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PRODUCT DECOMPOSITIONS OF PARTIALLY
COMMUTATIVE GROUPS OF VARIETIES
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Abstract: Considering the partially commutative groups of the varieties that include the variety of all
length 2 nilpotent groups, we study the questions of factor cancellation in direct products, coincidence
of elementary theories, characterization of the group by its elementary theory, and the possibility of
direct product decomposition.
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1. Introduction

The elementary theory of a group G is the set Th(G) of all propositions in the first-order language
of the standard group signature which are true on G. Two groups G and H are called elementarily
equivalent whenever Th(G) = Th(H).

Let us recall just two of the many results on the elementary theories of groups. In 1955 Szmielew
found the necessary and sufficient conditions for the elementary equivalence of abelian groups in [1].
In the middle of the last century Tarski stated a few questions no the elementary theory of free groups.
In particular, he asked whether it is true that the free nonabelian groups of distinct ranks are elementarily
equivalent. The positive answer was given by Myasnikov and Kharlampovich [2], as well as independently
by Sela [3].

Sometimes a group G is almost uniquely characterized by the elementary theory of G. In fact, the
authors established the following statement [4]:

Proposition 1. Suppose that the elementary theory of an n-generated group G coincides with the
elementary theory of the free solvable group Fr,m of rank r and solvability length m. Then G and Fr,m
are isomorphic for m = 2 and an arbitrary finite r, as well as for m > 2 and n = r.

This article deals with partially commutative groups of some varieties of groups. Recall the relevant
definition. Given a varietyM of groups, consider its free group F with base X = {x1, . . . , xn} and a finite
graph Γ with vertex set X, always assumed undirected, without loops and multiple edges. Consider the
normal subgroup R in F generated by the commutators [xi, xj ] for all adjacent vertices xi and xj , i.e.
joined in the graph by an edge. The quotient group F/R, denoted below by F (Γ,M), is called the
partially commutative group of M with defining graph Γ.

Partially commutative rings and algebras have been studied along with partially commutative groups.
As [5] established, two partially commutative associative algebras are isomorphic if and only if their
defining graphs are isomorphic. Resting on this, Droms proved in [6] a similar result for the partially
commutative groups of the variety of all groups. Let Nk stand for the variety of nilpotent groups of
nilpotency length at most k. In the course of his proof, Droms obtained the following:
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Proposition 2. Suppose that a variety M of groups contains a variety N2. The groups F (Γ,M)
and F (Δ,M) are isomorphic if and only if the graphs Γ and Δ are isomorphic.

As [7] demonstrated, the coincidence of elementary theories of two partially commutative metabelian
groups implies the isomorphism of their defining graphs. Along the demonstration, the following was
established:

Proposition 3. Two partially commutative groups of N2 have the same elementary theories if and
only if they are isomorphic.

Studying the problem of classifying nilpotent groups in accordance with their elementary properties,
Oger proved in [8] the following proposition important for applications:

Proposition 4. Suppose that G and H are finitely generated groups, and, furthermore, each is
an extension of a finite group by a nilpotent group. The elementary theories of G and H coincide if and
only if G× J ∼= H × J , where J is an infinite cyclic group.
Suppose that, under the assumptions of Proposition 4 for groups G and H in some class, the isomor-

phism G× J ∼= H × J implies the isomorphism G ∼= H, i.e., the group J in the formula G× J ∼= H × J
cancels. Then G is uniquely characterized in the appropriate class of groups by the elementary theory
of G. Hirshon studied expressly the questions of cancellation in direct products; see [9] for instance.
For the partially commutative groups of varieties, we study the questions of coincidence of elementary

theories, characterization of the group by its elementary theory, and the possibility of direct product
decomposition. Let us state the main results:

Theorem 1. Given a variety M of groups which includes N2, suppose that a group G = F (Γ,M)
decomposes as the direct product H × A, where A is an abelian group. Then H ∼= F (Δ,M), where Δ
is a subgraph of Γ induced by some set of vertices which includes X\X⊥; here X⊥ stands for the set of
vertices joined in the graph by edges to all other vertices.

Theorem 2. Suppose that the variety of nilpotent groups N contains N2 and G = F (Γ,N). If
a finitely generated group H has the same elementary theory as G then G ∼= H.
Theorem 2 and Proposition 2 imply the following

Corollary. Given a variety N of nilpotent groups which includes N2, consider G = F (Γ,N) and
H = F (Δ,N). The groups G and H have the same elementary theory if and only if Γ ∼= Δ.
Theorem 3. Suppose that M is a variety of solvable groups which includes N2. If the graph Γ is

disconnected then the group G = F (Γ,M) is not decomposable as a direct product.

