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Abstract: We study the class of systems of differential equations defined by one class of matrix quasiel-
liptic operators and establish solvability conditions for the systems and boundary value problems on Rn

+

in the special scales of weighted Sobolev spaces W l
p,σ. We construct the integral representations of

solutions and obtain estimates for the solutions.
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1. Introduction

We consider the class of quasielliptic systems in the whole space

L (Dx)U = F (x), x ∈ Rn, (1.1)

and the boundary value problems for them in the half-space{
L (Dx)U = F (x), x ∈ Rn

+,

B(Dx)U |xn=0 = 0.
(1.2)

These systems are determined by some class of matrix quasielliptic operators L (Dx).
Let us specify the conditions on the operators L (Dx) and B(Dx). Denote by lj,r(iξ) and bj,r(iξ) the

entries of the matrices L (iξ) and B(iξ) which are the symbols of the corresponding differential operators.

Condition 1. Let L (iξ) be a (ν × ν)-matrix. Suppose that there are vectors α = (α1, . . . , αn) and
t = (t1, . . . , tν), with tr > 0 and tr/αj ∈ N such that

lj,r(c
αiξ) = ctr lj,r(iξ), j, r = 1, . . . , ν,

for all c > 0.

Condition 2. detL (iξ) = 0, ξ ∈ Rn, if and only if ξ = 0.

The matrix operators L (Dx) satisfying Conditions 1 and 2 belong to the class of quasielliptic op-
erators which was introduced by Volevich [1]. In particular, the following operators belong to the class
of operators under consideration: homogeneous elliptic operators, Petrovskii’s elliptic and parabolic op-
erators, Eidelman’s parabolic operators, backwards parabolic operators, and homogeneous quasielliptic
operators (see [2]).

Condition 2 implies that the equation

detL (is, iλ) = 0, s ∈ Rn−1\{0}, (1.3)

has no real roots in λ. Denote the number of roots in the upper half-plane by μ. We assume that μ is
independent of s ∈ Rn−1\{0}.
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Condition 3. Let B(iξ) be a (μ×ν)-matrix. Suppose that there is a vector (m1, . . . ,mμ) satisfying
tr − tmin ≤ tr −mj ≤ tr − αn, tmin = min(t1, . . . , tν) and such that

bj,r(c
αiξ) = ctr−mjbj,r(iξ), c > 0, j = 1, . . . , μ, r = 1, . . . , ν.

Condition 4. Boundary value problem (1.2) satisfies the Lopatinskii condition; i.e., the boundary
value problem on the half-axis ⎧⎪⎨

⎪⎩
L (is,Dxn)v = 0, xn > 0,

B(is,Dxn)v|xn=0 = ϕ,

sup
xn>0

|v| < ∞
(1.4)

is uniquely solvable for all s ∈ Rn−1\{0} and ϕ.

The goal of this article is to obtain solvability conditions and construct solutions to the quasielliptic
systems (1.1) in Rn and to their boundary value problems (1.2) on Rn

+. We search solutions to the

problems in the special scales of weighted Sobolev spaces W l
p,σ which were introduced in [3].

Recall the definition of W
k/α
p,σ (Rn), with k/α = (k/α1, . . . , k/αn), k/αi ∈ N, 1 < p < ∞, and σ ≥ 0.

Definition. A locally summable function u(x) belongs to W
k/α
p,σ (Rn) if u(x) has the generalized

derivatives Dβ
xu(x) on Rn for βα ≤ k, and

∥∥(1 + 〈x〉)−σ(k−βα)Dβ
xu(x), Lp(R

n)
∥∥ < ∞, 〈x〉2 =

n∑
i=1

x
2/αi

i .

The norm on W
k/α
p,σ (Rn) is defined as follows:

∥∥u(x),Wk/α
p,σ (Rn)

∥∥ =
∑

0≤βα≤k

∥∥(1 + 〈x〉)−σ(k−βα)Dβ
xu(x), Lp(R

n)
∥∥. (1.5)

In the isotropic case when k/α1 = · · · = k/αn = l, (1.5) is equivalent to

∑
0≤|β|≤l

∥∥(1 + |x|)−σ(l−|β|)Dβ
xu(x), Lp(R

n)
∥∥.

In this case, the spaces under consideration coincide for σ = 1 with the spaces often called the Nirenberg–
Walker–Cantor spaces Mp

l,m
(Rn), with m = −l (for instance, see [4–6]).

We consider the general case when the entries k/αi of the vector of smoothness can differ from one
another.

Recall that C∞
0 (Rn) is everywhere dense in W

k/α
p,σ (Rn) for σ ≤ 1 (see [3]). Henceforth, we assume

that 1 ≥ σ ≥ 0.

Introduce the weighted Sobolev space W
t/α
p,σ (Rn) for vector-functions, where the parameters of

smoothness are determined by the vectors α = (α1, . . . , αn) and t = (t1, . . . , tν) from Condition 1.
We say that a vector-function U(x) = (U1(x), . . . , Uν(x))T belongs to

Wt/α
p,σ (R

n) =

ν∏
k=1

W tk/α
p,σ (Rn), tk/α = (tk/α1, . . . , tk/αn), 1 < p < ∞, σ ≥ 0,

if each of the entries Uk(x) belongs to W
tk/α
p,σ (Rn) and we set

∥∥U(x),Wt/α
p,σ (R

n)
∥∥ =

ν∑
k=1

∥∥Uk(x),W tk/α
p,σ (Rn)

∥∥.
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We also write

Lp(R
n) =

ν∏
r=1

Lp(R
n).

Definition. Denote by Lp,γ(Rn) the weighted space with the norm

‖f(x), Lp,γ(R
n)‖ = ‖(1 + 〈x〉)−γf(x), Lp(R

n)‖.
We say that a vector-function F (x) = (F 1(x), . . . , F ν(x))T belongs to

Lp,γ(R
n) =

ν∏
r=1

Lp,γ(R
n)

if each of the entries F k(x) belongs to Lp,γ(Rn), and we set

‖F (x),Lp,γ(R
n)‖ =

ν∑
r=1

‖F r(x), Lp,γ(R
n)‖.

Similarly, we define Lp(Rn
+), Lp,γ(Rn

+), W
tk/α
p,σ (Rn

+), and W
t/α
p,σ (Rn

+).

2. Statement of the Main Results

We recall now that the first theorem about isomorphism for the class of quasielliptic operators L (Dx)

in the case when t1 = · · · = tν = 1 was proven in [7] by using the property of W
t/α
p,σ (Rn). The unique

solvability of “homogeneous” quasielliptic systems ensues from the theorem. Properties of quasielliptic
operators for t1 = · · · = tν = 1 were further studied in [8]. Some theorems of isomorphism for wider
classes of quasielliptic operators were proved in [2, 9–11].

Observe that the Sobolev spaces with power weights (for instance, see [5, 6, 12–15]) are also used in
the theorems about isomorphic properties of elliptic operators.

Let us recall the theorem of isomorphism for the class of quasielliptic operators under consideration
which was established in [2]. Put

|α| =
n∑

i=1

αi, tmax = max{t1, . . . , tν}.

