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§ 1. Introduction
This article continues [1] and is devoted to the study of the notion of spectral space and similar

notions. In particular, we elaborate and specify some results from the papers [2–4] by the first author;
also see the monograph [5].
In [1], almost sober spaces were characterized as spaces homeomorphic to spectra of distributive

lattices with topology (distributive posets with topology, respectively); and sober spaces, as spaces home-
omorphic to the spectra of distributive lattices with topology which contain a bottom with respect to
the defined order (distributive posets with topology which contains a bottom with respect to the de-
fined order, respectively). Here we give a characterization of the topological spaces homeomorphic to
the spectra of distributive posets with discrete topology which possess certain order properties, and thus
generalizing some available results. More precisely, spectral spaces are characterized in Theorem 4 as
inverse limits of spectra of finite distributive posets, as well as spectra of distributive meet-semilattices
with a bottom and a top. Further, the notions of semispectral and almost (semi)spectral spaces are intro-
duced. In Theorems 7, 8, 11 and Corollaries 1–4, the characterization of those spaces is given as spectra
of distributive posets with some properties. In particular, the equivalence of statements (ii) and (iv) in
Corollary 1 is a well-known characterization of spectra of distributive join-semilattices with a bottom;
see, for example, § 5 of Chapter II in Grätzer [6, 7]. In Corollary 5, it is established that the class of
(semi)spectral spaces is closed under Cartesian products and closed subspaces; and in Corollary 6, under
compact open subspaces. Our definition of ideal of a poset corresponds to [8].

§ 2. Spectra of Posets
Lemma 1. If a family K of compact open sets in X forms a base for the topology then the join-

semilattices 〈K ;∪,∅〉 and 〈{U ∈ K | U �= ∅};∪〉 are distributive.
Proof. Let U ⊆ U0 ∪ U1 for some nonempty U,U0, U1 ∈ K . Then U ∩ Ui ∈ T (X) for each i < 2,

whence there are families Vi ⊆ K with the property that U ∩ Ui =
⋃

Vi, i < 2. Therefore U =
U ∩ (U0 ∪ U1) = (U ∩ U0) ∪ (U ∩ U1) =

⋃
V0 ∪

⋃
V1. By compactness of U , we have U =

⋃
W0 ∪

⋃
W1

for some finite families Wi ⊆ Vi, i < 2. It is clear that
⋃

W0 = U ∩ U0 ⊆ U0,
⋃

W1 = U ∩ U1 ⊆ U1, and⋃
W0,
⋃

W1 ∈ K . �
The next definition is a particular case of Definition 1 of [1].

Definition 1. Let an algebraic closure operator ϕ define a completion of a poset 〈S;≤〉. The space
Specϕ S = Specϕ〈S,≤,Tω〉, with Tω the discrete topology, is called the ϕ-spectrum of 〈S;≤〉. The space
SpecL = Specψ〈L,∨,Tω〉 is called the spectrum of 〈L;∨〉. The spectrum of 〈L;∨,∧〉 is the spectrum of
its reduct 〈L;∨〉.
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Remark. If an algebraic closure operator ϕ define a completion of a poset 〈S;≤〉 other than a sin-
gleton and 〈S;≤〉 is ϕ-distributive, then SpecS �= ∅ by Theorem 3.3 of [8]. Speaking of spectra of
distributive (semi)lattices (of posets), in what follows we mean that the (semi)lattice L under considera-
tion (the poset under consideration, respectively) is endowed with the discrete topology, and the algebraic
closure operator ψ on L assigns to each subset of L the (semi)lattice ideal of L generated by the subset.

Lemma 2. Let a closure operator ϕ define a completion of a poset 〈S;≤〉 so that 〈S;≤〉 is ϕ-
distributive. Then Specϕ〈S;≤〉 ∼= Spec Id(S, ϕ).
Proof. By [1, Lemma 10], I is a ∩-irreducible element of Id(S, ϕ) for each I ∈ Spec Id(S, ϕ). More-

over, since Id(S, ϕ) is finite and distributive, J ∈ Spec Id(S, ϕ) if and only if J = ↓I = {X ∈ Id(S, ϕ) |
X ⊆ I} for some ∩-irreducible element I ∈ Id(S, ϕ). Therefore, the mapping

ξ : Specϕ〈S;≤〉 → Spec Id(S, ϕ); ξ : I �→ ↓I
is well defined and surjective. Furthermore, ξ is obviously one-to-one; i.e., ξ is a bijection. We put

Vs = {I ∈ Specϕ〈S;≤〉 | s /∈ I}, s ∈ S;
WX = {I ∈ Specϕ〈S;≤〉 | X /∈ ξ(I)}, X ∈ Id(S, ϕ).

