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Abstract: We prove that G is a finite σ-soluble group with transitive σ-permutability if and only if
the following hold: (i) G possesses a complete Hall σ-set H = {H1, . . . , Ht} and a normal subgroup N
with σ-nilpotent quotient G/N such that Hi ∩N ≤ ZU(Hi) for all i; and (ii) every σi-subgroup of G is
τσ-permutable in G for all σi ∈ σ(N).
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1. Introduction

Throughout this paper, all groups are finite and G stands for a finite group. Moreover, P is the
set of all primes, π ⊆ P and π′ = P \ π; and π(G) is the set of all primes dividing |G|. Furthermore,
ZUπ(G) is the π-supersoluble hypercenter of G, i.e., the product of all normal subgroups N of G such that
every chief factor of G below N is either cyclic or a π′-group, and ZU(G) = ZUP(G) is the supersoluble
hypercenter of G.
In what follows, σ is some partition of P, i.e., σ = {σi | i ∈ I}, where P =

⋃
i∈I σi and σi ∩ σj = ∅

for all i �= j; σ(G) = {σi | σi ∩ π(G) �= ∅} (see [1]).
A set H of subgroups of G is said to be a complete Hall σ-set of G (see [1]) if each nonidentity

member of H is a Hall σi-subgroup of G for some i ∈ I and H has exactly one Hall σi-subgroup of G for
every i.
A subgroup A of G is said to be σ-permutable in G (see [2]) if G possesses a complete Hall σ-set

and A permutes with every Hall σi-subgroup H of G, i.e., AH = HA for all i and A is σ-semipermutable
in G [3] if G possesses a complete Hall σ-set H such that AHx = HxA for all x ∈ G and all H ∈ H with
σ(A) ∩ σ(H) = ∅.
The theories of σ-permutable and σ-semipermutable subgroups are closely related to the theories of

σ-soluble and σ-nilpotent groups [1–5].
Recall that G is said to be σ-decomposable (see [6]) or σ-nilpotent (see [2]) if G is σi-closed for all i;

σ-soluble (see [2]) if every chief factor H/K of G is a σi-group for some i; and G
Nσ is the σ-nilpotent

residual of G, i.e., the smallest normal subgroup of G with σ-nilpotent quotient.
Let τH(A) = {σi ∈ σ(G) \ σ(A) | σ(A) ∩ σ(HG) �= ∅ for a Hall σi-subgroup H ∈ H} (see [7]).
Then we say, following Beidleman and Skiba [7], that a subgroup A of G is as follows:
(i) τσ-permutable in G with respect to H if AHx = HxA for all x ∈ G and all H ∈ H such that

σ(H) ⊆ τH(A);
(ii) τσ-permutable in G if A is τσ-permutable in G with respect to some complete Hall σ-set H of G.
In the classical case when σ = σ1 = {{2}, {3}, . . . } (we use here the notations of [1]), the σ-permut-

able, σ-semipermutable, and τσ-permutable subgroups are called respectively S-permutable (see [8]),
S-semipermutable (see [9]), and τ -permutable (see [10]).
Finally, recall that G is said to be a PσT -group (see [2]) if σ-permutability is a transitive relation

in G; i.e., if H is a σ-permutable subgroup of K and K is a σ-permutable subgroup of G, then H is
σ-permutable in G. In the case when σ = σ1, a PσT -group is called a PST -group [8].
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The theory of PσT -groups was developed in [1, 2, 5, 11], and the following theorem is one of the
culmination results of the theory.

Theorem A (see Theorem A in [1]). Let D = GNσ . If G is a σ-soluble PσT -group, then the
following hold:
(i) G = D�M , where D is an abelian Hall subgroup of G of odd order, M is σ-nilpotent, and every

element of G induces a power automorphism in D;
(ii) Oσi(D) has a normal complement in a Hall σi-subgroup of G for all i.
Conversely, if (i) and (ii) hold for some subgroups D and M of G, then G is a PσT -group.