Theorem 1. Let an operator L (Dx) meet Conditions 1 and 2. If |α|/p > tmax, then

L (Dx) : W
t/α
p,σ (R

n) −→ Lp(R
n), 1 < p < ∞, σ = 1,

is an isomorphism.

The unique solvability of (1.1) is straightforward from Theorem 1. Namely, if |α|/p > tmax then for

every F (x) ∈ Lp(Rn) there is a unique solution U(x) ∈ W
t/α
p,1 (R

n) to (1.1) and
∥∥U(x),W

t/α
p,1 (R

n)
∥∥ ≤

c‖F (x),Lp(Rn)‖ with a constant c > 0 independent of F (x).

The condition |α|/p > tmax is essential for the unique solvability of (1.1) in W
t/α
p,1 (R

n). However, the
condition imposes rather stringent constraints on the degree of summability p and σ = 1. In the following
theorem, we establish unique solvability conditions for system (1.1) in the whole scale of weighted Sobolev

spaces W
t/α
p,σ (Rn) with significantly weaker constraints on the parameters p and σ.

Theorem 2. Let an operator L (Dx) meet Conditions 1 and 2. If

|α|/p > σtmax, |α|/p′ > (1− σ)tmax, 1/p+ 1/p′ = 1, (2.1)

then for every vector-function F (x) ∈ Lp,(σ−1)tmax
(Rn) there is a unique solution U(x) ∈ W

t/α
p,σ (Rn)

to (1.1); moreover, ∥∥U(x),Wt/α
p,σ (R

n)
∥∥ ≤ C‖F (x),Lp,(σ−1)tmax

(Rn)‖ (2.2)

with a constant C > 0 independent of F (x).
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Theorem 3. Let the conditions of Theorem 2 be met. Then

∥∥〈x〉−σ(tk−βα)Dβ
xU

k(x), Lp(R
n)
∥∥ ≤ c‖〈x〉(1−σ)(tk−βα)L (Dx)U(x),Lp(R

n)‖, (2.3)

0 ≤ βα ≤ tk, k = 1, . . . , ν,

for all vector-functions U(x) = (U1(x), . . . , Uν(x))T ∈ C∞
0 (Rn), with a constant c > 0 independent

of U(x).

Remark 1. Theorem 2 generalizes the unique solvability theorem for “homogeneous” quasielliptic
systems (t1 = · · · = tν = 1) from [7, 8].

Remark 2. As is demonstrated by examples, in some cases conditions (2.1) are necessary and

sufficient for the unique solvability of systems (1.1) in W
t/α
p,σ (Rn). For instance, it is easily seen for the

polyharmonic equation

Δmu = f(x), x ∈ Rn, n > 2m,

by using the results from [16, Chapter 12]. Observe that, for solvability of the equation in W 2m
p (Rn) for

p ≤ n
n−2m , i.e., |α|/p′ ≤ 1, σ = 0, the right-hand side f(x) needs to satisfy the orthogonality conditions

of the form ∫
Rn

f(x)xβdx = 0, |β| ≤ s(n,m, p).

Remark 3. The inequality of the form (2.3) for σ = 1 is obtained in [4] for elliptic operators;
and (2.3) is established in [7] for “homogeneous” quasielliptic operators.

Let state some theorem of unique solvability for (1.2).

Theorem 4. Let L (Dx) and B(Dx) meet Conditions 1–4. If (2.1) hold, then (1.2) has a unique

solution U(x) ∈ W
t/α
p,σ (Rn

+) for every vector-function F (x) ∈ Lp(Rn
+) ∩ L1,−σtmax(R

n
+); moreover,

∥∥U(x),Wt/α
p,σ (R

n
+)

∥∥ ≤ c(‖F (x),Lp(R
n
+)‖+ ‖F (x),L1,−σtmax(R

n
+)‖) (2.4)

with a constant c > 0 independent of F (x).

Remark 4. Theorem 4 generalizes the solvability theorems for boundary value problems for quasiel-
liptic equations in [17, 18]; and for systems in [19–21].

Remark 5. Conditions (2.1) are important for the unique solvability of boundary value problems
on Rn

+ for quasielliptic equations and systems. In particular, for |α|/p < σtmax, the homogeneous problem
can have a nontrivial solution. If |α|/p′ ≤ (1−σ)tmax, then there exist boundary value problems without

solutions in W
t/α
p,σ (Rn

+) even for compactly-supported infinitely differentiable F (x) (see [18, 22–24]). For
instance, if ∫

Γ(s)

B(is, iλ)L −1(is, iλ) dλ �= 0, s ∈ Rn−1 \ {0},

for σ = 0, t1 = · · · = tν = 1, where Γ(s) is a contour in the complex plane encircling all roots of
equation (1.3); then the condition ∫

Rn
+

F (x) dx = 0

is necessary for solvability of (1.2) in W
1/α
p (Rn

+) for 1 ≥ |α|/p′ > 1− αmin, p ∈ (1, 2].
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3. Proof of Solvability of (1.1)

To prove Theorem 2, we follow the scheme of [2, 7]. Let us sketch the scheme of the proof and inspect
the essential differences.

As in [2, 7], to prove the solvability of (1.1), we use the method of constructing approximate solutions
which was described in [25] and based on Uspenskii’s integral representation [26] for summable functions
(see also [25, Chapter 1]).

We suppose first that the entries F j(x) of F (x) ∈ Lp(Rn) on the right-hand side of (1.1) have compact
supports.

Consider the family of integral operators Pk,h, k = 1, . . . , ν, 0 < h < 1, of the following form:

Pk,hF (x) = (2π)−n

h−1∫
h

v−|α|/tk
∫
Rn

∫
Rn

exp

(
i
x− y

vα/tk
ξ

)
Gk(ξ)

( ν∑
r=1

lk,r(ξ)F r(y)

)
dξdydv, (3.1)

where lk,r(ξ) are the entries of the inverse matrix (L (iξ))−1 and

Gk(ξ) = 2m〈ξ〉2mk exp
(−〈ξ〉2mk

)
, 〈ξ〉2k =

n∑
i=1

ξ
2tk/αi

i , m ∈ N. (3.2)

It is demonstrated in [2] that the vector-function

Uh(x) = PhF (x) = (P1,hF (x), . . . , Pν,hF (x))T (3.3)

is an approximate solution to (1.1).
Note that (3.1) and Conditions 1 and 2 imply that Uk

h (x) = Pk,hF (x) are infinitely differentiable

and, obviously, we can find a natural m1 such that Uk
h (x) in (3.2) are summable to every power p ≥ 1

for m ≥ m1. Henceforth, we assume that m ≥ m1 in (3.2).
It ensues from the lemmas below that, under conditions (2.1),∥∥Uh(x), Wt/α

p,σ (R
n)
∥∥ ≤ C‖F (x), Lp,(σ−1)tmax

(Rn)‖ (3.4)

with a constant C > 0 independent of F (x) and h; moreover,∥∥Uh1(x)− Uh2(x), Wt/α
p,σ (R

n)
∥∥ → 0 as h1, h2 → 0. (3.5)

First, we recall the estimates of [2] of the leading derivatives of the entries of (3.3).