Since Id(S, ϕ) is finite, we get by Corollary 6(i) of [1] that ξ(WX) =
⋃
s∈X ξ

(
WL(s)

)
=
⋃
s∈X ξ(Vs) for

every X ∈ Id(S, ϕ). The set {ξ(WX) | X ∈ Id(S, ϕ)} is a base for the topology of Spec Id(S, ϕ) by
Lemma 15 of [1], whence {ξ(Vs) | s ∈ S} is a base for the topology of Spec Id(S, ϕ) too. As {Vs | s ∈ S}
is a base for the topology of Specϕ〈S;≤〉, we conclude that Specϕ〈S;≤〉 ∼= Spec Id(S, ϕ). �
Lemma 3. Let an algebraic closure operator ϕ define a completion of a poset 〈S;≤〉 so that 〈S;≤〉 is

ϕ-distributive. Then Va is compact for every a ∈ S. Moreover, if a is not a bottom of 〈S;≤〉 then Va �= ∅.
Proof. Suppose that Va ⊆

⋃
b∈X Vb for some nonempty set X ⊆ S. By (i) and (iii) of Corollary 6

from [1], Va ⊆ Vϕ(X). Assume that a /∈ ϕ(X). Then ↓a ∩ ϕ(X) = ∅, whence by Theorem 3.3 of [8],
there is I ∈ Specϕ S such that a /∈ I, but ϕ(X) ⊆ I, which contradicts the inclusion Va ⊆ Vϕ(X). Thus
a ∈ ϕ(X). By the algebraicity of ϕ, there is a finite set F ⊆ X such that a ∈ ϕ(F ). Hence, by (i)
and (iii) of Corollary 6 from [1], Va ⊆ Vϕ(F ) =

⋃
b∈F Vb. By Lemma 15 of [1], {Vb | b ∈ L} is a base for

the topology of Specϕ S, whence Va is compact.

We assume further that a is not a bottom of 〈S;≤〉. Thus there is b ∈ S such that a � b. This means
that U(a) ∩ L(b) = ∅; moreover, L(b) is a ϕ-ideal and U(a) is a filter in 〈S;≤〉. By Theorem 3.3 of [8],
there is a prime ϕ-ideal I ∈ Specϕ S such that a /∈ I and L(b) ⊆ I; in particular, I ∈ Va �= ∅. �
Proposition 1. Let an algebraic closure operator ϕ define a completion of a down-directed poset

〈S;≤〉 so that 〈S;≤〉 is ϕ-distributive. The space Specϕ S is sober if and only if 〈S;≤〉 has a bottom.
Proof. If 〈S;≤〉 has a bottom, then Specϕ S is sober by Theorem 5 of [1]. Suppose that Specϕ S

is a sober space but has no bottom. Since 〈S;≤〉 is down-directed, for all a, b ∈ S there is c ≤ a, b.
But then Vc ⊆ Va ∩ Vb. Since the set {Va | a ∈ S} forms a base for the topology of Specϕ S, we obtain
by Lemma 3 that the intersection of two nonempty open sets in Specϕ S is nonempty. Thus Specϕ S is
an irredundant set. According to our assumption about the sobriety of Specϕ S and Lemma 16 of [1],
there is an inclusion-least prime ϕ-ideal I ∈ Specϕ S; let a ∈ I. This means in view of Lemma 3 that
a ∈ I ⊆ I ′ for each I ′ ∈ Va �= ∅, which is impossible. This contradiction demonstrates that 〈S;≤〉
contains a bottom. �
Proposition 2. Let an algebraic closure operator ϕ define a completion of an up-directed poset

〈S;≤〉 so that 〈S;≤〉 is ϕ-distributive. The space Specϕ S is compact if and only if 〈S;≤〉 has a top.
Proof. If 〈S;≤〉 contains a top, then Specϕ S is compact by Lemma 3. Suppose that Specϕ S

is compact. Since {Va | a ∈ S} is a base for the topology of Specϕ S, there are a0, . . . , an ∈ S such
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that Specϕ S = Va0 ∪ · · · ∪ Van . As 〈S;≤〉 is up-directed, a0, . . . , an ≤ a for some a ∈ S. But then

Specϕ S = Va0 ∪ · · · ∪ Van ⊆ Va whence Specϕ S = Va. If b � a for some b ∈ S then L(a) ∩ U(b) = ∅.
By Theorem 3.3 of [8], there exists a prime ϕ-ideal I ∈ Specϕ S such that b /∈ I and a ∈ L(a) ⊆ I;
in particular, I /∈ Va = Specϕ S, which is impossible. We have shown therefore that a is a top of 〈S;≤〉. �
Theorem 1. Let the set K of all compact open sets in a sober space X be a base for T (X). Then

the mapping
f : X→ SpecK , f : x �→ {V ∈ K | x /∈ V }

is a homeomorphism.