2. Proof of Theorem 1

Lemma 1. (1) If a group G is generated by {xi | i ∈ I}, while ci ∈ G′ ∩Z (G), where Z (G) is the
center of G and G′ is its commutant, then G is generated by {xici | i ∈ I}.
(2) Under the same hypotheses, if G/G′ is the free abelian group with base {xiG′ | i ∈ I} then the

mapping xi �→ xici for i ∈ I determines an automorphism of G.
Proof. The commutant of the group generated by {xici | i ∈ I} coincides with G′ because, as

a normal subgroup, it is generated by the commutators [xici, xjcj ] = [xi, xj ] for i, j ∈ I. This implies the
first claim.
To prove the second claim, take the free group F = 〈y1, . . . , yn〉 and v(y1, . . . , yn) ∈ F . If in G we

have either v(x1, . . . , xn) = 1 or v(x1c1, . . . , xncn) = 1 then v ∈ F ′. However, for v ∈ F ′ the values of
v(x1, . . . , xn) and v(x1c1, . . . , xncn) coincide. Thus, v(x1, . . . , xn) = 1⇔ v(x1c1, . . . , xncn) = 1. �
Proceed to proving Theorem 1. Put X⊥ = {x1, . . . , xm}. Then G/G′ is the free abelian group

with base {a1 = x1G′, . . . , an = xnG′}. Given a ∈ A, suppose that a ≡ xα11 . . . xαnn (mod G′). For i >
m there is a vertex xj with j > m not adjacent to xi. Suppose that αi �= 0. Then the inequality
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[
xα11 . . . x

αn
n , xj

] �= 1 is satisfied in the group F (Γ,N2) which is a homomorphic image of G. This
contradicts the commutation of a and xj in G. Therefore, A ≤ 〈x1, . . . , xm〉G′, so that the homomorphism
G→ G/G′ = 〈a1, . . . , an〉 embeds A into the subgroup 〈a1, . . . , am〉, where A is a direct factor. Note that
in Γ we can replace the set of vertices X⊥ = {x1, . . . , xm} by an arbitrary set constituting a base for the
free abelian group 〈x1, . . . , xm〉, ending up with an isomorphic graph. Hence, without loss of generality
we may assume that A = 〈x1c1, . . . , xkck〉, where k ≤ m and ci ∈ G′ ∩Z (G). By Lemma 1, the mapping

x1 → x1c1, . . . , xk → xkck, xk+1 → xk+1, . . . , xn → xn
determines an automorphism of G. Basing on this, we can assert that H ∼= G/A ∼= 〈xk+1, . . . , xn〉. The
last group is of the required form F (Δ,M). �

3. Proof of Theorem 2

Given some variety M of groups, assign to each finite graph Γ the partially commutative group
F (Γ,M). Call the variety M faithful if the correspondence between the graph and the partially commu-
tative groups of this variety is bijective; i.e., F (Γ,M) ∼= F (Δ,M) if and only if Γ ∼= Δ.
Proposition 2 means that every variety of groups which includes N2 is faithful.
Given finite graphs Γ and Δ on disjoint vertex sets, put G = F (Γ,M) and H = F (Δ,M). Clearly,

the direct product G × H is also a partially commutative group of the same variety M. The defining
graph of G×H is the graph called the complete connection of Γ and Δ and denoted by Γ+Δ; in it every
vertex of one graph is joined by edges to all vertices of the other.

Lemma 2. If M is a faithful variety of groups then for all finite graphs A, B, and D we have

F (A,M)× F (B,M) ∼= F (A,M)× F (D,M)⇔ B ∼= D.
Proof. Proceed by verifying the following properties of the connection of graphs. Suppose that

there are two representations of Γ as connections, Γ = A + B = C + D, of pairwise disjoint graphs A
and B, as well as C and D. Then A ∼= C would imply B ∼= D.
As usual, Δ stands for the complement graph to Δ. Clearly, two graphs are isomorphic if and only

if so are their complement graphs. It is easy to verify that we can express the connection Δ1 + Δ2 of

graphs on disjoint vertex sets as Δ1 �Δ2. Hence, it suffices to establish the following property: If Δ is
represented as the disjoint union Δ = X � Y = U � V and X ∼= U then Y ∼= V .
Take the tuple Δ1, . . . ,Δn of all connected components of Δ. Then