Lemma 3.1. Let β = (β1, . . . , βn), βα = tk, k = 1, . . . , ν. Then∥∥Dβ
xU

k
h (x), Lp(R

n)
∥∥ ≤ Cβ‖F (x), Lp(R

n)‖ (3.6)

with a constant Cβ > 0 independent of F (x) and h; moreover,∥∥Dβ
xU

k
h1
(x)−Dβ

xU
k
h2
(x), Lp(R

n)
∥∥ → 0 as h1, h2 → 0. (3.7)

To estimate the norms of the derivatives

Dβ
xU

k
h (x), 0 ≤ βα < tk, k = 1, . . . , ν, (3.8)

we need some estimates for the integrals

K k,r
β,h (x) =

h−1∫
h

v−|α|/tk−βα/tk

∫
Rn

exp

(
i

xξ

vα/tk

)
Gk(ξ)(iξ)

βlk,r(ξ) dξdv, (3.9)

x ∈ Rn, 0 < h < 1.
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The following analog of Lemma 3.3 from [9] takes place:

Lemma 3.2. Let |α|+ βα > tk. Then there is m2 such that for m ≥ m2 in (3.2) we have

〈x〉|α|+βα−tk
∣∣K k,r

β,h (x)
∣∣ ≤ c, x ∈ Rn, (3.10)

with a constant c > 0 independent of h and x.

Proof. Consider the function

J(x) = 〈x〉|α|+βα−tkK k,r
β,h (x), x ∈ Rn.

Making the change v = ω〈x〉tk for x �= 0 in (3.9), rewrite this function as

J(x) =

h−1/〈x〉tk∫
h/〈x〉tk

ω−|α|/tk−βα/tk

∫
Rn

exp

(
i

xξ

〈x〉αωα/tk

)
Gk(ξ)(iξ)

βlk,r(ξ) dξdω.

By Conditions 1 and 2, μ(ξ) = (iξ)βlk,r(ξ) is quasihomogeneous in α. Therefore, by the definition of (3.2),
we can find m2 ∈ N such that

∣∣∣∣
∫
Rn

eizξGk(ξ)(iξ)
βlk,r(ξ) dξ

∣∣∣∣ ≤ c′(1 + 〈z〉)−|α|, z ∈ Rn,

with a constant independent of z. Hence,

|J(x)| ≤ c′
∞∫
0

ω−|α|/tk−βα/tk(1 + ω−1/tk)−|α| dω.

Thus, since |α|+ βα > tk, 0 ≤ βα < tk, we obtain |J(x)| ≤ c < ∞; i.e., (3.10).
The lemma is proved.

Henceforth, we assume that m ≥ max{m1,m2} and turn to estimating the norms of (3.8).

Lemma 3.3. Let β = (β1, . . . , βn), 0 ≤ βα < tk and |α|/p > σ(tk − βα) > tk − βα − |α|/p′,
1/p+ 1/p′ = 1. Then

∥∥〈x〉−σ(tk−βα)Dβ
xU

k
h (x), Lp(R

n)
∥∥ ≤ c‖〈x〉(1−σ)(tk−βα)F (x),Lp(R

n)‖, (3.11)

with a constant c > 0 independent of F (x) and h.

Proof. By (3.1), (3.2), and (3.9), Dβ
xUk

h (x) can be written as

Dβ
xU

k
h (x) =

ν∑
r=1

(2π)−n

∫
Rn

K k,r
β,h (x− y)F r(y) dy.

By Lemma 3.2,

∥∥〈x〉−σ(tk−βα)Dβ
xU

k
h (x), Lp(R

n)
∥∥

≤ c
ν∑

r=1

∥∥∥∥〈x〉−σ(tk−βα)

∫
Rn

〈x− y〉−(|α|+βα−tk)|F r(y)| dy, Lp(R
n)

∥∥∥∥.
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The conditions imply that |α|+ βα− tk > 0; therefore,

∥∥〈x〉−σ(tk−βα)Dβ
xU

k
h (x), Lp(R

n)
∥∥

≤ c1

ν∑
r=1

∥∥∥∥〈x〉−σ(tk−βα)

∫
Rn

n∏
i=1

|xi − yi|(tk−βα)/|α|−1|F r(y)| dy, Lp(R
n)

∥∥∥∥.

Since tk − βα > 0, 1 ≥ σ ≥ 0, we obtain

∥∥〈x〉−σ(tk−βα)Dβ
xU

k
h (x), Lp(R

n)
∥∥

≤ c2

ν∑
r=1

∥∥∥∥
∫
Rn

n∏
i=1

|xi|σ(βα−tk)/|α| |xi − yi|(tk−βα)/|α|−1|yi|(1−σ)(βα−tk)/|α|

×〈y〉(1−σ)(tk−βα)|F r(y)|dy, Lp(R
n)

∥∥∥∥.
Put a = σ(tk − βα)/|α| and b = (1 − σ)(tk − βα)/|α|. By hypotheses, a < 1/p, b < 1/p′, a + b > 0.
Applying the Hardy–Littlewood inequality [27], we arrive at (3.11).

The lemma is proved.

Lemma 3.4. Let the conditions of Theorem 2 be met and β = (β1, . . . , βn), 0 ≤ βα < tk. If
F (x) ∈ Lp(Rn) is compactly-supported then

∥∥(1 + 〈x〉)−σ(tk−βα)
(
Dβ

xU
k
h1
(x)−Dβ

xU
k
h2
(x)

)
, Lp(R

n)
∥∥ → 0 as h1, h2 → 0, k = 1, . . . , ν. (3.12)

Proof. Put

Kk,r
β (x) =

∫
Rn

exp(ixξ)Gk(ξ)(iξ)
βlk,r(ξ) dξ. (3.13)

From (3.1), (3.3), and (3.9) it follows that

Dβ
xU

k
h (x) =

ν∑
r=1

(2π)−n

h−1∫
h

v−|α|/tk−βα/tk

∫
Rn

Kk,r
β

(
x− y

vα/tk

)
F r(y) dydv.

Using this representation and Minkowski’s inequality, for h2 > h1 > 0 we obtain

∥∥(1 + 〈x〉)−σ(tk−βα)
(
Dβ

xU
k
h1
(x)−Dβ

xU
k
h2
(x)

)
, Lp(R

n)
∥∥

≤
ν∑

r=1

h2∫
h1

v−|α|/tk−βα/tk

∥∥∥∥(1 + 〈x〉)−σ(tk−βα)

∫
Rn

Kk,r
β

(
x− y

vα/tk

)
F r(y) dy, Lp(R

n)

∥∥∥∥ dv

+
ν∑

r=1

h−1
1∫

h−1
2

v−|α|/tk−βα/tk

∥∥∥∥(1 + 〈x〉)−σ(tk−βα)

∫
Rn

Kk,r
β

(
x− y

vα/tk

)
F r(y) dy, Lp(R

n)

∥∥∥∥ dv

=

ν∑
r=1

J1
r (h1, h2) +

ν∑
r=1

J2
r (h1, h2).
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First, estimate J1
r (h1, h2). Applying Young’s inequality, we obviously get

J1
r (h1, h2) ≤

h2∫
h1

v−|α|/tk−βα/tk

∥∥∥∥Kk,r
β

(
x

vα/tk

)
, L1(R

n)

∥∥∥∥‖F r(y), Lp(R
n)‖dv

=

h2∫
h1

v−βα/tk dv
∥∥Kk,r

β (z), L1(R
n)
∥∥‖F r(y), Lp(R

n)‖.

