M ; a contradiction.
If HL < G, then M = M ∩ HL = H(M ∩ L) since L ∩M �= 1 and H < ·M . Hence L ≤ M and

LM = G =M ; a contradiction.
The authors proved in [2, Lemma 1] that HG = MG, where M ∈ Max1(G,H) and Max1(G,H)

is properly included in Max(G,H). By dual consideration, we will show the following relationship be-
tween H and X, where X ∈ Max(G,H)\Max1(G,H):
Theorem 3.3. Let G be a group and let H be a subgroup of G. If there exist M ∈ Max1(G,H)

and X ∈ Max(G,H)\Max1(G,H), then either HG = XG or HXG = X.
Proof. Assume that HG �= XG. Prove that HXG = X.
If HG = 1, then HG =MG = 1 by Lemma 2.1. Further, XG �= 1, G is primitive and G = LM , where

L is a minimal normal subgroup L of G which lies in XG. Since H is maximal in M , H = M ∩X and
LH = X. Hence HXG = X.
If HG �= 1, then 1 < HG < H or HG = H. To proceed the proof, we will consider the following cases:
Case I: 1 < HG < H.
We consider the quotient subgroupG/HG. So (H/HG)G/HG = (X/HG)G/HG or (H/HG)(X/HG)G/HG

= X/HG by the induction on |G|. Further, HG = XG or HXG = X. Hence HXG = X by assumption.
Case II: HG = H.
Since H is maximal in M ; therefore, |M : H| = p and H =M ∩X =M ∩XG. Then G =MXG and

|G : XG| = |M :M ∩XG| = |M : H| = p. Hence XG = X and HXG = X.
Corollary 3.4. Under the hypothesis of Theorem 3.3, if H is subnormal in G, then either HG = XG

or X � G.
Proof. If G is simple then HG = XG = 1. Assume now that G is not simple. Since H is subnormal

in G; therefore, Soc(G) ≤ NG(H) by [3, Chapter A, Theorem 14.3] and NG(H) = M or NG(H) = G.
If NG(H) = G, then H is normal in G and H = XG or X � G by Theorem 3.3. If NG(H) = M ,
then Soc(G) ≤ NG(H) = M and MG = HG �= 1 by Lemma 2.1. Hence 1 < HG < H. Next, we
consider the quotient group G/HG. By induction on |G|, we see that (H/HG)G/HG = (X/HG)G/HG or
X/HG � G/HG. Then HG = XG or X � G.
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