X = Δi1 � · · · �Δim , Y = Δim+1 � · · · �Δin .
We can find similar decompositions for U and V . By assumption, X ∼= U ; hence, the numbers of
connected components in X and U are the same and the connected components of X are isomorphic to
the corresponding connected components of U . Obviously, then the corresponding connected components
of Y and V are also isomorphic. �
Let us prove Theorem 2. By hypotheses, the group H must be nilpotent. Then Proposition 4 yields

G × A ∼= H × A, where A is an infinite cyclic group. The group G × A is a partially commutative
group of N. Thus, G ×H decomposes as the direct product H × A. Then Theorem 1 shows that H is
of the form F (Δ,N). By Proposition 2, the variety N is faithful. Lemma 2 implies that Γ ∼= Δ, and
so G ∼= H. �

4. Proof of Theorem 3

Lemma 3. Suppose that G is a length 2 nilpotent product of nontrivial free abelian groups A =
〈a1, . . . , am〉 and B = 〈b1, . . . , bn〉. Then the center Z (G) coincides with G′, while the centralizer of
g ∈ G\G′ either equals AG′ if g ∈ AG′ or BG′ if g ∈ BG′ or is cyclic modulo G′. In particular, in all
cases CG(g) is an abelian group.
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Proof. It is easy to see that G′ is a free abelian group with base {[ai, bj ] | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Without loss of generality we may assume that g ∈ G\G′, whose centralizer we consider, satisfies g ≡ aα1 bβ1 ,
where 0 �= α ∈ Z and β ∈ Z. Take h ∈ CG(g) with h ≡ aα11 . . . aαmm bβ11 . . . bβnn (mod G′). The condition
[g, h] = 1 and the form of the base of G′ imply the following: For β = 0 all β1, . . . , βn are also equal to zero
and CG(g) = AG

′. For β �= 0 all α2, . . . , αm, β2, . . . , βn are equal to zero, while the rows (α, β) and α1, β1)
are collinear. Taking the greatest common divisor d of α and β, put α′ = α/d and β′ = β/d. In this
case CG(g) modulo G

′ is generated by aα′1 b
β′
1 . Since Cg(a1)∩CG(b1) = G′, it follows that Z (G) = 1. �

Proceed to proving Theorem 3. Assume on the contrary that there is a nontrivial decomposition
G = A × B. Since both A and B are solvable groups, the quotient groups A/γ3(A) and B/γ3(B) are
nontrivial. Replacing G with G/γ3(G) = A/γ3(A)×B/γ3(B) reduces the problem to the case M = N2.
We see that in this case we can express G as the product of subgroups AG′ and BG′, and furthermore
[AG′, BG′] = 1. Clearly, the theorem follows from the next statement:

Lemma 4. If Γ is a disconnected graph then the group G = F (Γ,N2) cannot be expressed as the
product AB of subgroups A and B with A > G′, B > G′, and [A,B] = 1.
Proof. Assume on the contrary that this expression is possible. Partition the graph Γ into its

connected components Γ1� · · · �Γn. By assumption, n ≥ 2. Put Δ = Δ1�Δ2, where Δ1 is the complete
graph on the vertices of Γ1, while Δ2 is the complete graph on the vertices of Γ2 � · · · � Γn. The group
F (Δ,N2) is isomorphic to the quotient group of G by the normal subgroup included into G

′, and we can
assert that the images of A and B in F (Δ,N2) satisfy the hypotheses of the lemma. This reduces the
argument to the case of Γ = Γ1 � Γ2, where Γ1 and Γ2 are nontrivial complete graphs. In this case G
is a length 2 nilpotent product of two free abelian groups of finite rank. If A turns out abelian then it
lies in Z (G), while Lemma 3 would yield Z (G) = G′ < A, which is a contradiction. Therefore, A is
a nonabelian group. Take b ∈ B\G′. Then CG(b) includes A and, consequently, it is nonabelian. We
again arrive at a contradiction with Lemma 3. This justifies Lemma 4, and Theorem 3 along with it. �
In closing, let us state the open question:

Question. Suppose that M includes N2. Is it true that the group F (Γ,M) has a nontrivial direct
product decomposition F (Γ,M) = G×H if and only if G and H are partially commutative groups of M?
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