Hence, using (3.13) and the condition βα < tk, it follows that

J1
r (h1, h2) → 0 as h1, h2 → 0. (3.14)

Estimate J2
r (h1, h2). Using the inequality

(1 + 〈x〉)−1〈x− y〉 ≤ a(1 + 〈y〉), a = const, (3.15)

we infer

J2
r (h1, h2) ≤

h−1
1∫

h−1
2

v−|α|/tk−βα/tk

×
∥∥∥∥
∫
Rn

〈x− y〉−σ(tk−βα)Kk,r
β

(
x− y

vα/tk

)
(1 + 〈y〉)σ(tk−βα)F r(y) dy, Lp(R

n)

∥∥∥∥ dv.

By applying Young’s inequality, we obviously get

J2
r (h1, h2) ≤

h−1
1∫

h−1
2

v−|α|/tk−βα/tk

∥∥∥∥〈x〉−σ(tk−βα)Kk,r
β

(
x

vα/tk

)
, Lp(R

n)

∥∥∥∥ dv

×‖(1 + 〈y〉)σ(tk−βα)F r(y), L1(R
n)‖

=

h−1
1∫

h−1
2

v−|α|/p′tk−βα/tk−σ(1−βα/tk) dv
∥∥〈z〉−σ(tk−βα)Kk,r

β (z), Lp(R
n)
∥∥

×‖(1 + 〈y〉)σ(tk−βα)F r(y), L1(R
n)‖.

Since |α|/p > σtmax, tk > βα, and F r(y) is compactly-supported; using (3.13), we infer that

J2
r (h1, h2) → 0 as h1, h2 → 0. (3.16)

Recalling (3.14) and (3.16), we arrive at (3.12). The lemma is proved.

Proof of Theorem 2. Estimates (3.6) and (3.11) yield (3.4), while (3.7) and (3.12) imply (3.5).

By completeness of W
t/α
p,σ (Rn), it follows from (3.4) and (3.5) that there is a continuous linear operator

P : Lp,(σ−1)tmax
(Rn) −→ Wt/α

p,σ (R
n), 1 < p < ∞, 0 ≤ σ ≤ 1,

defined on compactly-supported vector-functions F (x) by the formula

PF (x) = lim
h→0

PhF (x);
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moreover, the vector-function U(x) = PF (x) ∈ W
t/α
p,σ (Rn) is a solution to (1.1). Owing to the density

of the set of compactly-supported vector-functions in Lp,(σ−1)tmax
(Rn), the operator P can be uniquely

extended to the whole space Lp,(σ−1)tmax
(Rn) with the same norm. We preserve the notation P for the

extended operator.
By (3.4), the linear operators

Ph : Lp,(σ−1)tmax
(Rn) −→ Wt/α

p,σ (R
n), 1 < p < ∞, 0 ≤ σ ≤ 1,

are continuous; and the collection of their norms is bounded: ‖Ph‖ ≤ C. Consequently, by the Banach–
Steinhaus Theorem, ∥∥PhF (x)− PF (x),Wt/α

p,σ (R
n)
∥∥ → 0 as h → 0

for all F (x) ∈ Lp,(σ−1)tmax
(Rn).

By the above arguments, some solution U(x) ∈ W
t/α
p,σ (Rn) to (1.1) exists for any right-hand side

F (x) ∈ Lp,(σ−1)tmax
(Rn); moreover, (2.2) holds.

The uniqueness of the solution to system (1.1) in the space under consideration is proven by analogy
with [9].

Theorem 2 is proved.

Proof of Theorem 3. Estimate (2.3) is straightforward from Theorem 2 for βα = tk, k = 1, . . . , ν.
Assume that βα < tk. Putting

Uk
h (x) = Pk,hF (x), F (x) = L (Dx)U(x),

we derive
∥∥〈x〉−σ(tk−βα)Dβ

xPk,h(L (D)U)(x), Lp(R
n)
∥∥ ≤ c‖〈x〉(1−σ)(tk−βα)L (Dx)U(x), Lp(R

n)‖
from Lemma 3.3 with a constant c > 0 independent of U(x) and h. Then, for every ε > 0 we have

Jk,ε =
∥∥〈x〉−σ(tk−βα)Dβ

xU
k(x), Lp({〈x〉 ≥ ε})∥∥

≤ ∥∥〈x〉−σ(tk−βα)Dβ
xPk,h(L (D)U)(x), Lp({〈x〉 ≥ ε})∥∥

+
∥∥〈x〉−σ(tk−βα)Dβ

x(Pk,h(L (D)U)(x)− Uk(x)), Lp({〈x〉 ≥ ε})∥∥
≤ c‖〈x〉(1−σ)(tk−βα)L (Dx)U(x), Lp(R

n)‖
+c(ε)‖(1 + 〈x〉)−σ(tk−βα)Dβ

x(Pk,h(L (D)U)(x)− Uk(x)), Lp({〈x〉 ≥ ε})‖, (3.17)

where c(ε) = (1 + 1/ε)σ(tk−βα). By the proof of Theorem 2,

∥∥(1 + 〈x〉)−σ(tk−βα)Dβ
x(Pk,h(L (D)U)(x)− Uk(x)), Lp(R

n)
∥∥ → 0 as h → 0.

Passing to the limit in (3.17) as h → 0 yields

Jk,ε ≤ c‖〈x〉(1−σ)(tk−βα)L (Dx)U(x), Lp(R
n)‖.

Hence, passing to the limit as ε → 0 implies (2.3).
Theorem 3 is proved.

4. Construction of Approximate Solutions to (1.2)

The proof of Theorem 4 is based on the construction of approximate solutions to boundary value
problems for systems with constant coefficients (see [19]). We present the construction in this section.

We suppose that F (x) ∈ C∞(Rn
+) and F (x) ≡ 0 for |x| � 1.
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Consider the boundary value problem of the form (1.4) on the half-axis for the system of ordinary
differential equations with parameter s ∈ Rn−1\{0}:

⎧⎪⎨
⎪⎩

L (is,Dxn)ω = F̃ (s, xn), xn > 0,

B(is,Dxn)ω|xn=0 = 0,

sup
xn>0

|ω| < ∞,
(4.1)

where F̃ (s, xn) is the Fourier transform of the vector-function F (x′, xn) with respect to x′.
By the Lopatinskii condition, (4.1) is uniquely solvable. The solution of (4.1) can be represented as

ω(s, xn) = ω0(s, xn) + v(s, xn), (4.2)

where ω0(s, xn) is a bounded solution to the system

L (is,Dxn)ω = F̃ (s, xn), xn > 0,

and the vector-function v(s, xn) is a solution to (1.4) with

ϕ(s) = −B(is,Dxn)ω0(s, xn)|xn=0.