In this paper, basing on Theorem A and some results of [7], we obtain the following characterization
of σ-soluble PσT -groups:

Theorem B. G is a σ-soluble PσT -group if and only if the following hold:
(i) G possesses a complete Hall σ-set H = {H1, . . . , Ht} and a normal subgroup N with σ-nilpotent

quotient G/N such that Hi ∩N ≤ ZUπ(Hi) for all i, where π = π(N);
(ii) Every σi-subgroup of G is τσ-permutable in G for all σi ∈ σ(N).
Since every σ-semipermutable subgroup is τσ-permutable, we get from Theorem B the following

already-known result:

Corollary 1.1 (see Theorem A in [3]). Let D = GNσ and π = π(D). Suppose that G possesses
a complete Hall σ-set H all members of which are π-supersoluble. If every σi-subgroup of G is σ-semi-
permutable in G for all σi ∈ σ(D), then G is a σ-soluble PσT -group.
Note that Theorem B remains new for each special partition σ of P. In particular, in the case when

σ = σ1 we get from Theorem B the following new characterization of the soluble PST -groups.

Corollary 1.2. Let D = GN be the nilpotent residual of G and π = π(D). Then G is a soluble
PST -group if and only if every p-subgroup of G is τ -permutable in G for all p ∈ π.
The proof of Theorem B consists of many steps and the following theorem is one of them.

Theorem C. Let D = GNσ and π = π(D). Suppose that G possesses a complete Hall σ-set
H = {H1, . . . , Ht} such that Hi ∩ D ≤ ZUπ(Hi) for all i. If all maximal subgroups of every noncyclic
Sylow p-subgroup of G are τσ-permutable in G for all p ∈ π, then
(i) D is a nilpotent Hall subgroup of G, D ≤ ZU(G);
(ii) (p − 1, |G|) �= 1 for every prime p dividing |D|. Hence, p ∈ π(G/D) for the smallest prime p

dividing |G|.
Corollary 1.3 (see Theorem 10.3 in [12, VI]). If every Sylow subgroup of G is cyclic, then G is

supersoluble.

Corollary 1.4 (see Theorem B in [3]). Let D = GNσ and π = π(D). Suppose that G possesses
a complete Hall σ-set H such that every member H of H with H∩D �= 1 is π-supersoluble. If all maximal
subgroups of every noncyclic Sylow p-subgroup of G are σ-semipermutable in G for all p ∈ π, then D is
a nilpotent Hall subgroup of G of odd order and every chief factor of G below D is cyclic.

The unexplained terminology and notation are standard. The reader is referred to [9, 12, 13] if
need be.

2. Proof of Theorem C

We use Nσ to denote the class of all σ-nilpotent groups.

Lemma 2.1 [2, Corollary 2.4 and Lemma 2.5]. The class Nσ is closed under direct products, ho-
momorphic images and subgroups. Moreover, if E is a normal subgroup of G and E/(E ∩ Φ(G)) is
σ-nilpotent, then E is σ-nilpotent.

In view of Proposition 2.2.8 in [14], we get from Lemma 2.1 the following
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Lemma 2.2. If N is a normal subgroup of G, then (G/N)Nσ = GNσN/N .

Lemma 2.3 [15]. Let H, K, and N be pairwise permutable subgroups of G and let H be a Hall
subgroup of G. Then N ∩HK = (N ∩H)(N ∩K).
Recall that G is a Dπ-group if G possesses a Hall π-subgroup E and every π-subgroup of G lies in

some conjugate of E; a σ-full group of Sylow type (see [16]), if every subgroup E of G is a Dσi-group for
every σi ∈ σ(E), and σ-full (see [16]), provided that G possesses a complete Hall σ-set.
In view of Theorems A and B in [16], the following is true:

Lemma 2.4. If G is σ-soluble, then G is a σ-full group of Sylow type.

Lemma 2.5 [2, Lemma 3.1]. Let H be a σi-subgroup of a σ-full group G. Then H is σ-permutable
in G if and only if Oσi(G) ≤ NG(H).
Lemma 2.6 [7, Lemma 2.6]. Suppose that G has a complete Hall σ-set H = {H1, . . . , Ht} such that

the subgroups H and K of G are τσ-permutable in G with respect to H. Let R be a normal subgroup
of G and H ≤ L ≤ G. Then
(1) H0 = {H1R/R, . . . ,HtR/R} is a complete Hall σ-set of G/R. Moreover, if σ(H) = σ(HR/R),

then HR/R is τσ-permutable in G/N with respect to H0.
(2) If HK = KH and σ(H ∩K) = σ(H) = σ(K), then H ∩K is τσ-permutable in G with respect

to H.
(3) If H ≤ Oσi(G) for some i, then H is σ-permutable in G.
(4) If G is a σ-full group of Sylow type, then H is τσ-permutable in L.