Proof. According to the definition and Lemma 1, 〈K ;∪〉 is a distributive join-semilattice. More-
over, ∅ ∈ K ; whence 〈K ;∪〉 has a bottom. To simplify our notation, we write T instead of T (SpecK ).
We note that the specialization order in SpecK coincides with the relation ⊇ of reverse inclusion.
Claim 1. f is a well-defined mapping.

Proof. It is not hard to see that f(x) is an ideal of the join-semilattice K for every x ∈ X. We
show that f(x) is prime. Indeed, f(x) �= ∅, as ∅ ∈ f(x). On the other hand, since K is a base for T (X)
and x ∈ X, there exists U ∈ K such that x ∈ U . Then U /∈ f(x), whence f(x) �= K . Let V0, V1 ∈ K
be such that V ∈ f(x) for each V ∈ K satisfying V ⊆ V0 ∩ V1. Then x /∈ V0 ∩ V1, whence x /∈ Vi for
some i < 2. Therefore Vi ∈ f(x), which was required. �
Claim 2. f is a one-to-one onto mapping.

Proof. Indeed, consider an arbitrary prime ideal B ⊆ K . Let U =
⋃
V ∈B V ; then U ∈ T (X)

and F = X\U is closed in X. Moreover, F �= ∅, as we would otherwise have V ∈ B for an arbitrary
set V ∈ K in contradiction to the assumption that B is prime. We show that F is an irreducible set.
Indeed, let U0 ∩ F �= ∅ and U1 ∩ F �= ∅ for some U0, U1 ∈ T (X). This means by assumption that
V0 ∩F �= ∅ and V1 ∩F = ∅ for some V0, V1 ∈ K with the property that Vi ⊆ Ui, i < 2. Thus V0, V1 � U
whence V0, V1 /∈ B. In view of the primality of B, this means that V /∈ B for some set V ∈ K such
that V ⊆ V0 ∩ V1. Since the set V is compact, V � U . Hence, U0 ∩ U1 ∩ F ⊇ V0 ∩ V1 ∩ F ⊇ V ∩ F �= ∅,
which was required.
In view of the sobriety of X, there is x ∈ X such that F = ↓x. We prove that f(x) = B. Indeed, for

an arbitrary V ∈ K the condition V /∈ f(x) is equivalent to the condition x ∈ V . The latter is satisfied if
and only if V ∩F �= ∅, which is equivalent to the condition V � U and, in turn, to the condition V /∈ B.
Further, let x � y in X. This means that x ∈ U and y /∈ U for some U ∈ K , i.e., U ∈ f(y)\f(x).

Thus, f is one-to-one. �
Claim 3. f is a continuous and open mapping.

Proof. Given U ∈ K , consider

VU = {I ∈ SpecK | U /∈ I} ∈ T .

Then x ∈ U if and only if U /∈ f(x), which is equivalent to the condition f(x) ∈ VU in view of Claim 1.
Since K is a base for T (X), this proves the continuity and openness of f . �
By Claims 1–3, f is a homeomorphism. The proof is complete. �
Theorem 2. Let a space X be almost sober but not sober and let the set K0 of all nonempty

compact open sets in X form a base for T (X). Then

f : X→ SpecK0, f : x �→ {V ∈ K0 | x /∈ V }
is a homeomorphism.

Proof. By assumption, X is irreducible, whence the intersection of every two nonempty open sets
is again a nonempty open set. Therefore, 〈K0;∪〉 is a down-directed distributive join-semilattice. We
note also that ∅ =

⋃
∅.
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Claim 1. f(x) = {V ∈ K0 | x /∈ V } is nonempty for each x ∈ X.
Proof. Suppose that f(x) = ∅ for some x ∈ X. This means that x ∈ V for each V ∈ K0. Since K0

is a base for T (X); therefore, x ∈ U for each nonempty set U ∈ T (X). But this implies that x is a top
of X with respect to the specialization order. Thus, X is sober, which contradicts our assumption. �
It follows from Claim 1 that the join-semilattice 〈K0;∪〉 has no bottom.
Claim 2. f is a well-defined mapping.

Proof. It is not hard to see that f(x) is an ideal of the join-semilattice K0 for each x ∈ X. We
show that f(x) is prime. Indeed, f(x) �= ∅ by Claim 1. On the other hand, since K0 is a base for T (X)
and x ∈ X, there is U ∈ K0 such that x ∈ U . Then U /∈ f(x) whence f(x) �= K0. Let V0, V1 ∈ K0
be such that V ∈ f(x) for each V ∈ K0 satisfying V ⊆ V0 ∩ V1. Then x /∈ V0 ∩ V1 whence x /∈ Vi for
some i < 2. Thus, Vi ∈ f(x) for some i < 2 which was desired. �
Then the proof repeats that of Theorem 1. �
Proposition 3 [5, Proposition 13.1.3]. Let the family K of all compact open sets in X be a base