Put a(is, iλ) = detL (is, iλ). Denote by L̃ (is, iλ) the adjugate matrix to L (is, iλ). The identity

L (is,Dxn)L̃ (is,Dxn)ω(xn) ≡ a(is,Dxn)ω(xn)

is obviously valid for sufficiently smooth vector-functions ω(xn). Equation (1.3) has no real roots; there-
fore, the boundary value problem on the axis

{
a(is,Dxn)u = g(xn), −∞ < xn < ∞,

sup
−∞<xn<∞

|u| < ∞ (4.3)

has a unique solution for s ∈ Rn−1\{0} and every bounded g(xn) ∈ C(R). Consequently, using the
formula of the solution to (4.3) (for instance, see [25, Chapter 1]), as ω0(s, xn), we can take the bounded
vector-function

ω0(s, xn) = L̃ (is,Dxn)RF̃ (s, xn) (4.4)

where

RF̃ (s, xn) =

xn∫
0

J+(s, xn − yn)F̃ (s, yn) dyn +

∞∫
xn

J−(s, xn − yn)F̃ (s, yn) dyn,

J+(s, xn) =
1

2π

∫
Γ+

exp(ixnλ)

a(is, iλ)
dλ, J−(s, xn) = − 1

2π

∫
Γ−

exp(ixnλ)

a(is, iλ)
dλ, (4.5)

and the contour Γ+ = Γ+(s) encircles all roots of (1.3) in the upper half-plane, while Γ− = Γ−(s) encircles
the roots in the lower half-plane. Denote by {ω1(s, xn), . . . , ωμ(s, xn)} the canonical basis of (1.4); i.e.,
each vector-function ωj(s, xn) is a solution to (1.4) with the unit boundary vector ϕ = ej whose jth entry
is 1. Then the vector-function v(s, xn) from (4.2) can be represented as

v(s, xn) =

μ∑
j=1

ϕj(s)ωj(s, xn), (4.6)

where ϕ(s) = −B(is,Dyn)ω0(s, yn)|yn=0.
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By (4.2), (4.4), and (4.6), we derive the representation of the solution to (4.1) in the form

ω(s, xn) = L̃ (is,Dxn)R F̃ (s, xn) +

μ∑
j=1

ϕj(s)ωj(s, xn). (4.7)

Construct a solution to (1.2). By applying the inverse Fourier transform to (4.7) with respect to s,
we can obtain a formal solution to (1.2). However, the contour integrals (4.5) and the components of
the canonical basis of (1.4), in general, have nonintegrable singularities for s = 0. Therefore, to obtain
a formula for a solution to (1.2) we need to regularize the inverse Fourier transform. To this end, use
Uspenskii’s integral representation for f(x′) ∈ Lp(Rn−1) (see [26]):

f(x′) = lim
h→0

(2π)1−n

h−1∫
h

v−1

∫
Rn−1

∫
Rn−1

exp (i(x′ − y′)s)G(svα
′
)f(y′) dsdy′dv, (4.8)

where

G(s) = 2m〈s〉2m exp(−〈s〉2m), 〈s〉2 =
n−1∑
i=1

s
2/αi

i , (4.9)

and the limit is understood in the sense of convergence in Lp(Rn−1) (see [25, Chapter 1]). The natural m
can be taken however large. By analogy with [19], introduce the vector-functions

Uh(x) = (2π)(1−n)/2

h−1∫
h

v−1

∫
Rn−1

exp (ix′s)G(svα
′
)ω(s, xn) dsdv, (4.10)

where ω(s, xn) is defined in (4.7). It follows from the above that

{
L (Dx)Uh(x) = Fh(x), x ∈ Rn

+,

B(Dx)Uh(x
′, xn)|xn=0 = 0,

where

Fh(x) = (2π)1−n

h−1∫
h

v−1

∫
Rn−1

∫
Rn−1

exp (i(x′ − y′)s)G(svα
′
)F (y′, xn) dsdy′dv.

By (4.8), Uh(x) can be considered as an approximate solution to (1.2), and the existence of a solution

to (1.2) reduces to proving the convergence of {Uh(x)} in W
t/α
p,σ (Rn

+).
To obtain Lp-estimates for Uh(x), we will use

Lemma 4.1. For all xn > 0, s ∈ Rn−1\{0}, γn, and κ = (κ1, . . . , κn−1), the following estimates are
valid: ∣∣Dκ

s

(
Dγn

xn
L̃r,l(is,Dxn)J+(s, xn)

)∣∣ ≤ c〈s〉(γn+1)αn−κα′−tr exp (−δxn〈s〉αn),
∣∣Dκ

s

(
Dγn

xn
L̃r,l(is,Dxn)J−(s,−xn)

)∣∣ ≤ c〈s〉(γn+1)αn−κα′−tr exp (−δxn〈s〉αn),∣∣Dγn
xn
Dκ

sω
r
j (s, xn)

∣∣ ≤ c〈s〉γnαn−κα′+mj−tr exp (−δxn〈s〉αn),

r, l = 1, . . . , ν, j = 1, . . . , μ,

where c and δ > 0 are constant, L̃r,l(is, iξn) are the entries of L̃ (is, iξn), and ωr
j (s, xn) are the entries

of ωj(s, xn).

Proof. This repeats the proof of Lemma 4.2 from [25, Chapter 4].
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5. Solvability of (1.2)

Consider the vector-function Uh(x) from (4.10) and represent it, in accord with [19], as

Uh(x) = U0,h(x) +

μ∑
j=1

Uj,h(x), (5.1)

where

U0,h(x) =

∫
Rn−1

exp (ix′s)G (s, h)L̃ (is,Dxn)RF̃ (s, xn) ds, (5.2)

Uj,h(x) =

∫
Rn−1

exp (ix′s)G (s, h)ϕj(s)ωj(s, xn) ds, (5.3)

G (s, h) = (2π)(1−n)/2

h−1∫
h

v−1G(svα
′
) dv, (5.4)

ϕj(s) = −Bj(is,Dyn)L̃ (is,Dyn)RF̃ (s, yn)|yn=0,

Bj(is,Dyn) = (bj,1(is,Dyn), . . . , bj,ν(is,Dyn)).

Denote the kth entry of U0,h(x) by Uk
0,h(x).

Lemma 5.1. Let β = (β1, . . . , βn) and βα = tk, k = 1, . . . , ν. Then

∥∥Dβ
xU

k
0,h(x), Lp(R

n
+)

∥∥ ≤ c
∥∥F (x),Lp(R

n
+)

∥∥, 0 < h < 1, (5.5)

with c > 0 independent of h and F (x); moreover,

∥∥Dβ
xU

k
0,h1

(x)−Dβ
xU

k
0,h2

(x), Lp(R
n
+)

∥∥ → 0 as h1, h2 → 0. (5.6)

Proof. This repeats the proof from [19]; we focus on some changes.