Lemma 2.7. Let Z = ZUπ(G). Then
(1) each chief factor of G below Z is either cyclic or a π′-group;
(2) Z ∩ E ≤ ZUπ(E) for every subgroup E of G;
(3) NZ/N ≤ ZUπ(G/N) for every normal subgroup N of G.
Proof. (1): In fact, it suffices to prove that if A and B are normal subgroups of G such that each

chief factor of G below A is either cyclic or a π′-group and each chief factor of G below B is either cyclic
or a π′-group, then each chief factor H/K of G below AB is either cyclic or a π′-group. Moreover, in view
of the Jordan–Hölder Theorem for chief series, it suffices to show that if A ≤ K < H ≤ AB, then H/K
is either cyclic or a π′-group. But this follows from H = A(H ∩B) = K(H ∩B) and the G-isomorphism
K(H∩B)/K � (H∩B)/(K∩B). Therefore, each chief factor of G below Z is either cyclic or a π′-group.
(2): Let 1 = Z0 < Z1 < · · · < Zt−1 < Zt = Z be a chief series of G below Z. Then each factor

Zi/Zi−1 of the series is either cyclic or a π′-group by (1).
Consider the normal series

1 = Z0 ∩ E ≤ Z1 ∩ E ≤ · · · ≤ Zt−1 ∩ E ≤ Zt ∩ E = Z ∩ E
in E. Assume that (Zi ∩ E)/(Zi−1 ∩ E) is not a π′-group. Then, in view of the isomorphism,

(Zi ∩ E)/(Zi−1 ∩ E) � (Zi ∩ E)Zi−1/Zi−1 ≤ Zi/Zi−1
we get that Zi/Zi−1 is cyclic, and so (Zi∩E)/(Zi−1∩E) is cyclic. Therefore, in view of the Jordan–Hölder
Theorem, each chief factor of E below Z ∩ E is either cyclic or a π′-group. Hence Z ∩ E ≤ ZUπ(E).
(3): Let (H/N)/(K/N) be a chief factor of G/N such that H/N ≤ NZ/N . Then, in view of the

isomorphism (H ∩Z)K/K � (H ∩Z)/(K ∩Z), we have that H/K = (H ∩Z)K/K is a chief factor of G
such that H/K is either cyclic or a π′-group by (1). Hence NZ/N ≤ ZUπ(G/N). The lemma is proved.
The following lemma is a corollary of Theorem 6.7 in [13, IV].

Lemma 2.8. Let N ≤ E be normal subgroups of G such that N ≤ Φ(E) and every chief factor of G
between E and N is cyclic. Then each chief factor of G below E is cyclic.

A group G is said to be σ-primary (see [2]) if G is a σi-group for some i.

107



Lemma 2.9. Let D = GNσ and p ∈ π = π(D), where p is the smallest prime dividing |D|. If all
maximal subgroups of every Sylow p-subgroup of G are τσ-permutable in G, then D is p-soluble.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then
D �= 1. Assume that p ∈ σk.
We show first that DR/R � D/(D ∩ R) is p-soluble for every minimal normal subgroup R of G.

Indeed, in case p does not divide |DR/R|, it is clear. Suppose that p ∈ π(DR/R). Then p is the smallest
prime dividing |DR/R|, where DR/R = (G/R)Nσ by Lemma 2.2.
Let V/R be a maximal subgroup of a Sylow p-subgroup P/R of G/R. Then P/R = GpR/R and

V = R(V ∩Gp) for some Sylow p-subgroup Gp of G. Hence
p = |(P/R) : (V/R)| = |GpR : R(V ∩Gp)| = |Gp| : |V ∩Gp| = |Gp : (V ∩Gp)|,

and so V ∩ Gp is a maximal subgroup of Gp. Therefore, V ∩ Gp is τσ-permutable in G by hypothesis,
and so V/R = R(V ∩ Gp)/R is τσ-permutable in G/R by Lemma 2.6(1). The choice of G implies that
(G/R)Nσ = DR/R � D/(D ∩R) is p-soluble.
Hence R ≤ D and R is nonabelian. It is easy to see that R is the unique minimal normal subgroup

of G and CG(R) = 1. By [12, IV, Theorem 2.8], a Sylow p-subgroup Q of R is not cyclic. Hence |Q| > p.
Let P be a Sylow p-subgroup of G such that Q = P ∩ R. Then by the Tate Theorem [12, IV,

