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A CLASS OF SECOND ORDER TANGENT SETS

S. S. Kutateladze UDC 517.972.8

Abstract: Under consideration are the construction and properties of some special class of second
other tangent sets on using the technique of nonstandard analysis.
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Let X be a real vector space. Assume that we are given some almost vector topology σ with the zero
neighborhood filter Nσ := σ(0) as well as some almost vector topology τ with the filter Nτ := τ(0).
Recall that every almost vector topology σ on X is characterized by the two properties: Firstly,

multiplication by each scalar is continuous; and, secondly, addition is jointly continuous. It is clear
that X admits an almost vector topology σ such that σ(0) coincides with a fixed filter N if and only if
the monad μ(N ) is an external vector space over the external field of standard scalars.
In the sequel, σ will be a vector topology, unless stated otherwise explicitly. It is comfortable to

work in the assumption of standard environment within Nelson internal set theory IST (see [1]). Recall
that the monad μ(F ) of a standard filter F is the external intersection of the standard elements of F .
As usual, introduce the infinite proximity that is associated with the appropriate uniformity in X; i. e.,
x1 ≈σ x2 ↔ x1 − x2 ∈ μ(Nσ). Note that the monad μσ(x) of the neighborhood filter σ(x) of the
topology σ is as follows: μσ(x) := x+ μ(Nσ). Let ≈ stand for the infinite proximity on the reals R.
Recall that if given are some subset F of X and some point x̄ in X, then subdifferential calculus

(see [2]) deals in particular with the Hadamard, Clarke, and Bouligand cones

Ha(F, x̄) :=
⋃

U∈σ(x̄)
λ>0

intτ

( ⋂

x′∈F∩U
0<λ′≤λ

F − x′
λ′

)
;

Cl(F, x̄) :=
⋂

V ∈Nτ

⋃

U∈σ(x̄)
λ>0

⋂

x′∈F∩U
0<λ′≤λ

(
F − x′
λ′

+ V

)
;

Bo(F, x̄) :=
⋂

U∈σ(x′)
λ>0

clτ

( ⋃

x∈F∩U
0<λ′≤λ

F − x′
λ′

)
,

where, as usual, σ(x̄) := x̄ +Nσ. If h ∈ Ha(F, x̄) then F is often called epilipshitzian at x̄ with respect
to h. It is obvious that

Ha(F, x̄) ⊂ Cl(F, x̄) ⊂ Bo (F, x̄).
Considering an extended real function f : X → R∪{+∞}, the author of [3] defined the second order

upper subderivative at x̄ ∈ X along directions v̄, v̄1, and v̄2 as follows:
f
(2)
x̄ (v̄, v̄1, v̄2) := lim sup

(x,α)→x̄
λ↓0,μ↓0

inf
v→v̄
v1→v̄1
v2→v̄2

O2f (x, α, λ, μ, v, v1, v2),
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where we use the limit construction that is attributed to Painlevé, Kuratowski, and Rockafellar (for
instance, see [1, Section 5.3], [4], or [5]) while putting

O2f (x, α, λ, μ, v, v1, v2)

:= λ−1μ−1(f(x+ λv1 + μv2 + λμv)− f(x+ λv1)− f(x+ μv2) + α).
Here (x, α) → x̄ stands for the convergence to (x̄, f(x̄)) in the induced topology of the epigraph of f .
The article [6] contains some approach to the explicit description of the tangent sets that are determined
by similar constructions. The description uses the tools of IST.
As we will see soon, it is convenient to slightly modify the above construction by inserting the

multiplier 4 but retaining the previous notations:

f
(2)
x̄ (v̄, v̄1, v̄2) := lim sup

(x,α)→x̄
λ↓0, μ↓0

inf
v→v̄
v1→v̄1
v2→v̄2

O2f (x, α, λ, μ, v, v1, v2),

where we now put

O2f (x, α, λ, μ, v, v1, v2)

:= λ−1μ−1(f(x+ λv1 + μv2 + 4λμv)− f(x+ λv1)− f(x+ μv2) + α).
Given F ⊂ X, denote the indicator function of F by δF ; i. e., δF (x) := 0 at x ∈ F and δF (x) :=∞

at x /∈ F . Introduce the set Cl(2)(F, x̄)(v1, v2) as follows:
v ∈ Cl(2)(F, x̄)(v1, v2)↔ (v, v1, v2) ∈ dom(δF )(2)x̄ .