for T (X) of a topological T0-space X. The following are equivalent:
(i) Every family W ∪{F} with W ⊆ K0 down-directed and F ⊆ X closed has nonempty intersection.
(ii) Every family W ∪ {F} with W ⊆ K0 down-directed and F ⊆ X closed and irreducible has

nonempty intersection.
(iii) X is sober.
If K is a multiplicative base for T (X), then the above conditions are equivalent to the following:
(iv) Every family W ∪ {F}, having the finite intersection property, with W ⊆ K and F ⊆ X closed

has nonempty intersection.
(v) Every family W ∪ {F}, having the finite intersection property, with W ⊆ K and F ⊆ X closed

and irreducible has nonempty intersection.

The proof of the following proposition is similar to that of Proposition 3. Nonetheless, we provide
the demonstration for the sake of completeness.

Proposition 4. Let the family K of all compact open sets in X be a base for T (X) in a topological
T0-space X. The following are equivalent:
(i) Every family W ∪{F} with W ⊆ K0 down-directed and F ⊂ X closed has nonempty intersection.
(ii) Every family W ∪ {F} with W ⊆ K0 down-directed and F ⊂ X closed and irreducible has

nonempty intersection.
(iii) X is almost sober.
If K forms a multiplicative base for T (X), then the above conditions are equivalent to the following:
(iv) Every family W ∪ {F}, having the finite intersection property, with W ⊆ K and F ⊂ X closed

has nonempty intersection.
(v) Every family W ∪ {F}, having the finite intersection property, with W ⊆ K and F ⊂ X closed

and irreducible has nonempty intersection.

Proof. It is clear that (i) implies (ii). Show that (ii) implies (iii). Indeed, consider an arbitrary
proper closed set F ⊆ X. Put W = {U ∈ K | U ∩ F �= ∅}. Since F is irreducible and K is a base for
the topology of X, the family W is down-directed and so W has the finite intersection property. But then
the family W ∪ {F} has the finite intersection property too. In view of (ii), there exists x ∈ F ∩⋂W .
We claim that F = ↓x. Indeed, consider an arbitrary y ∈ F . If y ∈ U ∈ K then U ∈ W whence
x ∈ F ∩⋂W ⊆ U . Since K is a base for T (X); therefore, y ≤X x, as was required.
Show that (iii) implies (i). Indeed, consider an arbitrary proper closed set F ⊆ X and a nontrivial

down-directed family W ⊆ K such that W ∪ {F} has the finite intersection property. Then I = {U ∈
K | U ⊆ X\F} is an ideal of the join-semilattice 〈K ;∪〉. As ∅ �= X\F ∈ T (X) and K is a base
for T (X), there is a nonempty U ∈ I . Consider

F = {U ∈ K | U ⊇ U ′ for some U ′ ∈ W }.
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Then W ⊆ F and U ∩ F �= ∅ for each U ∈ F ; in particular, I ∩ F = ∅. It is not hard to see
that F is an upper cone with respect to set-theoretic inclusion. Suppose that V, V ′ ∈ F . Then U ⊆ V
and U ′ ⊆ V ′ for some U,U ′ ∈ W . Since the family W is down-directed, there is W ∈ W such that
W ⊆ U ∩ U ′ ⊆ V ∩ V ′. As W ∈ F , we conclude that F is a nontrivial filter of 〈K ;∪〉. According to
Lemma 1 and [8, Theorem 3.3], there is a prime ideal P of 〈K ;∪〉 such that I ⊆P and F ∩P = ∅.
We put G = X\⋃P. We note that if G ∩ U = ∅ for some U ∈ K , then U ∈ P in view of the
compactness of U . Since

⋃
P /∈ {∅, X}, we conclude that G is a proper closed set in X. We show

that G is irreducible in X. Indeed, let ∅ /∈ {G∩ V0, G∩ V1} for some V0, V1 ∈ T (X). Then there are sets
U0, U1 ∈ K such that Ui ⊆ Vi, i < 2, and ∅ /∈ {G ∩ U0, G ∩ U1}. This means that U0, U1 /∈ P. As P
is a prime ideal, we conclude that U /∈ P for some U ∈ K such that U ⊆ U0 ∩ U1. This implies that
∅ �= U ∩G ⊆ (U0 ∩ U1) ∩G ⊆ (V0 ∩ V1) ∩G. We demonstrated therefore that G is irreducible in X. In
view of (iii), there is an element x ∈ X such that G = ↓x. If U ∈ W then U ∈ F whence U /∈ P. But
then U ∩ G �= ∅, as otherwise using the compactness of U , we would find that U ∈ P. It follows that
x ∈ U for each U ∈ W . Since K is a base for T (X); therefore, X\F = ⋃I ⊆ ⋃P. Thus, x ∈ G ⊆ F
and so x ∈ F ∩⋂W . Hence, claims (i)–(iii) are equivalent.
Assume now that K is a multiplicative base for T (X). It is obvious that (iv) implies (v) and (v)

implies (ii). We show that (i) implies (iv). Indeed, consider an arbitrary proper closed set F ⊆ X and
a nontrivial family W ⊆ K such that U0∩ · · ·∩Un∩F �= ∅ for each U0, . . . , Un ∈ W . By Zorn’s Lemma,
there is a family W ′ ⊆ K maximal with respect to the following conditions:

W ⊆ W ′ and W ′ ∪ {F} has the finite intersection property.