Theorem 4.7] there exists some maximal subgroup V of P such that Q � V , which implies that P = QV
and so V ∩ R < P ∩ R = Q. If V ∩ R = 1, then V ∩ R = P ∩ V ∩ R = Q ∩ V = 1 and so |Q| = p;
a contradiction. Hence V ∩R �= 1. Since R = R1× · · · ×Rn, where R1 � · · · � Rn are nonabelian simple
groups, Q = (P ∩ R1)× · · · × (P ∩ Rn) and so V ∩ Ri < P ∩ Ri for some i. Note also that V ∩ Ri �= 1.
Otherwise from the isomorphism

V (P ∩Ri)/V � (P ∩Ri)/(V ∩ (P ∩Ri)) = (P ∩Ri)/1
we get that the order of a Sylow p-subgroup of P ∩Ri divides p and so P ∩Ri is p-nilpotent by [12, IV,
Theorem 2.8], which implies that R is p-nilpotent.
We show first that R is σ-primary. Suppose the contrary. We can assume without loss of generality

that V is τσ-permutable in G with respect to H. Then there exists some j �= k, and for H = Hj we
have H ∩ Ri �= 1 because R is not σ-primary. Note also that σk ∈ σ(HG). If not, then R ∩ HG = 1,
which implies that 1 < HG ≤ CG(R) = 1. Therefore σk ∈ τH(V ), and so V Hx = HxV for all x ∈ G.
By [13, Chapter A, Lemma 14.1(a)], L = V Hx ∩Ri is a subnormal subgroup of V Hx, where V is a Hall
σk-subgroup of V H

x and Hx is a Hall σj-subgroup of V H
x. Therefore, L = (L ∩ V )(L ∩Hx) by [13, I,

Lemma 3.2]. Hence,

L = (L ∩ V )(L ∩Hx) = (V Hx ∩Ri ∩ V )(V Hx ∩Ri ∩Hx)
= (Ri ∩ V )(Ri ∩Hx) = (V ∩Ri)(H ∩Ri)x = (H ∩Ri)x(V ∩Ri)

for all x ∈ Ri, where (H ∩Ri)(V ∩Ri) �= Ri because V ∩Ri < P ∩Ri. Therefore, Ri is not simple by [8,
Lemma 1.1.9(1)] because H ∩Ri �= 1 and V ∩Ri �= 1. This contradiction shows that R is σ-primary.
Then H ∩ Ri �= 1 for some j �= k and H = Hj . Therefore, V ∩ R is τσ-permutable in G by

Lemma 2.6(2). But V ∩ R ≤ R ≤ Oσk(G) and so V ∩ R is σ-permutable in G by Lemma 2.6(3).
Because R ≤ D ≤ Oσi(G) and so R ≤ NG(V ∩ R) by Lemma 2.5, it follows that V ∩ R ≤ Op(R) = 1;
a contradiction. Thus R is abelian, and so D is p-soluble. The lemma is proved.

Lemma 2.10. Let D = GNσ and π = π(D). If H = {H1, . . . , Ht} is a complete Hall σ-set of G such
that Hi ∩D ≤ ZUπ(Hi) for all i, then H0 = {H1N/N, . . . ,HtN/N} is a complete Hall σ-set of G/N such
that (HiN/N) ∩ (G/N)Nσ ≤ ZUπ0 (HiN/N) for all i, where π0 = π((G/N)Nσ).
Proof. It is clear that H0 is a complete Hall σ-set of G/N . Put D0 = (G/N)Nσ . Then D0 = DN/N

by Lemma 2.2, and so

π0 = π(D0) = π(DN/N) = π(D/(D ∩N)) ⊆ π(D) = π.
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Hence, ZUπ(HiN/N) ≤ ZUπ0 (HiN/N). On the other hand, D ∩HiN = (D ∩Hi)(D ∩N) by Lemma 2.3.
Thus,

D0 ∩ (HiN/N) = (D ∩Hi)N/N.
Note that, in view of Lemma 2.7(3),

(D ∩Hi)(N ∩Hi)/(N ∩Hi) ≤ ZUπ(Hi/(N ∩Hi))
since D ∩Hi ≤ ZUπ(Hi). Hence

f((D ∩Hi)(N ∩Hi)/(N ∩Hi)) = (D ∩Hi)N/N ≤ ZUπ(HiN/N),
where f : Hi/(N ∩Hi)→ HiN/N is the canonical isomorphism, since

f(ZUπ(Hi/(N ∩Hi))) = ZUπ(HiN/N).
Therefore, (D ∩Hi)N/N ≤ ZUπ0 (HiN/N) for all i. The lemma is proved.
Lemma 2.11. Let D = GNσ and π = π(D). Suppose that G is σ-soluble and all maximal subgroups

of every noncyclic Sylow p-subgroup of G are τσ-permutable in G for all p ∈ π. Then
(1) the hypothesis holds for G/L for every minimal normal subgroup L of G;
(2) if D is nilpotent, then D is a Hall subgroup of G.