Extend the vector-function F (x′, xn) by zero for xn < 0. Denote the Fourier transform of F (x) in

x = (x′, xn) by F̂ (ξ). As demonstrated in [19],

L̃ (is,Dxn)RF̃ (s, xn) ≡ (2π)−1/2

∞∫
−∞

eixnξn(L (is, iξn))
−1F̂ (s, ξn) dξn (5.7)

for s ∈ Rn−1\{0}. By (5.7), for βα = tk we obtain

Dβ
xU

k
0,h(x) = (2π)−n/2

h−1∫
h

v−1

∫
Rn

exp (ixξ)G(svα
′
)(iξ)β((L (iξ))−1)kF̂ (ξ) dξdv, ξ = (s, ξn),

where ((L (iξ))−1)k is the kth row of (L (iξ))−1. By the Lizorkin Theorem [28] and Conditions 1 and 2,
the elements of the row ξβ((L (iξ))−1)k, βα = tk, are multipliers. Using this and the properties of
Uspenskii’s representation [25], we come to (5.5) and (5.6).
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Lemma 5.2. Let β = (β1, . . . , βn), βα = tk, k = 1, . . . , ν. Then

∥∥Dβ
xU

k
j,h(x), Lp(R

n
+)

∥∥ ≤ c‖F (x),Lp(R
n
+)‖, 0 < h < 1, (5.8)

with c > 0 independent of h and F (x); moreover,

∥∥Dβ
xU

k
j,h1

(x)−Dβ
xU

k
j,h2

(x), Lp(R
n
+)

∥∥ → 0 as h1, h2 → 0. (5.9)

Proof. Consider the kth entry of the vector-function Uj,h(x) from (5.3). Estimate Dβ
xUk

j,h(x), where

βα = tk. We follow the scheme of [19]. Represent Dβ
xUk

j,h(x) as the sum of two summands:

Dβ
xU

k
j,h(x) =

∫
Rn−1

∞∫
0

exp (ix′s)(is)β
′
G (s, h)

×Bj(is,Dyn)L̃ (is,Dyn)RF̃ (s, yn)D
βn+1
yn ωk

j (s, xn + yn) dyndsdv

+

∫
Rn−1

∞∫
0

exp (ix′s)(is)β
′
G (s, h)

×Bj(is,Dyn)DynL̃ (is,Dyn)RF̃ (s, yn)D
βn
xn
ωk
j (s, xn + yn) dynds

= Φ1
j,h,k(x) + Φ2

j,h,k(x), (5.10)

where G (s, h) is defined in (5.4). Consider the first summand. By the property of the Fourier transform,
for xn > 0 we obtain

Φ1
j,h,k(x) =

∫
Rn

exp (ix′s)(is)β
′
G (s, h)

×Bj(is,Dyn)L̃ (is,Dyn)RF̃ (s, yn)θ(yn)D
βn+1
yn ωk

j (s, xn + yn)θ(xn + yn) dynds

= (2π)−1

∫
Rn

exp (ix′s− ixnξn)〈s〉mj−tk+βnαn(is)β
′
μj,k(s, ξn)

×
(∫

R

exp (−itnξn)G (s, h)Bj(is,Dtn)L̃ (is,Dtn)RF̃ (s, tn)θ(tn) dtn

)
dsdξn,

where

μj,k(s, ξn) = 〈s〉tk−mj−βnαn

∞∫
0

exp (iynξn)D
βn+1
yn ωk

j (s, yn) dyn.

Conditions 1–4 yield

ωk
j (s, xn) = ctk−mjωk

j (c
α′
s, c−αnxn), c > 0;

and so, by the Lizorkin Theorem [28], μj,k(s, ξn) is a multiplier. Then

∥∥Φ1
j,h,k(x), Lp(R

n
+)

∥∥ ≤ c1

∥∥∥∥
∫

Rn−1

exp (ix′s)(is)β
′
G (s, h)

×〈s〉mj−tk+βnαnBj(is,Dxn)L̃ (is,Dxn)RF̃ (s, xn)θ(xn) ds, Lp(R
n)

∥∥∥∥ dv.
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Since the elements

(〈s〉αn + iξn)〈s〉mj−αnBj(is, iξn)L
−1(is, iξn) (5.11)

are multipliers, we obtain

∥∥Φ1
j,h,k(x), Lp(R

n
+)

∥∥ ≤ c2

∥∥∥∥
∫
Rn

exp (ix′s+ ixnξn)G (s, h)(is)β
′〈s〉−tk+βnαn

× 〈s〉αn

〈s〉αn + iξn
F̂ (s, ξn) dξnds,Lp(R

n
+)

∥∥∥∥.

By applying

∫
R

exp (ixnξn)

〈s〉αn + iξn
F̂ (s, ξn) dξn = (2π)−1/2

xn∫
0

exp (−(xn − yn)〈s〉αn)F̃ (s, yn) dyn

and Young’s inequality, we derive

∥∥Φ1
j,h,k(x), Lp(R

n
+)

∥∥
≤ c4

∥∥∥∥
∫
Rn

∫
Rn−1

exp (i(x′ − y′)s) exp (−(xn − yn)〈s〉αn)θ(xn − yn)

×(is)β
′〈s〉αn−tk+βnαnG (s, h)F (y)θ(yn) dsdy,Lp(R

n)

∥∥∥∥
≤ c5

∥∥∥∥
∫

Rn−1

exp (ix′s) exp (−xn〈s〉αn)θ(xn)

×G (s, h)(is)β
′〈s〉αn−tk+βnαn ds, L1(R

n)

∥∥∥∥‖F (y),Lp(R
n
+)‖.

Since

h−1∫
h

v−1G(svα
′
) dv ≡ exp (−h2m〈s〉2m)− exp (−h−2m〈s〉2m),

by Minkowski’s inequality and the fact that β′α′ + βnαn = tk, we obtain

∥∥Φ1
j,h,k(x), Lp(R

n
+)

∥∥ ≤ c6

∥∥∥∥
∫

Rn−1

exp (ix′s) exp (−xn〈s〉αn)θ(xn)

× exp (−〈s〉2m)(is)β
′〈s〉αn−tk+βnαn ds, L1(R

n)

∥∥∥∥‖F (y),Lp(R
n
+)‖.

Choosingm in (4.9) sufficiently large, we arrive at the sought estimate for Φ1
j,h,k(x). Analogous arguments

for Φ2
j,h,k(x) yield (5.8). Convergence (5.9) is proved similarly.

The lemma is proved.
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Lemma 5.3. Let β = (β1, . . . , βn), 0 ≤ βα < tk, and |α|/p > σ(tk − βα) > tk − βα − |α|/p′,
1/p+ 1/p′ = 1. Then

∥∥(1 + 〈x〉)−σ(tk−βα)Dβ
xU

k
0,h(x), Lp(R

n
+)

∥∥
≤ c(‖F (x),Lp(R

n
+)‖+ ‖(1 + 〈x〉)σ(tk−βα)F (x),L1(R

n
+)‖), 0 < h < 1, (5.12)

with a constant c > 0 independent of F (x) and h; moreover,

∥∥(1 + 〈x〉)−σ(tk−βα)
(
Dβ

xU
k
0,h1

(x)−Dβ
xU

k
0,h2

(x)
)
, Lp(R

n
+)

∥∥ → 0 as h1, h2 → 0. (5.13)

Proof. We will present the arguments for |β| = 0.
Consider the kth entry of U0,h(x) from (5.2) and represent it as the sum of two summands:

Uk
0,h(x) = Uk

0,h,1(x) + Uk
0,h,2(x), (5.14)

where

Uk
0,h,1(x) = (2π)(1−n)/2

1∫
h

v−1

∫
Rn−1

exp (ix′s)G(svα
′
)L̃k(is,Dxn)RF̃ (s, xn) dsdv,

Uk
0,h,2(x) = (2π)(1−n)/2

h−1∫
1

v−1

∫
Rn−1

exp (ix′s)G(svα
′
)L̃k(is,Dxn)RF̃ (s, xn) dsdv,

with L̃k(is, iξn) the kth row of L̃ (is, iξn). Using the homogeneity of the entries of L (is, iξn) and the

definition of RF̃ (s, xn), we derive

Uk
0,h,1(x) = (2π)1−n

1∫
h

v−1

∫
Rn

K0,k(v, x
′ − y′, xn − yn)θ(yn)F (y) dydv,

Uk
0,h,2(x) = (2π)1−n

h−1∫
1

v−1

∫
Rn

K0,k(v, x
′ − y′, xn − yn)θ(yn)F (y) dydv,

(5.15)

where

K0,k(v, x
′, xn) =

∫
Rn−1

exp (ix′s)G(svα
′
)L̃k(is,Dxn)[J+(s, xn)θ(xn) + J−(s, xn)θ(−xn)] ds

and θ(xn) is the Heaviside function.
Consider Uk

0,h,1(x). Since σtk ≥ 0; therefore,

∥∥(1 + 〈x〉)−σtkUk
0,h,1(x), Lp(R

n
+)

∥∥ ≤ ∥∥Uk
0,h,1(x), Lp(R

n
+)

∥∥.
Conditions 1 and 2 imply that K0,k(v, x

′, xn) = vtk−|α|K0,k(1, x
′v−α′

, xnv
−αn), and, after the change

zj = xjv
−αj , j = 1, . . . , n, we obtain

∥∥(1 + 〈x〉)−σtkUk
0,h,1(x), Lp(R

n
+)

∥∥ ≤ c1

1∫
h

v−1+tk dv‖K0,k(1, z
′, zn),L1(R

n)‖‖F (x),Lp(R
n
+)‖.
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In line with [17, 18], we can show that choosing a sufficiently large number m in (4.9) in the definition
of G(s) yields

‖K0,k(1, z
′, zn),L1(R

n)‖ ≤ c < ∞.

Then ∥∥(1 + 〈x〉)−σtkUk
0,h,1(x), Lp(R

n
+)

∥∥ ≤ c‖F (x),Lp(R
n
+)‖. (5.16)

Consider the function Uk
0,h,2(x) from (5.15). Applying (3.15), as well as Minkowski’s and Young’s

inequalities, we obtain

∥∥(1 + 〈x〉)−σtkUk
0,h,2(x), Lp(R

n
+)

∥∥

≤ c

h−1∫
1

v−1‖〈x〉−σtkK0,k(v, x
′, xn), Lp(R

n)‖ dv‖(1 + 〈y〉)σtkF (y),L1(R
n
+)‖.

By the arguments similar to estimation of Uk
0,h,1(x), since |α|/p > σtmax, we derive

∥∥(1 + 〈x〉)−σtkUk
0,h,2(x), Lp(R

n
+)

∥∥

≤ c1

h−1∫
1

v−1+(1−σ)tk−|α|/p′ dv‖(1 + 〈y〉)σtkF (y),L1(R
n
+)‖.

Hence, the condition |α|/p′ > (1− σ)tk implies

∥∥(1 + 〈x〉)−σtkUk
0,h,2(x), Lp(R

n
+)

∥∥ ≤ c‖(1 + 〈y〉)σtkF (y),L1(R
n
+)‖, (5.17)

with a constant c > 0 independent of F (x) and h.

We obtain (5.12) for |β| = 0 from (5.14), (5.16), and (5.17). The proof of (5.12) for tk > βα > 0, as
well as (5.13), is carried out in exactly the same way.

The lemma is proved.

Lemma 5.4. Let β = (β1, . . . , βn), 0 ≤ βα < tk, and |α|/p > σ(tk − βα) > tk − βα − |α|/p′,
1/p+ 1/p′ = 1. Then

∥∥(1 + 〈x〉)−σ(tk−βα)Dβ
xU

k
j,h(x), Lp(R

n
+)

∥∥
≤ c(‖F (x),Lp(R

n
+)‖+ ‖(1 + 〈x〉)σ(tk−βα)F (x),L1(R

n
+)‖), 0 < h < 1, (5.18)

with a constant c > 0 independent of F (x) and h; moreover,

∥∥(1 + 〈x〉)−σ(tk−βα)
(
Dβ

xU
k
j,h1

(x)−Dβ
xU

k
j,h2

(x)
)
, Lp(R

n
+)

∥∥ → 0 as h1, h2 → 0. (5.19)

Proof. The main difficulty in establishing (5.18) is the case that |β| = 0. To settle it, consider the
kth entry of the vector-function Uj,h(x) from (5.3) and represent the latter, in line with [19], as

Uk
j,h(x) = Uk

j,h,1(x) + Uk
j,h,2(x), (5.20)
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where

Uk
j,h,1(x) = (2π)(1−n)/2

1∫
h

v−1

∫
Rn−1

exp (ix′s)G(svα
′
)

∞∫
0

exp (ix′s)G(svα
′
)

×Dyn(Bj(is,Dyn)L̃ (is,Dyn)RF̃ (s, yn)ω
k
j (s, xn + yn)) dyndsdv,

Uk
j,h,2(x) = (2π)(1−n)/2

h−1∫
1

v−1

∫
Rn−1

exp (ix′s)G(svα
′
)

∞∫
0

Wj(s, zn)F̃ (s, zn) dznω
k
j (s, xn) dsdv,

Wj(s, xn) = −Bj(is,Dyn)L̃ (is,Dyn)J−(s, yn − xn)|yn=0.

Since σtk ≥ 0; therefore,

∥∥(1 + 〈x〉)−tkσUk
j,h,1(x), Lp(R

n
+)

∥∥ ≤ ∥∥Uk
j,h,1(x), Lp(R

n
+)

∥∥. (5.21)

Estimate the first summand Uk
j,h,1(x) from (5.20). By analogy with [19], represent this function as

Uk
j,h,1(x) = (2π)(1−n)/2

1∫
h

v−1

∫
Rn−1

∞∫
0

exp (ix′s)G(svα
′
)

×Bj(is,Dyn)L̃ (is,Dyn)RF̃ (s, yn)Dynω
k
j (s, xn + yn) dyndsdv

+(2π)(1−n)/2

1∫
h

v−1

∫
Rn−1

∞∫
0

exp (ix′s)G(svα
′
)

×Bj(is,Dyn)DynL̃ (is,Dyn)RF̃ (s, yn)ω
k
j (s, xn + yn) dyndsdv

= Φ1
j,h,k(x) + Φ2

j,h,k(x). (5.22)

Arguing similarly to the estimation of Φ1
j,h,k(x) in Lemma 5.2 and using the fact that the function

〈s〉tk−mj

∞∫
0

exp (iynξn)Dynω
k
j (s, yn) dyn

and the elements of (5.11) are multipliers, we obtain

∥∥Φ1
j,h,k(x), Lp(R

n
+)

∥∥ ≤ c5

1∫
h

v−1
∥∥Kαn

k (v, x′, xn), L1(R
n)
∥∥ dv‖F (y),Lp(R

n
+)‖,

where

Kαn
k (v, x′, xn) =

∫
Rn−1

exp (ix′s) exp (−xn〈s〉αn)θ(xn)G(svα
′
)〈s〉αn−tk ds.