Then W ′ ∪ {F,U0 ∩ · · · ∩ Un} has the finite intersection property for all U0, . . . , Un ∈ W . Since W ′ is
maximal and U0∩· · ·∩Un ∈ K , we conclude that U0∩· · ·∩Un ∈ W ′, i.e., the family W ′ is down-directed.
In view of (i), we have ∅ �= F ∩⋂W ′ ⊆ F ∩⋂W . �

§ 3. Spectral Spaces
Definition 2. A topological T0-space X is called spectral, if X is a compact sober space, and the

compact open sets of X is a multiplicative base for T (X).
A topological T0-space X is called almost spectral, if X is an almost sober space, and the compact

open sets of X is a multiplicative base for T (X).
Spectral spaces were characterized in [5] as follows:

Theorem 3 [5, Theorem 13.1.5]. Let X be a topological T0-space, let K stand for the set of all
compact open sets in X, and let F be the set of all nonempty closed sets in X. The following are
equivalent:

(i) X is profinite.

(ii) X is homeomorphic to the inverse limit of spectra of finite distributive lattices with the discrete
topology.

(iii) X is homeomorphic to the spectrum of a distributive lattice with a bottom and a top which is
endowed with the discrete topology.

(iv) X is compact, K is a multiplicative base for T (X), and the intersection of each family W ⊆
K ∪F with the finite intersection property is nonempty.

(v) X is compact, K is a multiplicative base for T (X), and the intersection of each family W ∪ {F}
with the finite intersection property, where W ⊆ K and F ∈ F , is nonempty.
(vi) X is compact, K is a multiplicative base for T (X), and the intersection of each family W ∪{F}

with the finite intersection property, where W ⊆ K and F ∈ F is irreducible, is nonempty.

(vii) X is spectral.

The following elaborates Theorem 3:
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Theorem 4. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is spectral.
(ii) X is homeomorphic to the inverse limit of spectra of finite distributive posets with the discrete

topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive meet-semilattice with a bottom and a top

which is endowed with the discrete topology, where ϕ is an algebraic closure operator.

Proof. In view of Theorem 3, (i) implies (ii) and (iii). If (ii) holds for X then, by Lemma 2, X
is homeomorphic to the inverse limit of spectra of finite distributive lattices. Thus, (ii) implies (i) by
Theorem 3.
Finally, if an algebraic closure operator ϕ defines a completion of a ϕ-distributive meet-semilattice

〈S;∧〉 with a bottom and a top (endowed with the discrete topology), then Specϕ S = V1. By Lemma 3,
the space Specϕ S is compact. For all a, b ∈ S, the equality Va∧b = Va ∩ Vb holds in an obvious way.
Hence by Lemma 3, the topology on Specϕ S has a multiplicative base consisting of compact open sets.
By Theorem 5 of [1], Specϕ S is a sober space. Hence, (iii) implies (i). �
Theorem 5. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is compact, almost spectral, but not spectral.
(ii) X is homeomorphic to the spectrum of a distributive lattice with a top and without a bottom

which is endowed with the discrete topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive meet-semilattice with a top and without

a bottom which is endowed with the discrete topology, where ϕ is an algebraic closure operator.

Proof. Show that (i) implies (ii). Let K0 denote the set of all nonempty compact open sets in X.
The set X is irreducible, but X has no top with respect to the specialization order. In particular, the
intersection of every two nonempty open sets is open, whence by Lemma 1 〈K0;∪,∩〉 is a distributive
lattice having a top, as X ∈ K0. By Theorem 2 X ∼= SpecK0; moreover, the lattice 〈K0;∪,∩〉 has no
bottom, as X would have a top with respect to ≤X otherwise.
It is clear that (ii) implies (iii). Furthermore, let ϕ define a completion of a ϕ-distributive meet-

semilattice 〈S;∧〉 with a top and without a bottom. By Lemma 3, Specϕ S = V1 is a compact set. For
all a, b ∈ S, the equality Va∧b = Va ∩ Vb holds in an obvious way. Thus by Lemma 3 {Va | a ∈ S} is
a multiplicative base for the topology on Specϕ S which consists of nonempty compact open sets. By
Theorem 5 of [1], Specϕ S is an almost sober space. By Proposition 1, Specϕ S is not sober. Therefore,
Specϕ S is compact, almost spectral but not spectral; and (iii) implies (i). �
Using Theorems 4 and 5 together with Proposition 4, we get