Proof. (1): See the proof of Lemma 2.9.
(2): Suppose that this assertion is false. Let P be a Sylow p-subgroup of D and let Gp be a Sylow

p-subgroup of G such that 1 < P < Gp. We can assume without loss of generality that Gp ≤ H1.
(a) D = P is a minimal normal subgroup of G. Hence D ≤ Gp = H1 � G.
Let R be a minimal normal subgroup of G lying in D. Since D is nilpotent by hypothesis, R is

a q-group for some prime q. Moreover, by (1) and the choice of G we have that D/R = (G/R)Nσ is
a Hall subgroup of G/R. Suppose now that PR/R �= 1. Then PR/R is a Sylow p-subgroup of G/R. If
q �= p, then P is a Sylow p-subgroup of G. This contradicts the fact that P < Gp. Hence q = p and so
R ≤ P . It implies that P/R is a Sylow p-subgroup of G/R, and so P is a Sylow p-subgroup of G. This
contradiction shows that PR/R = 1, which implies that R = P is the unique minimal normal subgroup
of G lying in D. Since D is nilpotent, a p′-complement E of D is characteristic in D and so E is normal
in G. Hence E = 1. This implies that R = D = P . Finally, G/D is σ-nilpotent by Lemma 2.1 and
so H1/D is normal in G/D. Hence (a) holds.
(b) D � Φ(G). Hence there exists a maximal subgroup M of G such that G = D�M . (This follows

from (2) and Lemma 2.1 because G is not σ-nilpotent.)
(c) If G has a minimal normal subgroup L �= D, then Gp = D × (L ∩Gp). Hence Op′(G) = 1.
By Lemma 2.2, (G/L)Nσ = LD/L. Therefore, by (1), (a), and the choice of G we have that

LD/L � D is a Hall subgroup of G/L. Hence GpL/L = DL/L, and so Gp = D× (L∩Gp). Since D < Gp
by (a), Op′(G) = 1.
(d) V = CG(D) ∩M is a normal subgroup of G and CG(D) = D × V ≤ H1.
In view of (a) and (b), CG(D) = D× V , where V = CG(D)∩M is a normal subgroup of G. By (a),

V ∩D = 1 and so V � DV/D is σ-nilpotent by Lemma 2.1. Let W be a σ1-complement of V . Then W
is characteristic in V and so it is normal in G. Therefore, (d) holds in view of (c).
(e) Gp �= H1.
Assume that Gp = H1. Then D < Gp ≤ CG(D) by (a) and [13, Chapter A, Theorem 10.6(b)].

It follows from (d) that L ≤ CG(D) ∩ M ≤ Gp for some minimal normal subgroup L of G. Hence
Gp = D × L is a normal elementary abelian p-subgroup of G by (c). This ensues from Lemmas 2.6(3)
and 2.5 that every maximal subgroup of Gp is normal in G. It follows that every subgroup of Gp is
normal in G.
Hence |D| = |L| = p. Let D = 〈a〉, L = 〈b〉, and N = 〈ab〉. Then N � D and so, in view of the

G-isomorphisms
DN/D � N � NL/L = Gp/L = DL/L � D,
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we get that G/CG(D) = G/CG(N) is a p-group since Gp = H1 and G/D is σ-nilpotent by Lemma 2.1.
It follows from (d) that G is a p-group. This contradiction shows that we have (e).

Final contradiction for (2). By Theorem A in [16], G has a σ1-complement E such that W = EGp =
GpE. Then D ≤ Gp ≤ W by (a). Moreover, since W/D ≤ G/D ∈ Nσ and Nσ is a hereditary class by
Lemma 2.1, W/D ∈ Nσ, and thereby V = WNσ ≤ D. Therefore, in view of Lemmas 2.4 and 2.6(4),
the hypothesis holds for W . From (e) we derive that W �= G. Hence the conclusion of the lemma holds
for W by the choice of G, which implies that V is a Hall subgroup of W . Moreover, V ≤ D and so
|Vp| ≤ |P | < |Gp| for a Sylow p-subgroup Vp of V . Hence V is a p′-group. It implies from (d) that
V ≤ CG(D) ≤ H1 ∩W . Therefore V = 1, which shows that W = EGp = E × Gp is σ-nilpotent and so
E ≤ CG(D) ≤ H1. Hence E = 1. It follows that D = 1, which is a contradiction. Thus D is a Hall
subgroup of G. The lemma is proved.