Considering the case of a normed space with τ the norm topology and σ the discrete topology,
Cl(2)(F, x̄)(v, v) coincides with A(2)(F, x̄, v) the second order attainable direction set to F at (x̄, v) pro-
vided that x̄ + cnt(v) lies in F . As usual, cnt(v) := {λv : λ > 0, λ ≈ 0} is the conatus of v (see [1,
Subsection 5.1.2]). Recall (see, for instance, [7]) that

A(2)(F, x̄, v) :=
{
h ∈ X : (∀λn ↓ 0)(∃hn → h) x̄+ λnv + 1

2
λ2nhn ∈ F

}
.

To simplify bulky formulas we will assume that f is continuous at x̄ ∈ F with respect to the topology τ
on X.

Theorem 1. The following holds:

Cl(2)(F, x̄)(v1, v2)

=
⋂

V ∈Nσ
V1∈σ(v1)
V2∈σ(v2)

⋃

U∈τ(x̄)
λ1>0
λ2>0

⋂

x′∈F∩U
0<λ′≤λ1
0<λ′′≤λ2

⋃

v′∈F−x′
λ′ ∩V1

v′′∈F−x′
λ′′ ∩V2

(
F − x′ − λ′v′ − λ′′v′′

4λ′λ′′
+ V

)
.

Proof. By transfer it suffices to check the case of standard parameters. Theorem 5.3.11 of [1] yields

v ∈ Cl(2)(F, x̄)(v1, v2)
↔ (∀x′ ≈τ x̄, x′ ∈ F )(∀λ′ ≈ 0, λ′′ ≈ 0, λ′ > 0, λ′′ > 0)

(∃v′1 ≈σ v1)(∃v′2 ≈σ v2)(∃v′ ≈σ v)
x′ + λ′v′1 ∈ F ∧ x′ + λ′′v′2 ∈ F ∧ x′ + λ′v′1 + λ′′v′2 + 4λ′λ′′v′ ∈ F.

Denote the set on the right-hand side of the claim by A. Take v ∈ Cl(2)(F, x̄)(v1, v2) and some standard
neighborhoods V ∈ Nσ, V1 ∈ σ(v1), and V2 ∈ σ(v2). If λ1 and λ2 are strictly positive infinitesimal
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while U is an infinitesimal τ -neighborhood of x̄; i. e., U ⊂ μτ (x̄); then there are some v′1 ≈σ v1, v′′2 ≈σ v2,
and v′ ≈σ v such that x′+λ′v′1 ∈ F , x′+λ′′v′2 ∈ F , and x′+λ′v′1+λ′′v′2+4λ′λ′′v′ ∈ F for all x′ ∈ F ∩U ,
0 < λ′ ≤ λ1, and 0 < λ′′ ≤ λ2. In other words, there exist v′1 ∈ (F − x′)/λ′ ∩ V1, v′2 ∈ (F − x′)/λ′′ ∩ V2,
and v′ ∈ v+V satisfying the needed properties. Since the parameters are standard, conclude that v ∈ A.
Assume now that v ∈ A. Take some standard neighborhoods V ∈ Nσ, V1 ∈ σ(v1), and V2 ∈ σ(v2)

once again. By transfer there are U ∈ τ(x̄), λ1 > 0, and λ2 > 0 such that x′ + x′v′1 + λ′′v′2 + 4λ′λ′′v′ ∈ F
for all x′ ∈ F ∩U , 0 < λ′ ≤ λ1, and with some v′1 ∈ (F −x′)/λ′∩V1, v′2 ∈ (F −x′)/λ′′∩V2, and v′ ∈ v+V .
Recalling that x′ ∈ U if x′ ≈τ x̄ and appealing to the properties of infinitesimals, we infer by idealization
that v ∈ Cl(2)(F, x̄)(v1, v2). The proof of Theorem 1 is complete.
Theorem 2. The following hold:

(1) If Cl(2)(F, x̄)(v1, v2) �= ∅ then v1 and v2 belong to the Clarke cone Cl(F, x̄).
(2) If v1, v2 ∈ Ha(F, x̄) then Cl(2)(F, x̄)(v1, v2) is a closed semigroup in the topology σ.
Proof. Claim (1) becomes obvious on recalling that in the standard environment we have

h ∈ Cl(F, x̄)↔ (∀x′ ≈σ x̄, x′ ∈ F )(∀α′ > 0, α′ ≈ 0)(∃h′ ≈τ h)x′ + α′h′ ∈ F.
Take u1, u2 ∈ Ha(F, x̄). Without loss of generality, we will proceed in the standard environment.