Corollary 1. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is compact and almost spectral.
(ii) X is homeomorphic to the spectrum of a distributive lattice with a top which is endowed with

the discrete topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive meet-semilattice with a top which is

endowed with the discrete topology, where ϕ is an algebraic closure operator.
(iv) X is compact, the set K of all compact open sets in X is a multiplicative base for T (X), and

the intersection of each family W ∪{F} possessing the finite intersection property, with W ⊆ K and the
set F ⊂ X closed (and irreducible), is nonempty.
Theorem 6. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is sober, almost spectral, but not spectral.
(ii) X is homeomorphic to the spectrum of a distributive lattice with a bottom and without a top

which is endowed with the discrete topology.
(iii) X is homeomorphic to the spectrum of an up-directed ϕ-distributive meet-semilattice with a bot-

tom and without a top which is endowed with the discrete topology, where ϕ is an algebraic closure
operator.
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Proof. Let (i) hold and let K denote the set of all compact open sets in X. Since K is a mul-
tiplicative base for T (X); therefore, 〈K ;∪,∩〉 is a distributive lattice. It is obvious that ∅ ∈ K ; i.e.,
〈K ;∪,∩〉 has a bottom. As X is sober, almost spectral, but not spectral, X is not compact, i.e. X /∈ K .
Since K is a base for T (X), 〈K ;∪,∩〉 has no top. By Theorem 1, X ∼= SpecK , whence (i) implies (ii).
It is clear that (ii) implies (iii).
Let an algebraic closure operator ϕ define a completion of an up-directed ϕ-distributive meet-

semilattice 〈S;∧〉 with a bottom but without a top. For all a, b ∈ S, the equality Va∧b = Va ∩ Vb
holds in an obvious way. By Lemma 15 of [1] and Lemma 3, the topology on Specϕ S possesses a multi-
plicative base consisting of compact open sets. By Theorem 5 of [1], Specϕ S is sober and almost spectral.
By Proposition 2, Specϕ S is not compact. Hence, Specϕ S is not spectral, and (iii) implies (i). �
From Theorems 5, 6 and Proposition 3 we obtain

Corollary 2. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is sober and almost spectral.
(ii) X is homeomorphic to the spectrum of a distributive lattice with a bottom which is endowed

with the discrete topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive meet-semilattice with a bottom which is

endowed with the discrete topology, where ϕ is an algebraic closure operator.
(iv) The set K of all compact open sets in X is a multiplicative base for T (X), and the intersection

of each family W ∪ {F} possessing the finite intersection property, with W ⊆ K and F ⊆ X closed
(and irreducible), is nonempty.

Theorem 7. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is almost spectral.
(ii) X is homeomorphic to the spectrum of a distributive lattice endowed with the discrete topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive meet-semilattice endowed with the

discrete topology, where ϕ is an algebraic closure operator.
(iv) The set K of all compact open sets in X is a multiplicative base for T (X), and the intersection

of each family W ∪{F} possessing the finite intersection property, with W ⊆ K and F ⊂ X closed (and
irreducible), is nonempty.

Proof. Show first that (i) implies (ii). By Corollaries 1 and 2, it suffices to consider the case
when X is neither sober nor compact. Therefore, X is irreducible, but X has no top with respect to
the specialization order. Let K0 denote the set of all nonempty compact open sets in X. In view of the
irreducibility of X, the intersection of two nonempty open sets in X is again nonempty. Thus according
to our assumption, K0 forms a multiplicative base for T (X), whence 〈K0;∪,∩〉 is a distributive lattice.
By Theorem 2, X ∼= SpecK0.
It is obvious that (ii) implies (iii). Let an algebraic closure operator ϕ define a completion of a ϕ-

distributive meet-semilattice 〈S;∧〉. For any a, b ∈ S, the equality Va∧b = Va∩Vb holds in an obvious way.
By Lemma 15 of [1] and Lemma 3, the topology on Specϕ S possesses a multiplicative base consisting
of compact open sets. By Theorem 5 of [1], Specϕ S is almost sober. Hence, Specϕ S is almost spectral,
and (iii) implies (i).
Conditions (i) and (iv) are equivalent by Proposition 4. �

§ 4. Semispectral Spaces
Definition 3. A topological T0-space X is called semispectral, if X is a compact sober space, and

the compact open sets of X comprise a base for T (X).
A topological T0-space X is called almost semispectral, if X is an almost sober space, and its compact

open sets form a base for T (X).