Proof of Theorem C. Suppose that this theorem is false and let G be a counterexample of
minimal order. Then D �= 1. Let H = {H1, . . . , Ht}. We can assume without loss of generality that Hi
is a σi-group for all i = 1, . . . , t. Let R be a minimal normal subgroup of G.

(1) The hypothesis holds for G/R (see the proof of Lemma 2.9 and use Lemma 2.10).

(2)D is soluble, and so G is σ-soluble. Hence G is a σ-full group of Sylow type (in view of Theorem 2.8
in [12, IV], this follows from Lemmas 2.4, 2.9, and the Feit–Thompson Theorem).

(3) D is nilpotent.

Assume that this is false. Note that (G/R)Nσ = RD/R is nilpotent by (1) and the choice of G.
Therefore R ≤ D, while R is the unique minimal normal subgroup of G and R � Φ(G) by Lemma 2.1.
It implies from (2) that R is a p-group for some prime p. Therefore, by [13, Chapter A, Theorem 15.2]
R = CG(R), G = R�M for some maximal subgroup M of G and |R| > p, if not, then G/CG(R) = G/R
is a cyclic group and so D is nilpotent, contrary to our assumption on D.

Clearly, R ≤ Hi ∩D for some i. Then Hi = R� (Hi ∩M) and R ≤ ZUπ(Hi) by hypothesis. It shows
that there exists a maximal subgroup V of R such that V is normal in Hi because p ∈ π. Let P be a Sylow
p-subgroup of Hi ∩M . Then RP is a Sylow p-subgroup of G, and V P is a maximal subgroup of RP .
Hence, by the hypothesis of the theorem V P is τσ-permutable in G. It follows from Lemma 2.6(2)(3) that
V = V (R∩P ) = R∩ V P is σ-permutable in G. Therefore Oσi(G) ≤ NG(V ) by Lemma 2.5, and thereby
G = HiO

σi(G) ≤ NG(V ). The minimality of R implies that V = 1 and so |R| = p; a contradiction.
Hence, we have (3).

(4) D is a Hall subgroup of G. (This is straightforward from (2), (3), and Lemma 2.11.)

(5) If p is a prime such that (p− 1, |G|) = 1, then p does not divide |D|. In particular, the smallest
prime divisor of |G| divides |G : D|.
Assume the contrary and let P be the Sylow p-subgroup of D. Then, arguing as in the proof of (3),

we can show that some maximal subgroup E of P is normal in G. Hence CG(D/E) = G because
(p − 1, |G|) = 1 by hypothesis. Since D is a Hall subgroup of G by (4), D has a complement M in G.
Therefore G/E = (D/E) × (ME/E), where ME/E � M � G/D is σ-nilpotent. Thus, G/E is σ-
nilpotent. It follows that D ≤ E; a contradiction. Hence p does not divide |D|. In particular, the
smallest prime divisor of |G| divides |G : D|.
(6) Every chief factor of G below D is cyclic.

Suppose the contrary. Assume that Φ(D) �= 1 and let R ≤ Φ(D). Then the choice of G and (1) imply
that every chief factor of G/R below (G/R)Nσ = D/R is cyclic, and so every chief factor of G below D
is cyclic by Lemma 2.8. Hence Φ(D) = 1, and so every Sylow subgroup of D is elementary. Moreover,
there is p ∈ π(D) such that the Sylow p-subgroup P of D has a minimal normal subgroup N of G such
that |N | > p. Let V be a maximal subgroup of P such that P = NV . Then N ∩ V �= 1. Since D is
a Hall subgroup of G, P is the Sylow p-subgroup of G. Therefore V is τσ-permutable in G, and so N ∩V
is σ-permutable in G by Lemma 2.6(2)(3). Arguing as in the proof of (3), we can show that N ∩ V is
normal in G. The minimality of N implies that N ∩V = 1, and so |N | = p. This contradiction completes
the proof of (6).
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Claims (3)–(6) show that the conclusion of the theorem holds for G, which contradicts the choice
of G. The theorem is proved.