Since
Kαn

k (v, x′, xn) = vtk−|α|Kαn
k (1, x′v−α′

, xnv
−αn),

making the change
zi = xiv

−αi , i = 1, . . . , n,
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we derive

∥∥Φ1
j,h,k(x), Lp(R

n
+)

∥∥ ≤ c5

1∫
h

v−1+tk dv
∥∥Kαn

k (1, z′, zn), L1(R
n)
∥∥‖F (x),Lp(R

n
+)‖.

By the definition of Kαn
k (1, z′, zn), we obtain∥∥Φ1

j,h,k(x), Lp(R
n
+)

∥∥ ≤ c‖F (x),Lp(R
n
+)‖,

with a constant c > 0 independent of F (x) and h. By similar arguments for the second summand
in (5.22), we arrive at the estimate∥∥Φ2

j,h,k(x), Lp(R
n
+)

∥∥ ≤ c‖F (x),Lp(R
n
+)‖.

From (5.21), (5.22), and the above inequalities we obtain that∥∥(1 + 〈x〉)−tkσUk
j,h,1(x), Lp(R

n
+)

∥∥ ≤ c‖F (x),Lp(R
n
+)‖, (5.23)

with a constant c > 0 independent of F (x) and h. Estimate Uk
j,h,2(x) from (5.20). Using (3.15) and

Minkowski’s inequality, we derive

∥∥(1 + 〈x〉)−tkσUk
j,h,2(x), Lp(R

n
+)

∥∥ ≤ c2

h−1∫
1

v−1

∥∥∥∥
∫
Rn
+

〈x− y〉−tkσ

×
∣∣∣∣
∫

Rn−1

exp (i(x′ − y′)s)G(svα
′
)Wj(s, yn)ω

k
j (s, xn) ds

∣∣∣∣

×(1 + 〈y〉)tkσ|F (y)| dy, Lp(R
n
+)

∥∥∥∥ dv = c2

h−1∫
1

v−1

∥∥∥∥
∫
Rn
+

|Kj,k(v, x
′ − y′, xn, yn)|

×((1 + 〈y〉)tkσ|F (y)|)(1/p+1/p′) dy,Lp(R
n
+)

∥∥∥∥ dv,
where

Kj,k(v, x
′ − y′, xn, yn) = 〈x− y〉−tkσ

∫
Rn−1

exp (i(x′ − y′)s)G(svα
′
)Wj(s, yn)ω

k
j (s, xn) ds. (5.24)

Applying Hölder’s inequality, we obtain∥∥(1 + 〈x〉)−tkσUk
j,h,2(x), Lp(R

n
+)

∥∥

≤ c2

h−1∫
1

v−1

∥∥∥∥
∫
Rn
+

|Kj,k(v, x
′ − y′, xn, yn)|p(1 + 〈y〉)tkσ|F (y)| dy, L1(R

n
+)

∥∥∥∥
1/p

dv

×‖(1 + 〈y〉)tkσ|F (y)|,L1(R
n
+)‖1/p

′
.

Using the Tonelli Theorem, rewrite this inequality as∥∥(1 + 〈x〉)−tkσΦ2
j,h,k(x), Lp(R

n
+)

∥∥

≤ c2

h−1∫
1

v−1

∥∥∥∥
∫
Rn
+

|Kj,k(v, x
′ − y′, xn, yn)|p dx(1 + 〈y〉)tkσ|F (y)|, L1(R

n
+)

∥∥∥∥
1/p

dv

×‖(1 + 〈y〉)tkσF (y),L1(R
n
+)‖1/p

′
. (5.25)
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Put

Aj,k(v, y) =

∫
Rn

|Kj,k(v, x
′ − y′, xn, yn)|pθ(xn)θ(yn) dx.

Repeating the arguments from Lemma 2 in [18, § 4] and using Lemma 4.1 and the inequality |α|/p > tkσ,
we derive

Aj,k(v, y) ≤ cvp((1−σ)tk−|α|/p′) (5.26)

with a constant c > 0 independent of v and y. Inserting (5.26) in (5.25), we get

∥∥(1 + 〈x〉)−tkσUk
j,h,2(x), Lp(R

n
+)

∥∥

≤ c

h−1∫
1

v−1+(1−σ)tk−|α|/p′ dv‖(1 + 〈x〉)tkσF (x),L1(R
n
+)‖.

By the hypotheses of the lemma, (1− σ)tk − |α|/p′ < 0, and so

∥∥(1 + 〈x〉)−tkσUk
j,h,2(x), Lp(R

n
+)

∥∥ ≤ c‖(1 + 〈x〉)tkσF (x),L1(R
n
+)‖, (5.27)

with a constant c > 0 independent of F (x) and h.

Since

Uk
j,h(x) = Uk

j,h,1(x) + Uk
j,h,2(x),

by (5.23) and (5.27), we arrive at (5.18) for |β| = 0. Obtaining (5.18) for tk > βα > 0, as well as (5.19),
is carried out similarly.

The lemma is proved.

Proof of Theorem 4. This follows from Lemmas 5.1–5.4.

Indeed, by the above lemmas and under conditions (2.1), the vector-function Uh(x) defined in (4.10)

and (5.1) belongs to W
t/α
p,σ (Rn

+) for every F (x) ∈ C∞(Rn
+) such that F (x) ≡ 0 for |x| � 1 and the

following estimate holds:

∥∥Uh(x),W
t/α
p,σ (R

n
+)

∥∥ ≤ c(‖F (x),Lp(R
n
+)‖+ ‖F (x),L1,−σtmax(R

n
+)‖)

with a constant c > 0 independent of F (x) and h; moreover,

∥∥Uh1(x)− Uh2(x),W
t/α
p,σ (R

n
+)

∥∥ → 0 as h1, h2 → 0.

By completeness of W
t/α
p,σ (Rn

+), there exists U(x) ∈ W
t/α
p,σ (Rn

+) such that

∥∥Uh(x)− U(x),Wt/α
p,σ (R

n
+)

∥∥ → 0 as h → 0.

Ux is a solution to (1.2) and estimate (2.4) holds for it. Since the set of the functions in C∞(Rn
+) vanishing

for large |x| is everywhere dense in Lp(Rn
+) ∩ L1,−σtmax(R

n
+), boundary value problem (1.2) is solvable

in W
t/α
p,σ (Rn

+) for every vector-function F (x) ∈ Lp(Rn
+) ∩ L1,−σtmax(R

n
+), and (2.4) holds for the solution.

The proof of uniqueness of the solution to (1.2) inW
t/α
p,σ (Rn

+), σ ∈ [0, 1], follows the proof of uniqueness
of solutions to the boundary value problem for quasielliptic equations (see [18]).

Theorem 4 is proved.
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