Theorem 8. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is semispectral.
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(ii) X is homeomorphic to the spectrum of a distributive join-semilattice with a bottom and a top
which is endowed with the discrete topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive poset with a bottom and a top which is

endowed with the discrete topology, where ϕ is an algebraic closure operator.
(iv) X is compact, the setK of all compact open sets in X forms a base for T (X), and the intersection

of each familyW ∪{F} possessing the finite intersection property, withW ⊆ K down-directed and F ⊆ X
closed (and irreducible), is nonempty.

Proof. According to Proposition 3, (i) and (iv) are equivalent. Let 〈K ;∪〉 denote the join-
semilattice of all compact open sets in X. By Lemma 1, 〈K ;∪〉 is distributive. Obviously, ∅ ∈ K ;
i.e., 〈K ;∪〉 contains a bottom. Since X is compact, X ∈ K ; whence 〈K ;∪〉 contains a top. By
Theorem 1, X ∼= SpecK , whence (i) implies (ii). It is clear that (ii) implies (iii).
Let an algebraic closure operator ϕ define a completion of a poset 〈S;≤〉 with a bottom and a top

so that 〈S;≤〉 is ϕ-distributive. As Specϕ S = V1, the space Specϕ S is compact by Lemma 3. According
to Lemma 15 of [1] and Lemma 3, {Va | a ∈ S} forms a basis for the topology on Specϕ S which consists
of compact open sets. By Theorem 5 of [1], Specϕ S is sober. Therefore (iii) implies (i). �

Theorem 9. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is compact, almost semispectral, but not semispectral.
(ii) X is homeomorphic to the spectrum of a down-directed distributive join-semilattice with a top

and without a bottom which is endowed with the discrete topology.
(iii) X is homeomorphic to the spectrum of a down-directed ϕ-distributive poset with a top and

without a bottom which is endowed with the discrete topology, where ϕ is an algebraic closure operator.

Proof. Show that (i) implies (ii). Let K0 denote the set of all nonempty compact open sets in X.
According to our assumption, X ∈ K0 whence the join-semilattice 〈K0;∪〉 has a top. Moreover, X is
irreducible, but X has no top with respect to the specialization order. In particular, the intersection
of every two nonempty open sets is again nonempty, whence 〈K0;∪〉 is a down-directed distributive
join-semilattice. According to Theorem 2, X ∼= SpecK0; moreover, the join-semilattice 〈K0;∪〉 has no
bottom, as X would contain a top with respect to ≤X otherwise.
It is obvious that (ii) implies (iii). Furthermore, let an algebraic closure operator ϕ define a completion

of a down-directed ϕ-distributive poset 〈S;≤〉 with a top and without a bottom. By Lemma 3, the set
Specϕ S = V1 is compact. By Theorem 5 of [1], Specϕ S is almost sober, and by Lemma 15 of [1] and
Lemma 3, {Va | a ∈ S} is a basis for the topology which consists of compact open sets. Therefore,
Specϕ S is almost semispectral. According to Proposition 1, Specϕ S is not a sober space. Thus, Specϕ S
is not semispectral, and (iii) implies (i). �
From Theorems 8, 9 and Proposition 4 we obtain

Corollary 3. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is compact and almost semispectral.
(ii) X is homeomorphic to the spectrum of a distributive join-semilattice with a top which is endowed

with the discrete topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive poset with a top which is endowed with

the discrete topology, where ϕ is an algebraic closure operator.
(iv) X is compact, the setK of all compact open sets in X forms a base for T (X), and the intersection

of each familyW ∪{F} possessing the finite intersection property, withW ⊆ K down-directed and F ⊂ X
closed (and irreducible) is nonempty.

Theorem 10. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is sober, almost semispectral, but not semispectral.
(ii) X is homeomorphic to the spectrum of a distributive join-semilattice with a bottom and without

a top which is endowed with the discrete topology.

460



(iii) X is homeomorphic to the spectrum of an up-directed ϕ-distributive poset with a bottom and
without a top which endowed with the discrete topology, where ϕ is an algebraic closure operator.

Proof. Let K denote the set of all compact open sets in X. By Lemma 1, the join-semilattice
〈K ;∪〉 is distributive. It is obvious that ∅ ∈ K , i.e., 〈K ;∪〉 has a bottom. Since X is sober, almost
semispectral, but not semispectral, X is not compact; i.e., X /∈ K . Since K forms a base for T (X);
therefore, 〈K ;∪〉 has no top. According to Theorem 1, X ∼= SpecK whence (i) implies (ii). Obviously,
(ii) implies (iii) by Lemma 13 of [1].
Let an algebraic closure operator ϕ define a completion of an up-directed poset 〈S;≤〉 with a bottom

and without a top so that 〈S;≤〉 is ϕ-distributive. By Lemma 15 of [1] and Lemma 3, {Va | a ∈ S} forms
a base for the topology on Specϕ S which consists of compact open sets. By Theorem 5 of [1], Specϕ S
is sober. It follows that Specϕ S is a sober almost semispectral space. By Proposition 2, Specϕ S is not
compact. Hence, Specϕ S is not a semispectral space, and (iii) implies (i). �
From Theorems 8, 10 and Proposition 3 we obtain