Therefore,

v1 ∈ Ha(F, x̄)↔ (∀x′ ≈σ x̄, x′ ∈ F )(∀α > 0, α ≈ 0)(∀v′1 ≈τ v1)x′ + α′v′1 ∈ F ;

v2 ∈ Ha(F, x̄)↔ (∀x′ ≈σ x̄, x′ ∈ F )(∀α > 0, α ≈ 0)(∀v′2 ≈τ v2)x′ + α′v′2 ∈ F.
Assume now that u1, u2 ∈ Cl(2)(F, x̄)(v1, v2). By Theorem 1 we can write that

(∀x′ ≈σ x̄, x′ ∈ F )(∀λ′ > 0, λ′ ≈ 0)(∀λ′′ > 0, λ′′ ≈ 0)
(∃v′1 ≈τ v1)(∃v′2 ≈τ v2)(∃u′ ≈τ u1) x′′ := x′ + λ′v′1 + λ′′v′2 + 4λ′λ′′u′ ∈ F.

Using the properties of the vector topology σ and its monad Nσ, conclude that x′′ ≈σ x̄. Recalling
Theorem 1 once again, we find v′′1 ≈τ v1, v′′2 ≈τ v2, and u′′ ≈τ u2 satisfying x′′λ′v′′1 +λ′′v′′2 +4λ′λ′′u′′ ∈ F .
Put v′ := v′1 + v′′2 , v′′ := v′2 + v′′2 , and u := u′ + u′′. Undoubtedly, v′ ≈τ v1, v′′ ≈τ v2, and u ≈τ u1 + u2.
Furthermore, x′+λ′v′ ∈ F and x′+λ′′v′′ ∈ F , since v1 and v2 are hypertangents, i. e., elements of Ha(F, x̄).
Moreover,

x′ + λ′v′ + λ′′v′′ + 4λ′λ′′u = x′ + λ′v′1 + λ
′v′2 + λ

′′v′2 + λ
′′v′′2 + 4λ

′λ′′u′ + 4λ′λ′′u′′

= (x′ + λ′v′2 + λ
′′v′′2 + 4λ

′λ′′u′) + λ′v′2 + λ
′′v′′2 + 4λ

′λ′′u′′

= x′′ + λ′v′1 + λ
′′v′′2 + 4λ

′λ′′u′′ ∈ F.

Consequently, u1 + u2 ∈ Cl(2)(F, x̄)(v1, v2).
To prove closedness, take u0 ∈ clσ Cl(2)(F, x̄)(v1, v2) and some standard neighborhoods V, V1, V2 ∈ Nτ

such that V1+V2 ⊂ V . There is a standard vector u ∈ Cl(2)(F, x̄)(v1, v2) satisfying u−u0 ∈ V1. Moreover,
using Theorem 1, we conclude that there are x′ ≈σ x̄, x′ ∈ F , λ′ ≈ 0, λ′ > 0, λ′′ ≈ 0, and λ′′ > 0 such
that u′ ∈ u + V2, v′ ∈ v1 + W1, and v′′ ∈ W2 + v2 for the previously given standard neighborhoods
W1,W2 ∈ Nτ satisfying the containments v′+λ′v′ ∈ F , v′+λ′′v′′ ∈ F , and x′+λ′v′+λ′′v′′+4λ′λ′′u′ ∈ F .
This implies easily that u′ ∈ u+ V2 ⊂ u0 + V1 + V2 ⊂ u0 + V . By idealization we find v′ ≈τ v1, v′′ ≈τ v2,
and u′0 ≈τ u0 such that x′ + λ′v′ ∈ F , x′ + λ′′v′ ∈ F , and x′ + λ′v′ + λ′′v′′ + 4λ′λ′′u′0 ∈ F . This means
that u0 ∈ Cl(2)(F, x̄)(v1, v2).
Remark. Theorems 1 and 2 can be generalized to the case of the epiderivatives determined from

some collection of infinitesimals along the lines of [4] and [8].
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