3. Proof of Theorem B

Lemma 3.1. Suppose that D = GNσ is a nilpotent Hall subgroup of G. If every σi-subgroup of G
is τσ-permutable in G for all σi ∈ σ(D), then D is an abelian group of odd order and each element of G
induces a power automorphism in D.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let
H = {H1, . . . , Ht}. We can assume without loss of generality that Hi is a σi-group for all i = 1, . . . , t.
Note first that

(G/N)Nσ = DN/N � D/(D ∩N)
is a nilpotent Hall subgroup of G/N for every minimal normal subgroup N of G by Lemma 2.2. Let V/N
be a nonidentity σi-subgroup of G/N for some

σi ∈ σ((G/N)Nσ) = σ(DN/N) = σ(D/(D ∩N)) ⊆ σ(D).
Let U be a minimal supplement to N in V . Then U ∩N ≤ Φ(U), and so U is a σi-subgroup of G since
V/N = UN/N � U/(U∩N). Thus, U is τσ-permutable in G by hypothesis and σ(U) = σ(UN/N) = {σi},
which implies that V/N = UN/N is τσ-permutable in G/N by Lemma 2.6(1). Hence the hypothesis holds
for G/N .
Let H be a subgroup of the Sylow p-subgroup P of D for some prime p ∈ π. We show that H is

normal in G. For some i we have P ≤ Oσi(D) = Hi ∩ D. On the other hand, D = Oσi(D) × Oσi(D)
since D is nilpotent. Assume that Oσi(D) �= 1 and let N be a minimal normal subgroup of G lying
in Oσi(D). Then HN/N ≤ DN/N = (G/N)Nσ , and so the choice of G implies that HN/N is normal
in G/N . Hence, H = H(N ∩Oσi(D)) = HN ∩Oσi(D) is normal in G.
Assume now that Oσi(D) = 1. Then D is a σi-group. Since G/D is σ-nilpotent by Lemma 2.1,

Hi/D is normal in G/D and so Hi is normal in G. It follows from Lemma 2.6(3) and the hypothesis of
the theorem that all subgroups of Hi are σ-permutable in G. Since D is a normal Hall subgroup of Hi;
therefore, D has a complement S in Hi by the Schur–Zassenhaus Theorem. It implies from Lemma 2.5
that D ≤ Oσi(G) ≤ NG(S). Hence Hi = D × S, and so

G = HiO
σi(G) = SOσi(G) ≤ NG(H).

This implies that H is normal in G. Hence D is a Dedekind group, and so |D| is odd by Theorem C.
Hence, D is abelian and each element of G induces a power automorphism in D. The lemma is proved.
The following lemma is a corollary of Theorem A of this paper and Theorem B in [2].
A subgroup A of G is said to be σ-subnormal in G [2] if there is a subgroup chain

A = A0 ≤ A1 ≤ · · · ≤ An = G
such that either Ai−1 � Ai or Ai/(Ai−1)Ai is σ-primary for all i = 1, . . . , n.
Lemma 3.2. The following hold:
(i) G is a PσT -group if and only if every σ-subnormal subgroup of G is σ-quasinormal in G.
(ii) If G is a PσT -group, then every quotient G/N of G is also a PσT -group.

Proof of Theorem B. Sufficiency: Assume the contrary and let G be a counterexample with
|G| + |N | minimal. By Lemma 2.1, D := GNσ is the smallest normal subgroup of G with σ-nilpotent
quotient. Therefore D ≤ N and so the hypothesis holds for (G,D). Hence the choice of G shows
that D = N . We can assume without loss of generality that Hi is a σi-group for all i = 1, . . . , t.
(1) G = D �M , where D is an abelian Hall subgroup of G of odd order, M is σ-nilpotent, and

every element of G induces a power automorphism in D. (This is straightforward from Lemma 3.1 and
Theorem C.)
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(2) If R is a nonidentity normal subgroup of G, then the hypothesis holds for G/R, and so G/R is
a σ-soluble PσT -group (see the proof of Lemma 3.1 and use Lemma 2.10).
(3) Hi = Oσi(D)× S for some subgroup S of Hi for each σi ∈ σ(D).
Since D is an abelian Hall subgroup of G by (1), D = L×N , where L = Oσi(D) and N = Oσi(D) =

Oσ′i(D) are Hall subgroups of G. Assume first that N �= 1. Then
Oσi((G/N)