Corollary 4. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is sober and almost semispectral.
(ii) X is homeomorphic to the spectrum of a distributive join-semilattice with a bottom which is

endowed with the discrete topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive poset with a bottom which is endowed

with the discrete topology, where ϕ is an algebraic closure operator.
(iv) The set K of all compact open sets in X forms a base for T (X), and the intersection of each

family W ∪ {F} possessing the finite intersection property, with W ⊆ K down-directed and F ⊆ X
closed (and irreducible), is nonempty.

Theorem 11. For an arbitrary topological T0-space X, the following are equivalent:
(i) X is almost semispectral.
(ii) X is homeomorphic to the spectrum of a distributive join-semilattice endowed with the discrete

topology.
(iii) X is homeomorphic to the spectrum of a ϕ-distributive poset endowed with the discrete topology,

where ϕ is an algebraic closure operator.
(iv) The set K of all compact open sets in X forms a base for T (X), and the intersection of each

family W ∪ {F} possessing the finite intersection property, with W ⊆ K down-directed and F ⊂ X
closed (and irreducible) is nonempty.

Proof. Show first that (i) implies (ii). Taking into account Corollaries 3 and 4, it suffices to
consider the case when X is neither sober nor compact. It follows that X is irreducible, but X has no
top with respect to the specialization order. Let K0 denote the set of all nonempty compact open sets
in X. By Lemma 1, the join-semilattice 〈K0;∪〉 is distributive. Moreover, since X is irreducible, the
intersection of every two nonempty sets open in X is again nonempty, whence the join-semilattice 〈K0;∪〉
is down-directed. By Theorem 2, X ∼= SpecK0.
It is obvious that (ii) implies (iii). Let an algebraic closure operator ϕ define a completion of a poset

〈S;≤〉 so that 〈S;≤〉 is ϕ-distributive. By Lemma 15 of [1] and Lemma 3, {Va | a ∈ S} is a base for the
topology on Specϕ S which consists of compact open sets. By Theorem 5 of [1], Specϕ S is an almost
sober space. It follows that Specϕ S is an almost semispectral space, and (iii) implies (i).
Conditions (i) and (iv) are equivalent by Proposition 4. �
From Tychonoff’s Theorem, Theorem 5.3.7, and Corollaries 1.12.8, 1.12.10, 5.3.6(ii) of [5] we obtain

Corollary 5. Consider the next properties of topological spaces:
(1) to be a (semi)spectral space;
(2) to be a compact almost (semi)spectral space;
(3) to be an almost (semi)spectral space;
(4) to be a sober almost (semi)spectral space.
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Then the following hold:
(i) If topological T0-spaces X and Y possess one of the properties (1)–(4), then X× Y possesses the

same property.
(ii) If a topological T0-space Xi possesses one of the properties (1)–(2) for all i ∈ I, then the space∏

i∈I Xi possesses the same property.
(iii) A closed subspace of a T0-space with one of the properties (1)–(4) possesses the same property.

Corollary 6. Let P denote one of the following properties:
(i) to be a spectral space;
(ii) to be an almost spectral space;
(iii) to be a compact almost spectral space;
(iv) to be a sober almost spectral space.
If X possesses property P and U ⊆ X is a nonempty compact open set in X, then the space U also

possesses property P and is a compact space.

Proof. Let K denote the set of all compact open subsets in X; and KU, the set of all compact
open subsets in U. Then KU ⊆ K . Moreover, since K is a multiplicative base for T (X); therefore,
KU is a multiplicative base for T (U). It is obvious that U is a compact space. Suppose that a family
W ⊆ KU ⊆ K and a (proper) set F ⊆ U closed in U are such that the family W ∪ {F} has the finite
intersection property. It is not hard to see that there exists a (proper) set G ⊆ X closed in X such that
F = G ∩ U . Hence, the family W ′ = {U ′ ∈ KU | U ′ ∈ W } ∪ {G} has the finite intersection property too.
We use one of the following statements: Theorem 3, Corollaries 1 and 2, and Theorem 7. According to
this statement, ∅ �= ⋂W ′ =

⋂
W . It remains to refer to the same statement again. �

§ 5. A Remark
Theorem 7 of [1] should be read as follows:

Theorem 12. Let S = 〈S,∨,T 〉 be a join-semilattice with topology and let the topology T = T π
ψ

be T0-separable. Then Tπ(Specψ S) is a biggest essential extension of S.
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