Nσ) = Oσi(D/N) = LN/N

has a normal complement V/N in HiN/N � Hi by (2) and Theorem A. On the other hand, N has
a complement S in V by the Schur–Zassenhaus Theorem. Hence Hi = Hi ∩ LSN = LS and L ∩ S = 1
since

(L ∩ S)N/N ≤ (LN/N) ∩ (V/N) = (LN/N) ∩ (SN/N) = 1.
It is clear that V/N is a Hall subgroup of HiN/N , and so V/N is characteristic in HiN/N . On the other
hand, HiN/N is normal in G/N by Lemma 2.2 since D/N ≤ HiN/N . Hence V/N is normal in G/N .
Thus Hi ∩ V = Hi ∩NS = S(Hi ∩N) = S is normal in Hi, and so Hi = Oσi(D)× S.
Assume that D = Oσi(D). Then Hi is normal in G, and so all subgroups of Hi are σ-permutable

in G by Lemma 2.6(3). Since D is a normal Hall subgroup of Hi, D has a complement S in Hi. Using
Lemma 2.5, we imply that D ≤ Oσi(G) ≤ NG(S). Hence, Hi = D × S = Oσi(D)× S.
It follows from Theorem A, (2), and (3) that G is a σ-soluble PσT -group, contrary to our assumption

on G. This completes the proof of sufficiency.
Assume now that G is a σ-soluble PσT -group and let D = GNσ . Then G possesses a complete σ-set

H = {H1, . . . , Ht} by Lemma 2.4. Moreover, G/D is σ-nilpotent by Lemma 2.1 and every subgroup of D
is normal in G by Theorem A. Then Hi ∩N ≤ ZU(Hi) ≤ ZUπ(Hi), where π = π(N) for all i. Therefore,
(i) holds for G.
We show now that every σi-subgroup of G is τσ-permutable in G for each σi ∈ σ(D). It suffices to

show that if H is a σi-subgroup of G, and so H permutes with every Hall σj-subgroup of G for all j �= i.
Assume the contrary and let G be a counterexample of minimal order. Then D �= 1 and there are σi
and σj (i �= j) such that σi ∈ σ(D) and HE �= EH for some σi-subgroup H and some Hall σj-subgroup E
of G. Then H is not σ-subnormal in G by Lemma 3.2. Hence a Hall σi-subgroup Hi of G is not normal
in G since otherwise H ≤ Hi and so H is σ-subnormal in G by Lemma 2.6. Note that |σ(D)| > 1.
Indeed, if |σ(D)| = 1, then σ(D) = {σi} and so D ≤ Hi, which implies that Hi/D is normal in G/D
because G/D is σ-nilpotent. Hence Hi is normal in G; a contradiction.
We show now that EHN is a subgroup of G for every minimal normal subgroup N of G. Note first

that the hypothesis holds for G/N by Lemma 3.2. Moreover, HN/N � H/(H ∩ N) is a σi-subgroup
of G/N . Therefore, if σi ∈ σ(DN/N) = σ((G/N)Nσ), then the choice of G implies that

(HN/N)(EN/N) = (EN/N)(HN/N) = EHN/N

is a subgroup of G/N . Hence EHN is a subgroup of G. Assume now that σi �∈ σ(DN/N). Then a Hall
σi-subgroup Hi of G lies in N . Clearly, Hi = N because N is σ-primary. It follows that H ≤ N and so H
is σ-subnormal in G; a contradiction. Hence EHN is a subgroup of G. Since |σ(D)| > 1 and D is abelian
by Theorem A, G has at least two σ-primary minimal normal subgroups R and N such that R,N ≤ D
and σ(R) �= σ(N). Then at least one of the subgroups R or N , say R, is a σk-group for some k �= j.
Moreover,

R ∩ E(HN) = (R ∩ E)(R ∩HN) = R ∩HN
by Lemma 2.3 and R ∩ HN ≤ Oσk(HN) ≤ V , where V is a Hall σk-subgroup of H, because N is
a σ′k-group and G is a σ-full group of Sylow type by Lemma 2.4. Hence

EHR ∩ EHN = EH(R ∩ E(HN)) = EH(R ∩HN) = EH(R ∩H) = EH
is a subgroup of G, i.e., HE = EH. This contradicts HE �= EH. Therefore, (ii) holds for G. Hence the
necessity of the condition of the theorem holds for G. The theorem is proved.
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